用户名: 密码: 验证码:
二倍体马铃薯耐盐材料筛选及其生理特性表现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化对农业生产的威胁已成为全球性的问题,严重影响到作物的生长和产量。目前马铃薯已成为世界上主要粮食作物之一,其产量仅排在小麦、玉米和水稻之后,占第四位。马铃薯是一种对盐中度敏感的作物,土壤盐渍化给马铃薯的生产造成严重的危害。解决土壤盐渍化问题最简单有效的途径就是耐盐品种选育,由于目前推广应用的马铃薯品种耐盐性较差,使马铃薯耐盐育种工作受到极大的限制,因此耐盐资源的筛选及生理特性的研究对马铃薯耐盐性育种具有非常重要的意义。
     本论文针对马铃薯耐盐育种中存在着的实际问题,以适应长日照的富利亚(Solanum phureja,PHU)与窄刀薯(S.stenotomum,STN)杂种(PHU-STN)无性系试管苗为材料,选用四倍体马铃薯耐盐性强的Bintje和耐盐弱的Mainechip为对照,进行NaCl胁迫,通过芽长、根长及其鲜重和干重的测量筛选出具有耐盐性的无性系;通过对筛选出的试管苗进行同浓度不同胁迫天数和同天数不同胁迫浓度的NaCl胁迫及盐胁迫下试管薯生理指标的测定,找出与耐盐性有关的生理指标;数值在统计分析前转化成相对值。对盐胁迫下试管苗叶片细胞超微结构的观察,找到可以用于耐盐性鉴定的细胞学指标;比较同浓度NaCl和NaHCO3胁迫下试管苗的生长情况;利用RAPD技术验证耐盐性筛选的结果。为马铃薯耐盐资源的筛选和培育马铃薯耐盐新品种提供物质基础和理论依据。主要研究结果如下:
    
     1.以芽和根的长度、鲜重、干重这六项生长参数综合评价二倍体马铃薯耐盐性,通过系统聚类分析,将45份材料分为两大类。利用聚类分析并结合平均数筛选出耐盐性比Bintje强的无性系472-1、267-1、89-2-1、188-1、566-1,感盐性比Mainechip强的感盐无性系354-1、507-1、270-2、9-3、138-1,中度耐盐无性系592-3、412-1、474-1、292-1、301-1。
     2.经过生理指标的测定得出:
     (1)随着盐胁迫天数的延长和盐浓度的增加,相对含水量相对值呈升高的趋势,耐盐无性系升高的幅度小于感盐无性系,在盐胁迫40、60天及20、30mmol·L-1浓度时为二倍体组间差异极显著。
     (2)随着盐胁迫天数的延长和盐浓度的增加,叶绿素总含量、叶绿素a含量相对值呈降低的趋势,叶绿素b含量相对值呈没有规律的变化,耐盐无性系降低的幅度小于感盐无性系,二倍体组间叶绿素含量差异极显著。因此叶绿素含量可作为鉴定马铃薯耐盐性强弱的指标。
     (3)随着盐胁迫天数的延长,SOD活性的变化呈先升高后降低的趋势,POD活性呈逐渐降低的趋势,耐盐无性系降低的幅度小于感盐无性系,二倍体组间差异极显著;随着盐胁迫浓度的增加,耐盐无性系的SOD活性呈升高的趋势,盐敏感无性系的POD活性呈降低的趋势,耐盐无性系降低的幅度小于感盐无性系,二倍体组间差异极显著;经盐胁迫后,试管薯SOD活性升高了,耐盐无性系升高的幅度高于感盐无性系,POD活性降低了,耐盐无性系降低的幅度小于感盐无性系,二倍体组间的SOD活性、POD活性均达到差异极显著水平。因此,SOD和POD活性与耐盐性有关,可以作为马铃薯耐盐性鉴定的指标。
     (4)随着盐胁迫天数的延长和盐浓度的增加,试管苗的相对电导率及丙二醛含量相对值逐渐升高;试管薯经盐胁迫后相对电导率及丙二醛含量升高了,耐盐无性系升高的幅度小于感盐无性系,二倍体组间差异极显著。因此,相对电导率及丙二醛含量可以作为二倍体马铃薯耐盐性筛选的生理指标。
     (5)随着盐胁迫天数的延长,脯氨酸含量相对值的变化呈先升高后降低的趋势,耐盐无性系升高的幅度高于感盐无性系,耐盐组可溶性糖含量相对值呈升高的趋势,感盐组可溶性糖含量相对值呈降低的趋势。二倍体组间差异极显著。随着盐胁迫浓度的升高,脯氨酸含量、可溶性糖含量的相对值呈逐渐升高的趋势,耐盐无性系升高的幅度高于感盐无性系。二倍体组间脯氨酸含量差异极显著,二倍体组间可溶性糖含量在10、30 mmol·L-1浓度时差异极显著。经盐胁迫后,试管薯的脯氨酸含量和可溶性糖含量均增加了,耐盐无性系升高的幅度高于感盐无性系,二倍体组间差异极显著。因此,脯氨酸的积累可以作为二倍体马铃薯耐盐性鉴定的生理指标。
     (6)随着盐胁迫天数的延长和盐浓度的增加,试管苗的可溶性蛋白含量相对值降低了,然而耐盐无性系和盐敏感无性系之间变化幅度均比较小;经盐胁迫后,试管薯的可溶性蛋白含量降低了。二倍体组间差异极显著。
     (7)盐胁迫后,试管薯直径、个数、最大薯重、产量均下降了,说明NaCl严重抑制了马铃薯试管薯的形成和生长,耐盐组下降的幅度小于感盐组,二倍体组间达到差异极显著水平。
     (8)试管薯产量与试管薯直径、试管薯薯个数、试管薯最大薯重、SOD、POD活性、脯氨酸含量、可溶性糖含量、可溶性蛋白含量呈极显著正相关,与相对电导率、丙二醛含量呈极显著负相关
     3.经盐胁迫后对试管苗叶片超微结构的观察,质膜、叶绿体、线粒体、基粒均发生变化,耐盐无性系受到的破坏小于感盐无性系。质膜、叶绿体、线粒体、基粒均可以作为耐盐性评价的细胞学指标。
     4.通过对15份耐盐性不同无性系的盐碱胁迫之间的比较,在10、20、30mmol·L-1NaHCO3胁迫时芽长、芽鲜重、芽干重、根长、根鲜重、根干重的平均值均小于NaCl,说明在同浓度下NaHCO3胁迫要比NaCl严重;在碱胁迫下,耐盐组芽长、芽鲜重、芽干重、根长、根鲜重、根干重的平均值均大于感盐组,二倍体组间差异极显著。由相关分析可知,当浓度为10 mmol·L-1胁迫时,NaCl和NaHCO3在芽长、芽鲜重、芽干重之间显著正相关,说明耐盐无性系耐碱,感盐无性系对碱敏感。
     5.通过对15份二倍体马铃薯的RAPD聚类分析,5份耐盐无性系分到一组,感盐无性系和中耐盐无性系之间没有被分开。说明利用生长参数进行耐盐性筛选的系统聚类结果与利用分子手段进行验证的结果基本一致。RAPD聚类分析与主坐标分析将15份二倍体马铃薯各分为4组,两种分类方法的结果基本一致。
The threat of soil salinity to agricultural production has become a global problem, which seriously affects crop growth and yield. At present, potato has become one of the world's major food crops, ranking the fourth in production only after wheat, maize and rice. Potato is a moderately salt-sensitive crop, and soil salinity causes seriously harm to the production of potatoes. Breeding salt-tolerant potatoes is the most simple and effective way to solve the problem of soil salinization. However, potato varieties being widely used are less salt-tolerance, and this makes great restriction to breeding work. So it is in urgent need to screen germplasm for salt tolerance and study their physiological response to salt stress in a potato breeding effort aimed at the development of salt tolerant potato varieties.
     In this research, long-day adapted diploid Solanum phureja (PHU)– S. stenotomum (STN) hybrid clones were screened in vitro for salt (NaCI) tolerance, using tetraploid varieties, Bintje (tolerant) and Mainchipe (susceptible), as controls, and three groups of five salt tolerant, five salt susceptible and five mid-salt tolerant clones were set up based on their performance of shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight. Salt-tolerant physiological indicators were found by determinating physiological indices of potato plantlets in vitro at the different levels of NaCI or different treatment periods. Data were expressed in relative values prior to statistical analysis. Cell ultrastructure observation under salt stress was made to find salt-tolerant cellular indicators. Use of RAPD technology was to verify the results of salt-tolerance screening. These results could provide the material foundation and theoretical basis for screening salt-tolerant potato resources and developing new varieties of salt-tolerant potato. The main results are as follows:
     1. Forty five diploid clones and two tetraploid controls were partitioned into two groups by cluster analysis based on performance of the six growth parameters, shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight. Five diploid clones, higher in salt tolerance than Bintje, 472-1, 267-1, 89-2-1, 188-1 and 566-1, five diploid clones, more sensitive to salt stress than Mainechip, 354-1, 507-1, 270-2, 9-3 and 138-1, and five diploid inbetween, 592-3, 412-1, 474-1, 292-1 and 301-1, were selected out based on cluster analysis combined with mean value comparison.
     2. Main results after physiological index measurement:
     (1) With increase in stressed period and NaCI level, the relative value of water content in these diploid potatoes tended to increase, with salt tolerant diploid potatoes being increased less compared with salt sensitive diploid potatoes. The three groups, stressed at 40 and 60 days, or at 20 and 30 mmol·L-1 NaCI, showed highly significant difference.
     (2) With increase in stressed period and NaCI level, relative value of total Chlorophyll content and Chlorophyll a content tended to decrease, but the relative value of Chlorophyll b content showed no regular pattern in the. The reduced range of the salt tolerant clones was less than that of the salt sensitive clones, and there were highly significant difference between the three groups. Therefore, Chlorophyll content can be used as the index of salt tolerance in diploid potatoes.
     (3) With increase in the days of salt stress, SOD activity were increased at first and then decreased. The reduced range of the salt tolerant clones was less than that of the salt sensitive clones, and there were highly significant differences between the three groups. With salt concentration increased, SOD activity of the salt tolerant clones was increased, while POD activity of the salt sensitive clones was reduced. The reduced range of the salt tolerant clones was less than that of the salt sensitive clones, and there were highly significant differences between the three groups. The SOD activity of the microtuber was increased after salt stress, and the increased range of the salt tolerant clones was higher than that of the salt sensitive clones. However the POD activity of the microtuber was reduced after salt stress, and the reduced range of the salt tolerant clones was less than that of the salt sensitive clones. There were highly significant differences between the three groups for SOD and POD. Therefore, the activity of SOD and POD can be used as the index of salt tolerance in diploid potatoes.
     (4) With the days of salt stress and salt concentration increased, the relative conductivity and relative content of MDA in the plantlets in vitro were increased. The two parameters showed the same trend in microtuber of diploid potatoes after salt stress. However, the increased range of the salt tolerant clones was less than that of the salt sensitive clones. Therefore, the relative conductivity and relative content of MDA can be used as the indices of salt tolerance in selection for salt tolerant diploid potatoes.
     (5) With the days of salt stress increased, the relative value of proline content was increased at first and then decreased, and the increased range of the salt tolerant clones was higher than that of the salt sensitive clones. The relative value of soluble sugar content was increased in the salt tolerant group and decreased in the salt sensitive group. There were highly significant differences in between the three groups. With the concentration of salt stress increased, the relative value of proline content and soluble sugar content were increased, and the increased range of the salt tolerant clones was higher than that of the salt sensitive clones. The proline content was highly significantly different between the groups, and soluble sugar content of diploid potatoes under stress of 10 and 30 mmol·L-1 NaCI was highly significantly different between the groups. The proline content and soluble sugar content of the microtuber were increased after salt stress. The increases in the salt tolerant clones were higher than those of the salt sensitive clones, and there were highly significant differences between the groups. Therefore, proline content can be used as the physiological index of salt tolerance in diploid potatoes.
     (6) With the days and the concentration of salt stress increased, the relative value of soluble protein content in plantlets in vitro was decreased, but the change was small in both the salt tolerant and the salt sensitive clones. The soluble protein content of microtuber was decreased after salt stress. There were highly significant differences between the groups.
     (7) The microtuber diameter, number, the largest sized tuber weight and microtuber yield were all decreased after salt stress. It was showed that the formation and growth of the microtuber could be seriously inhibited by NaCl. The decreased range of the salt sensitive clones was higher than that of the salt tolerant clones, and there were highly significant differences between the groups.
     (8) The microtuber yield was highly significantly positively correlated to the microtuber diameter, tuber number, the largest sized tuber weight, the activities of SOD and POD, proline content, soluble sugar content and soluble protein content of the microtuber, while highly significantly negatively to relative conductivity and malondialdehyde (MAD) content.
     3. The plasma membrane, chloroplast, mitochondria and grana were all changed through the ultrastructure observed of plantlet leaves after salt stress. The destructions of the salt tolerant clones were smaller than those of the salt sensitive clones. Therefore, the plasma membrane, chloroplast, mitochondria and grana could be used as the cytology index of salt tolerance evaluation.
     4. The fifteen diploid clones when under stress of 10, 20, 30 mmol ? L-1 NaHCO3 were inhibited more in terms of the shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weight, and root dry weight than under stress of 10, 20, 30 mmol ? L-1 NaCl, suggesting that NaHCO3 would do more harm to diploid potato than NaCI at the same concentration. At the range of concentration tested, all the six parameters were higher in the salt tolerant group than in the salt sensitive group when stressed under NaHCO3, and highly significantly difference was found between the three groups. When stressed under 10 mmol·L-1 of NaCl and NaHCO3, the diploid potato showed significantly positive correlation for shoot length, shoot fresh weight, and shoot dry weight, suggesting that diploid potatoes resistant to salt are also resistant to alkali.
     5. In RAPD cluster analysis, all five clones resistant to salt were assigned to one group, while salt sensitive clones and middle salt-tolerant clones were not well separated. The results demonstrated the use of growth parameters for salt tolerance screening is similar to the use of RAPD data. By RAPD cluster analysis and principal coordinates analysis, the 15 diploid potatoes were all divided into four groups, indicating that the results using the two classification methods were consistent.
引文
陈沁,刘友良,陈亚华. 1998.盐胁迫下大麦叶片的活性氧伤害与液泡膜H+-ATPase活性的关系.南京农业大学学报. 21(3): 21~25
    陈少裕. 1991.膜脂过氧化与植物细胞的伤害.植物生理学通讯. 27(2): 84~90
    陈云昭,王玉国. 1992.在盐胁迫下获得的大豆愈伤组织及再生植株生化反应.大豆科学. 11(1):70~73
    陈云昭. 1989.大豆耐盐离体筛选分化再生植株的初步研究.大豆科学. 5(4): 339~342
    程磊,刘苑秋,文娟. 2006.盐胁迫对晚松生理特性的影响.江西农业大学学报. 28(3): 382~385
    崔焱森,张俊莲,李学才,等. 2007.杜喜梅.马铃薯试管苗对盐胁迫的生理反应.中国马铃薯. 21(1): 1~5
    代红军,柯玉琴,潘廷国. 2001. NaCl胁迫下甘薯苗期叶片活性氧代谢与甘薯耐盐性的关系.宁夏农学院学报. 22(1): 15~18
    刁丰秋,章文华,刘友良. 1997.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报. 23(2): 105~110
    丁顺华,邱念伟. 2001.小麦耐盐性生理指标的选择.植物生理学通讯. (2): 98~102
    董晓霞,赵树慧,孔令安,等. 1998.苇状羊茅盐胁迫下生理效应的研究.草业科学. 15(5): 10~13
    董志刚,程智慧. 2009.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价.生态学报. (3): 1348~1355
    段九菊,郭世荣. 2005.外源亚精胺对NaCl胁迫下黄瓜幼苗耐盐性的影响.中国蔬菜. (12): 8~10
    段艳凤,刘杰,卞春松,等. 2009.中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析.作物学报. 35(8): 1451~1457。
    费伟,陈火英,曹忠等. 2005.盐胁迫对番茄幼苗生理特性的影响.上海交通大学学报(农业科学版). 23(1): 5~9
    冯志红,闫立英,王久兴,等. 2004. Na2SO4和CaCl2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响.河北农业科学. 8(4): 47~51
    龚家栋. 1996.马铃薯不同品种耐盐性差异初步研究.中国沙漠. 16(1): 61~66
    龚明,丁念诚,贺子义. 1989.等盐胁迫下大麦和小麦叶片膜脂过氧化伤害与超微结构变化的关系.植物学报. 31(11): 841~846
    郭房庆,汤章城. 1999. NaCl胁迫下小麦突变体和野生型叶片中的一些有机质累积和基因表达差异.植物生理学报. 25: 263~268
    郭洪海,董晓霞,孔令安,等. 1998.盐胁迫下饲料酸模植株生长及其与Na+、K+、C1-的关系.山东农业科学. (6): 26~29
    郭文忠,刘声锋,李丁仁,等. 2003.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响.中国农学通报. 19(5): 28~31
    韩志平,郭世荣,冯吉庆,等. 2008.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响.南京农业大学学报. 31(2): 32~36
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 111~112
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 123~124
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 185~187
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 188~189
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 190~192
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 195~197
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 204~205
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社. 86~70
    何文亮,黄承红,杨颖丽,等. 2004.盐胁迫过程中抗坏血酸对植物的保护功能.西北植物学报. 24(12): 2196~2201
    贺志理,王洪春. 1991.盐胁迫下苜蓿中盐蛋白的诱导产生.植物生理学报. 17(1): 71~79
    侯建华,云锦凤,张东晖. 2005.羊草与灰色赖草及其杂交种的耐盐生理特性比较.草业学报. 14(1): 73~77.
    华春,王仁雷. 2004.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响.山东农业大学学报(自然科学版). 35(1): 27~31
    郇树乾,刘国道,张绪元,等. 2004. NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究.中国草地. 26(6):45~49
    贾恢先,赵曼容. 1985.几种典型盐地植物显微及亚显微结构的研究.植物学通报. 3(3): 49~51
    荆家海. 1994.植物生理学.西安:陕西科学技术出版社. 317~320; 294~295
    康玉林,常青,田翠萍. 1995.马铃薯耐盐试验.土壤肥料. (5): 15~17
    康玉林,徐利群,张春震,等. 1996.不同盐浓度对马铃薯实生苗的影响.马铃薯杂志. 10(1): 17~19
    康玉林,张春震,夏佃仁,等. 1997.盐碱地马铃薯品种适应性研究.马铃薯杂志. 11(1): 7~10
    康玉林,张春震,徐利群,等. 1995.土壤含盐量对马铃薯扦插苗和脱毒小薯的影响.马铃薯杂志. 9(4): 203~205
    柯玉琴,潘廷国. 1999. NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报. 25(3): 229~233
    孔令安,郭洪海,董晓霞. 2000.盐胁迫下杂交酸模超微结构的研究.草业学报. 9(2):53~57
    李娟,程智慧,张国裕. 2004.马铃薯耐盐突变体的离体筛选.西北农林科技大学学报(自然科学版). 32(8): 44~48
    李磊,赵檀方,胡延吉. 2000.大麦芽期耐盐性鉴定指标初探.莱阳农学院学报. 17(1): 29~31
    李取生,李秀军,李晓军,等. 2003.松嫩平原苏打盐碱地治理与利用.资源科学. 25(l): 15~20
    利容千,王建波. 2002.植物逆境细胞及生理学.武汉大学出版社: 217
    梁春波,韩秀峰,邸宏,等. 2006.马铃薯新型栽培种耐盐性鉴定与筛选.中国马铃薯. 20(2):68~72
    梁佳勇,陈平,刘永霞,等. 2003.盐胁迫对木豆种子萌发与幼苗生长的影响.农业与技术. 23(6): 71~75
    廖祥儒,贺普超,朱新立. 1996.盐渍对葡萄光合色素含量的影响.园艺学报. 23(3): 300~302
    廖祥儒,朱新产. 1996.活性氧代谢和植物抗盐性.生命的化学. 16 (6): 19~23
    刘爱峰,赵檀方,段友臣. 2000.盐胁迫对大麦叶片细胞超微结构影响的研究.大麦科学. (3): 20~22
    刘爱荣,赵可夫. 2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报. 31(4): 389~395
    刘春华,苏加楷,黄文惠. 1993.禾本科牧草5个耐盐生理指标的研究.草业科学. 10(1): 45~54.
    刘凤荣,陈火英,刘杨,等. 2004.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学学报. 30 (1):99~104
    刘国花. 2006.植物抗盐机理研究进展.安徽农业科学. 34(23): 6111~6112
    刘艳芝,庄炳昌,赵桂兰. 1998.大豆子叶节组培耐盐突变体筛选.吉林农业科学: (4):38~39
    刘友良,江良驹. 1997.植物生理与分子生物学.科学出版社. 763~769
    马翠兰,刘星辉,潘锦山,等. 2005.盐胁迫对坪山柚、福橘幼苗叶片蛋白质合成的影响.福建农林大学学报(自然科学版). 34(4): 450~453
    马洪雨,王瑞君,王显生,等. 2009.黄麻种质芽期和苗期耐盐性的鉴定与评价.植物遗传资源学报. 10(2): 236~243
    马焕成,王沙生,胡杨. 1998.膜系统的盐稳定性及盐胁迫下的代谢调节.西南林学院学报. 18(1): 15~23
    马丽清,韩振海,周二峰,等2006.盐胁迫对珠美海棠和山定子膜保护酶系统的影响.果树学报, 23: 495~499
    马淑英,尹田夫,袁鹰,等. 1997.盐胁迫对大豆发育子叶愈伤组织的生化影响.大豆科学. 16(3): 227~232
    毛桂莲,哈新芳,孙婕,等. 2005. NaCl胁迫下枸杞愈伤组织可溶性蛋白含量的变化.宁夏大学学报(自然科学版). 26(1): 64~66
    毛桂莲,许兴,杨涓. 2004. NaCl和Na2CO3对枸杞的胁迫效应.干旱地区农业研究. 22(2): 100~104
    孟林,尚春艳,毛培春,等. 2009.偃麦草属植物种质材料苗期耐盐性综合评价.草叶学报. 18(4): 67~74
    牛彩霞,郁继华,张韵. 2006.钠盐对辣椒种子萌发和幼苗生长的影响.甘肃农业大学学报.(2): 34~38
    齐志广,张爱雨,孟伟娜,等.小麦拔节期盐胁迫对小麦近等基因系生理指标的影响.西北植物学报. 21(6): 1228~1232
    乔亚科,李桂兰,王文颇,等. 2003.野生、栽培大豆愈伤组织耐盐性与植株盐胁迫下丙二醛(MDA)含量的关系.大豆科学. 22(2): 127~131
    裘丽珍,黄有军,黄坚钦,等. 2006.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究.浙江大学学报(农业与生命科学版). 32(4): 420~427
    曲元刚,赵可夫. 2003. NaCl和Na2CO3对盐地碱蓬胁迫效应的比较.植物生理与分子生物学学报. 29(5): 387~394
    曲元刚,赵可夫. 2004. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报. 30(4): 334~341
    尚庆茂,宋士清,张志刚,等. 2006.外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性.中国农业科学. 39: 1872~1877
    邵桂花. 1986.大豆种质资源耐盐性田间鉴定方法.作物杂志. (13): 36~37
    邵启全,蒋兴,周泽其,等. 1983.野生大豆细胞系建立的初步研究.大豆科学. 2(4): 316~320
    石德成,殷立娟. 1993.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异.植物学报. 35(2): 144~149
    时津霞,乔永利,杨庆文等. 2004.以色列野生二粒小麦(Triticum dicoccoides)耐盐性鉴定.植物遗传资源学报. 5(4): 369~373
    史庆华,朱祝军. 2004.等.渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报. 10(2):188~191
    宋士清,刘微,郭世荣,等. 2006.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报, 17: 1871~1876
    汤章城. 1984.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯, (1): 15~21
    唐启义,冯明光. 1997.实用统计分析及计算机处理平台.北京:中国农业出版社. 189~192
    田晓艳,刘延吉,郭迎春. 2008.盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响.草业科学. 15(10): 34~38
    汪月霞,孙国荣,王建波,等. 2007. Na2CO3与NaCl胁迫下星星草幼苗叶绿体保护酶活性的比较.草业学报. 16(1): 81~86
    王爱国. 1986.丙二醛作为脂质过氧化指标的探讨.植物生理学通讯. (2) :55~57
    王宝山,赵可夫,邹琦. 1997.作物耐盐机理研究进展及提高作物抗盐性的对策. 14(增刊): 25~30v
    王宝山,赵可夫. 1997.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报. 14(增刊): 25~30
    王宝增,赵可夫. 2006.低浓度NaCl对玉米生长的效应.植物生理学通讯. 42(4): 628~632
    王建明,张作刚,郭春绒,等. 2001.枯姜病菌对西瓜不同抗感品种丙二醛含量及某此保护酶活性的影响.植物病理学报. 31(2): 152~156
    王丽萍,崔美香,孟艳玲. 2007. NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响.西北农业学报, 16: 170~173
    王仑山,王鸣刚,王亚馥. 1996.利用组织和细胞培养筛选作物耐盐突变体的研究.植物学通报. 13(2): 7~12
    王茅雁,邵世勤,张建华,等. 1995.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报. 10(2): 43~49
    王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报. 25(4):11~14
    王绍鹏,邱彩玲,李勇,等. 2009.马铃薯DNA提取及SSR标记分析.东北农业大学学报. 40(5): 7~12
    王素平,郭世荣,胡晓辉,等. 2006.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报. 28(1): 32~38
    王新伟,李照河,栾鸿坤,等. 1998.马铃薯高淀粉资源试管苗抗盐性鉴定.马铃薯杂志. 12(1): 15~18
    王新伟,滕伟丽,马异泉,等. 2000.盐胁迫下马铃薯脱毒苗生物产量及Vc含量的变化.东北农业大学学报. 31(3): 221~224
    王新伟,徐龙臣,田中艳,等. 1999.马铃薯高淀粉资源田间抗盐鉴定.中国蔬菜. (1): 25~28
    王新伟. 1998.不同盐浓度对马铃薯试管苗的胁迫效应.马铃薯杂志. 12(4): 203~206
    王学文,蔺彩虹,李小峰,等. 2007. NaHCO3胁迫对大叶紫花苜蓿生理特征的影响.草业科学, 24(2): 26~29
    王雪青,张俊文,魏建华,等. 2007.盐胁迫下野大麦耐盐生理机制初探.华北农学报. 22(1): 17~21
    王勋陵,王静. 1989.植物形态结构与环境.兰州大学出版社.
    王颖,杜荣骞,赵素然. 1997.不同NaCl处理条件诱导盐胁迫蛋白的效果.南开大学学报(自然科学版). 30(4): 14~19
    王有华,王素霞. 1994.东北地区盐碱灾害及其治理.东北水利水电. (10): 27~30
    王志春,裘善文. 2002.吉林省西部盐碱化土地治理对策.农业与技术. 22(5): 6~9
    王忠. 2000.植物生理学1版.中国农业出版社
    韦存虚,王建波,陈义芳,等. 2004.盐生植物星星草叶表皮具有泌盐功能的蜡质层.生态学报. 24(11): 2451~2456
    翁森红,蒋尤泉. 1992.牧草耐盐性鉴定指标和方法的初步研究.中国草地. (1): 30~34
    吴永波,薛建辉. 2002.盐胁迫对3种白蜡幼苗生长与光合作用的影响.南京林业大学学报(自然科学版). 26(3): 19~22
    谢德意,王惠萍,王付欣,等. 2000.盐胁迫对棉花种子萌发及幼苗生长的影响.中国棉花. 27(9): 12~13
    徐颖. 2000.盐分胁迫下植物的渗透调节.山东电大学报. (3): 34~36
    徐云岭,余叔文. 1989.植物盐胁迫蛋白.植物生理学通讯. (2): 12~16
    许帼英,李柱,安沙舟. 2008.木地肤幼苗细胞膜透性和酶系统对盐胁迫的适应性研究.草业科学. 25(12): 51~55
    许兴,李树华,惠红霞,等. 2002. NaCl胁迫对小麦幼苗生长、叶绿素含量及Na+, K+吸收的影响.西北植物学报. 22(2): 278~284
    闫先喜,赵檀方,胡延吉. 1994.盐胁迫预处理对大麦根尖分生区细胞超微结构的影响.西北植物学报. 14(4):273~277
    颜宏,石德成,尹尚军,等. 2000.盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响.东北师大学报自然科学版. 32(3): 47~52
    颜宏,赵伟,盛艳敏,等. 2005.碱胁迫对羊草和向日葵的影响.应用生态学报. 16(8): 1497~1501
    杨春武,李长有,尹红娟,等. 2007.冰小麦对盐胁迫和碱胁迫的生理响应.作物学报. 33(8): 1255~1261
    杨春武,李长有,张美丽,等. 2008.盐碱胁迫下小冰麦体内的pH及离子平衡.应用生态学报. 19(5): 1000~1005
    杨富裕,周禾. 2001.草坪草抗盐性研究进展.草原与草坪. (1):10~13
    杨瑞珍,毕于运. 1996.我国盐碱化耕地的防治.干早区资源与环境. 10(3): 22~30
    杨晓慧,蒋卫杰,魏珉,等. 2006.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报(自然科版), 37(2): 302~305
    杨晓英,章文华,王庆亚,等. 2003.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输.应用生态学报. 14(12): 2237~2240
    姚荣江,杨劲松,刘广明. 2006.东北地区盐碱土特征及其农业生物治理.土壤. 38(3): 256~262
    尹江,马恢,崔红军. 2005.马铃薯亲本材料试管苗的耐盐性筛选.中国马铃薯. 19(1): 13~16
    尹喜霖,王勇,柏钰春. 2004.浅论黑龙江省的土地盐碱化.水利科技与经济. 10(6): 361~363
    余叔文,汤章城. 2000.植物生理与分子生物学(第二版).科学出版社. 752~769
    余叔文,汤章城. 2001.植物生理与分子生物学.科学出版社
    於内军,陈舞. 2000.大豆耐盐性研究进展.大豆科学. 19
    喻敏,胡承孝,王运华. 2005.缺钼对冬小麦不同品种叶绿素含量和叶绿体超微结构的影响.华中农业大学学报. 24(5): 465~469
    张福锁. 1993.植物营养-生态生理学和遗传学.中国科学技术出版社
    张海燕,赵可夫. 1998.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报. 40(1): 56~61
    张俊莲,陈勇胜,武季玲,等. 2002.盐胁迫下马铃薯耐盐相关生理指标变化的研究.中国马铃薯. 16(6): 323~327
    张丽平,王秀峰,史庆华,等. 2008.黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异.应用生态学报. 19(8): 1854~1859
    张平宇,王颖,卢青,等. 1998.大米草盐胁迫蛋白的表达及cDNA文库的构建.草业学报. 7: 67~74
    张其德. 2000.盐胁迫对植物及其光合作用的影响.植物杂志. (1): 28~29
    张瑞玖. 2007. NaCl胁迫下马铃薯生理生化特性及氮素调控研究.硕士论文
    张世安. 2003.基因组学与蛋白质组学.焦作师范高等专科学校学报. 19(2): 53~54, 58
    张秀玲,李瑞利,石福臣. 2007.盐胁迫对野大豆种子萌发特性的影响.种子. 26(8): 21~26
    张云起,刘世琦,杨凤娟,等. 2003.耐盐西瓜砧木筛选及其耐盐机理的研究.西北农业学报, 12(4): 105~108
    章文华. 1997.植物的抗盐机理与盐害防治.植物生理学通讯. 33(6): 479~479
    赵春. 2009.盐胁迫下小麦苗期渗透调节物质含量的变化研究.安徽农业科学. 37(24): 11473~11474
    赵海红,贝丽霞. 2007.离体条件下马铃薯盐碱适应性的研究.农业与技术. 27(3): 37~41
    赵可夫,范海. 2000.盐胁迫下真盐植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报, 6(2): 99~105
    赵可夫,范海. 2005.盐生植物及其对盐渍生境的适应生理.科学出版社. 39~40
    赵可夫,范海. 2005.盐生植物及其对盐渍生境的适应研究.北京:科学出版社. 210
    赵可夫,李法曾. 1999.中国盐生植物.科学出版社. 48~62
    赵可夫,李军. 1999.盐浓度对3种单子叶盐生植物渗透调节及其在渗透调节中的影响.植物学报. 41(12): 1287~1292
    赵可夫. 1993.盐分胁迫和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应.植物学报. 35(7): 519~523
    赵可夫. 1999.植物抗盐生理.北京:中国科学技术出版社.
    赵明范. 1994.世界土壤盐渍化现状及研究趋势.世界林业研究. 84.
    赵勇,马雅琴,翁跃进. 2005.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报. 31(1): 103~106
    郑秋玲. 1994.温室中耐盐性水稻品种筛选.河北农垦科技. (4): 49~50
    郑文菊,王勋陵,贾敬芬. 1999.西安小麦耐盐系愈伤组织细胞的超微结构观察.西北植物学报. 19(1): 81~84
    郑文菊,张承烈. 1998.盐生和中生环境中宁枸杞叶显微和超微结构的研究.草业科学. 7(3): 72~76
    钟新榕,郁继华,张国斌. 2005. NaCl胁迫及外源ABA和GA3对黄瓜幼苗抗氧化酶活性的影响.甘肃农业大学学报. 8(4):467~470
    周峰,周泉澄,华春,等. 2007. Na2CO3和NaCl处理对盐角草生长和抗氧化酶活性的影响.安徽农业科学. 35(36): 11748~11750
    朱宇旌,张勇. 2000.盐胁迫下小花碱茅超微结构的研究.中国草地. 58: 30~32
    朱宇旌,张勇. 2001.小花碱茅根适应盐胁迫的显微结构研究.中国草地: 23(1): 37~40
    邹喻苹,葛颂,王晓东. 2001系统与进化植物学中的分子标记.北京:科学出版社. pp5~8, 30~51, 68~107
    Adams P, Thomas J C, Vemon D M, et al. 1992. Distinct cellular and organismic responses to salt stress.Plant Cell Physiolgy. 33: 1215~1223
    Aghaei K, Ehsanpour A A, Balali G, et al. 2008. In vitro screening of potato (Solanum tuberosum L)cultivara for salt tolerance using physiological parameters and RAPD analysis.Agric & Environ Sci, 3(2):159~164
    Allakhverdiev S I, Salcamoto A, Nishiyama Y, et al. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology. 123: 1047~1056
    Arslan A, Zapata F, Kumarasinghe K S. 1999. Carbon isotope discrimination as indicator of water-use efficiency of spring wheat as affected by salinity and gypsum addition. Communications in Soil Science and Plant Analysis. 30: 19~20
    Asada K, Takahashi M. 1987. Production and scavenging of active oxy-gen in photosynthesis. Elsevier Science Publishers, Amsterdam. 227~287
    Belkhodja R, Morales F, Abadia A. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology. 104(2): 667~673
    Blokhina O, Virolainen E, Fagerstedt K V. 2003. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Anna Bot. 91: 179~194
    Blumenthal-Goldschmidt S and Poljakoff-Mayber A. 1968. Effect of salinity on growth and submicroscopic structure of Atriples leaves . Aust. Bot,16: 469~478
    Bolarin M, Santa-CruzA, CayuelaE. 1995. Short-termsolute changes in leaves and roots of cultivated and wild tomato seed lingsundersalinity. PlantPhysiol. 147: 463~468
    Brown C R, Edwards C G, Yang C-P, et al. 1993. Orange flesh trait in potato: Inheritance and carotenoid content. J Amer Soc Hort Sci, 118:145~150
    Bruns S, Hecht~Buchholz C. 1990. Light and electron~microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Res. 33: 33~41
    Carter D R, Cheeseman J M. 1993. The effect of external NaCl on thylakoid stacking in lettuce plants. Plant Cell En viron. 16: 215~223
    Cheeseman J M. 1988. Mechanism of salinity tolerance in plants. Plant Physiol. 87: 54~550
    Christ B J, Haynes K G. 2001. Inheritance of resistance to early blight disease in a diploid potato population. Plant Breeding, 120: 169~172
    Ciamporova M. 1980. Ultrastructure of cortical cells of maize root under water stress conditions. Biologia Plant. (22): 444~449
    Dasgan H Y, Aktas H,Abak K,et al. 2002. Determination of screening techniques to salinity to tolerance in tomatoes and investigation of genotype responses. Plant Sci. 163(4): 695~703
    Dat J, Vandenabeele S, Vranova E, Montagu M Van, Inze D, Breusegem. Van F 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci.. 57: 779~795
    Delauney A J, Uerma D P S. 1993. Proline biosynthesis andosmoregulation in plants. Plant J. 4 (2):215~223
    Demir Y, Kocacaliskan I. 2002. Effect of NaCl and proline on bean seedlings culturedin vitro. Biologia Plantarum. 45(4): 597~599
    Demiral T, Türkan I. 2005. Comparative lipid peroxidation, antioxidantdefense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experim ental Botany. 53: 247~257
    Demming-Adams B.Ⅲ. 1992. Photoprotection and other responses of plants to high light stress. Ann.Rev.Plant Physiol.Plant Mol.Biol. 43: 599~626
    Drolet G, Dumbroff E B, Legge R L, et al. 1986. Radieal searvenging Properties of Polyamines. Phytochemistry. 25: 367~371
    Elstner E F. 1982. Oxygen aetivivation and oxygen toxieity. Ann.Rev;Planl Physiol. 33: 73~96
    Foyer C H, Descourvieres P l, Kunert K J. 1994b, Proteetion against oxygen radicals:An important defense mechanism studied in trallsgenic Plants . Plant Cell Env. 17: 507~523
    Franeois L E, Mass F, Donovan T J. 1986. Effects of Salinityon on grain yield and quality,vegetative growth and gennlnation of semidwarf and durum wheat. Agron. J. 78: 1053~1058
    Gautney T L, Haynes F L. 1983. Recurrent selection for heat tolerance in diploid potatoes (Solanum tuberosum subspp. phureja and stenotomum). Am Potato J, 60: 537~5452
    Ghislain M, Nunez Mdel R, Spooner D M. 2009. The single Andigenum origin of Neo-Tuberosum potato materials is not supported by mictosatllite and plastid marker analyses. Thero Appl Genet, 118(5): 963~969
    Gomez J M, Jimenez A, Olmos E, et al. 2004. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot. 55: 119~130
    Gomez K A, Gomez A A. 1984. Statistical procedure for agricultural research. 2nd edition. New York:John Willey and Sons
    Gosset D R, Millhollon E P, Lucar M C. 1994. Antioxidant response to NaCI in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science. 34: 706~714
    Greenway H, Munns R. 1980. Mechanism of salt tolerance in nonhaloptes. Ann Rev Plant Physio. 31:149~190
    Gupta P K, Balyan H S, Sharma P C. 1996. Microsatellites, in plants: A new class of molecular markers. Current Science. 70(1) 45~54
    Handa S, Bressan R A, Handa A K,et al. 1983, Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 73: 834~843
    Hare P D, Cress W A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regular. 21: 79~102
    Hawkes J G. 1990. The Potato Evaluation, Biodiversity and Genentie Resources. London Belhaven Press
    Hawkes J G. 1992. History of the potato. In The potato crop-The scientific basis for improvement, (ed). P M. Harris, Chapman and Hall. 1~14
    Haynes F L. 1972. The use of cultivated diploid Solanum species in potato breeding. In: French, E.R. (ed.) Prospects for the Potato in the Developing World. International Potato Center Symposium. Lima, Peru, 100~110
    Haynes F L. 1980. Progress and future plans for the use of Phureja-Stenotomum populatios. In: Page O T (ed), Utilization of the Genetic Resources of the Potato. III. Report of the Planning Conference, International Potato Center. Lima, Peru, 80~88
    Haynes K G, Christ B J. 1999. Heritability of resistance to foliar late blight in a diploid hybrid potato population of Solanum phureja x Solanum stenotomum. Plant Breeding, 118: 431~434
    Haynes K G, Haynes F L, Henderson W R. 1989. Heritability of specific gravity of diploid potato under high temperature growing conditions. Crop Science, 29: 622~625
    Haynes K G, Haynes F L. 1990. Selection for tuber characters can maintain high specific gravity in a diploid potato breeding population. HortScience, 25: 227~228
    Haynes K G. 2008. Heritability of chip color and specific gravity in a long-day adapted Solanum phureja–S. stenotomum Population. Am J Pot Res, 85: 361~36
    Hernandez J A. Corpass F J, Gome M. et al. 1993. Salt-induced oxidative stress mediated by active oxygen species in pen leaf mitochondria. Physiol Plant, 89:103~110
    Herriott A B, Haynes F L, Shoemaker P B. 1986. The heritability of resistance to early blight in diploid potatoes (Solanum tuberosum subspp. phureja and stenotomum). Am Potato J, 63: 229~232
    Heyser J W, Nabors M W. 1981. Growth, water content and soluble accumulation of two tobacco cell lines cultured on sodium chloride, dextran and polyethylene glycol. Plant Physiol. 68: 1454
    Hurkmanw J, Tao H P, Tanaka C K. 1991. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol. 97: 366~374
    Iwanaga M, Sehmiediche P. 1989.利用野生种改良马铃薯品种.国际马铃薯中心通讯. 17:2
    Katerji N, van Hoorn J W, Hamdy A, et al. 2003. Salinity effect on crop evelopment and yield, analysis of salt tolerance according to several classification methods, Agric.Water Manag. 62: 37~66
    Katsuhara M. 1997. Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol. 38(9): 1091~1093
    Khrais T, Leclerc Y, Danielle J. 1998. Donnelly Relative salinity tolerance of potato cultivars assessed by in vitro screening . Springer New York. 75(5): 207~210
    King G J, Hussey C E, Turner J V A. 1986. A protein induced by NaCl in suspension culturesof Nicotiana tabacum accumulates in whole plant roots. Plant Molecular Biology. 7:441~449
    Klose J, Kobalz U. 1995. Two-dimensional electropHoresis of proteins:an updated protocol and implications for a functional analysis of the genome.Electrophoresis. 16(6): 1034~1059.
    Levitt J. 1980. Response of plants to environmental stress. New York: Aedemic Press
    Levy D. 1992. The response of potatoes(Solanum tuberosum L.)to salinity:plant growt and tuber yields in the arid desert of Israel.Ann.Appl.Bio1. 120: 547~555
    Liang Y C ,Chen Q,Liu Q, et a1. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).J Plant Physiol. 160: 1157~1164
    Lopezf, Vansugt G, Fourcroy P. 1994. Accumulation of a 22 kD protein and it mRNA in the leaves of Raphanus sativusin response to salt stress orwater deficit. Plant Physiol. 91: 605~614
    Lu W, Haynes K, Wiley E, et al. 2001. Carotenoid content and color in diploid potatoes. J Amer Soc Hort Sci, 126: 722~726
    Ludlow M M. 1990. Muchow A critical evaluation of traits for improving copy yields in water-limited environments. Advances in Agronomy. 43:107~153
    Lutts, Kinet J M, Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot. 78: 389~398
    Maas E V, Hoffman G H.1977. Crop salt tolerance-Current assessment. American Society of Civil Engineers Proceedings Journal of Irrigation and Drainage Division. 103: 115~131
    Maas E V, Hofftnan G J. 1977. Crop salt tolerance.J.Irrig.Drain.Div. 103: 115~134.
    Mccue K F, Hanson A D. 1990. Drought and salt tolerance towards understanding and applicationg .Trends Biotech. 8: 358~362
    Mcxoy T J. 1987. Characterization of alfalfa(Medicago Sativa L)plants regenerated from selected NaCl tolerant cell line. Plant Cell Report. 6: 417~422
    Meloni D A, Oliva M A, Martinez C A, et al. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot. 49: 69~76
    Mitsuya S, Takeoka Y, Miyake H. 2000. Effects of sodium chloride on foliar ultrastructure of sweet potato plantlets grown under light and dark conditions in vitro. Plant Physiol. 157: 661~667
    Murphy A M, De Jong H, Tai G C C. 1995. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x×2x crosses in potatoes. Euphytica. 82: 227~233
    Nadler A and Heuer B. 1995. Effect of saline irrigation and water deficit on tuber quality. Potato Res. 38:119~123
    Nowak J, Colborne D. 1989. In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato.Am.Pot.J. 66: 35~45.
    Ortiz R, Iwanaga M, Peloquin S J. 1994. Breeding potatoes for developing countries using wild tuber bearing Solanum spp and ploidy manipulation.J Genet and Breed. 48: 89~98
    Ortiz R, Iwanaga M, Rarrian K, et al. 1990.Breeding for resistance to potato tuber moth,Phthorimaea operculella. (Zeller), in diploid potatoes. Euphytica.50:119~126
    Penner G A, Bezte L J, Leisle D, et al. 1995. Identification of RAPD marker linked to a gene governing cadmium uptake in durum wheat. Genome, 38(3): 543~547
    Price A M, Atherton N M, Hendry G A F. 1989. Plants under Drought Stress Generate Activated Oxygen. Free Rad Res Commun. 8: 61~66
    Pterson B D. 1984. Estimation of hydrogen peroxide in p lant ex-tracts using titanium. AnalBiochem. 139: 487~492
    Ross H. 1986. Potato-breeding problems and perspectives. Verlag Paul Parey,Berlin.132
    Ruttencutter G E, Haynes F L, Moll R H. 1979. Estimation of narrow-sense heritability for specific gravity in diploid potatoes (S. tuberosum subsp. phureja and stenotomum). Am Potato J, 56: 447~453
    Sawahel W A, Hassan A H. 2002. Generation of transgenicwheatproducing high levels of the osmoprotectant proline. Biotechnology Letters. 24: 721~725
    Shaterian J, Waterer D R H., Tanino K K. 2008. Methodologies and Traits for Evaluating the Salt Tolerance in Diploid Potato Clones. Am.J.Pot Res. 85: 93~100
    Shi D, Wang D. 2005. Effects of various salt alkaline mixed stresses on Aneurolepidium chinense (Trin.)Kitag. Plant and Soil. 271: 15~26
    Shi H., et a1. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis. Nat Biotech. 21: 81~85.
    Sibole J V, Montero E, Cabot C, et al. 1998. Role of sodium in ABA-mediated long-term growth response of bean to salt stress. Physiol Plant. (104): 299~305
    Silva J V B, Otoni W C, Martinez C A, et al. 2001. Microtuberization of A ndean potato specie s(S olamum spp.)as affected by salinity. Sci.Horti. 89: 91~101
    Singh N K, Bracker C A, Hasegawa P M, et al. 1987. Characterization ofosmotin: a thaumatin-like protein associatedwith osmotic adaptation in plant cell. Plant Physiol. 85: 529~536
    Singh N K, Hand A A K, Hasegawa P M, et al. 1983. Electrophoretic protein patterns in cultured cells of tobacco adapted to NaCl. Plant Physiol. 72(Suppl): 94~95
    Singh N K, Handa A K, Hasegaw P M, et al. 1985. Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol. 79: 126~137
    Smith M M, Hodson M J. 1982. Salt~induced ultrastructural damage to mitochondria in root tips of a salt~sensitive ecotype of Agrostis stolonifera. Exp.Bot. 33(136): 886~895
    Spooner D M, Nunez J, Trujillo G et al. 2007. Extensive simple sequence repeat genotng of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl acad Sci USA.
    Stadtman E R. 1992. Protein Oxidation and aging.Science. 257: 1220~1224
    Sudhakar C, Lakshmi A, Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus Alba L.) under NaCl salinity. Plant Sci, 161: 613~619
    Sugihat A L, Hanagata N, Dubinsky Z, et al. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein increased by salt treatment in the mangrove Bruguiera gymnorrhiza . Plant CellPhysiol. 41: 1279~1285
    Trogonov B P. 1973. Structure and function of plant cell in saline habitats. NewYoke. Halsted Press. 78~83
    Tully R. E., Hanson A.D. and Nelsen C.H.E. 1979. Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen-budget. Plant Physiol. 63: 518~523
    Vallejo R L, Collins W W, Schiavone R D, et al. 1994. Extreme resistance to infection by potato virus Y and potato virus X in an advanced hybrid Solanum phureja-S. stenotomum diploid potato population. Am Potato J ,71: 617~628
    Velasquez B, Monica B, Edith T. 2005. Salt tolerance variability amongst Argentine Andean potato(Solanum tuberosum L.subsp andigena). 4(4): 59~67
    Wahid A and Rao A R, 1999. Rasul E. Germination of seeds and propagules under salt stress . PeessarakliM Handbook of Plant and Corp Stress (2nd)·New York: Marcel Dekker: 153~167
    Wang G Y, Zhou X M, Zhang J W, et al. 2004. Salt Tolerance of Cucumber Cultivars at Germination Stage. Journal of Plant Genetic Resources. 5(3): 299~303
    Wang X J, Li R S, Li S J, et al. 2003. Studies on Salinity-Resistant Selection of Cucumber During Germination. Journal of Shandong Agricultultural University. Natural Science. 31(1): 71~73
    Watanabe K, El-Nashaar H, Iwanaga M. 1992. Transmission of bacterial wilt resistance by FDR 2n pollen via 4x×2x crosses in potatoes. Euphytica. 60: 21~26
    Wolters P J C C, Collins W W. 1995. Estimation of genetic parameters for resistance to Erwinia soft rot, specific gravity, and calcium concentration in diploid potatoes. Crop Science, 35: 1346~1352
    Zhang Q F, Li Y Y, Pang C H, et al. 2005. NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda Salsa L. Plant Sci. 168: 423~430
    Zhang Y L, Daniell E J, Donnelly. 1997. I n vitro bioassays for salinity tolerance screening of potato . Potato Research. 40: 285~295
    Zhao F G, Qin P. 2004. Protective effect of exogenous polyamines on root tonoplast functions against salt stress in barley seedlings. Plant Growth Regular. 42: 97~103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700