用户名: 密码: 验证码:
龙眼体胚发生早期的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以龙眼品种‘红核子’(Dimocarpus longan Lour. cv. Honghezi)胚性愈伤组织(EC)为试验材料,通过龙眼体胚发生精细同步化调控,获得龙眼体胚发生早期5个阶段的胚性培养物,在此基础上进行如下研究:①建立龙眼体胚发生早期胚性培养物高分辨率双向电泳技术体系;②进行龙眼体胚发生早期各阶段胚性培养物蛋白质分离,获得高分辨率的蛋白质双向电泳(2D)图谱,并用2D分析软件ImageMaster 2D Platinum 6.0(GE Healthcare)进行蛋白质差异表达分析;③对龙眼体胚发生早期部分差异表达蛋白进行质谱鉴定及功能分析;④根据鉴定结果采用同源或设计简并引物克隆部分与龙眼体胚发生相关的基因,并采用实时荧光定量PCR(qRT-PCR)技术分析其在龙眼体胚发生过程中的基因转录水平表达变化。主要研究结果如下:
     1建立龙眼体胚发生早期胚性培养物高分辨率双向电泳技术
     在前人建立的龙眼体胚同步化调控的条件和方法的基础上,通过调控培养基中2,4-D的浓度结合显微镜观察,获得高度同步化的龙眼体胚发生早期5个不同阶段的胚性培养物,即松散型胚性愈伤组织(FEC)、胚性愈伤II(EC II)、不完全胚性紧实结构(ICpEC)、胚性紧实球形结构(CpECGE)、球形胚(GE)。在此基础上,采用固相pH梯度凝胶双向电泳技术,进行龙眼体胚发生早期胚性培养物蛋白质分离技术研究。结果表明,龙眼体胚发生早期胚性培养物蛋白质等电点主要集中在3.5-7.0之间,在胶条长度不变的情况下,以pH范围为4-7的IPG胶条,蛋白质分离的效果佳。采用固相pH梯度凝胶双向电泳技术可以大大提高龙眼胚性培养物蛋白质2D图谱的分辨率,第一向采用13 cm的IPG胶条所获得的蛋白质双向电泳图谱显示的蛋白点是传统双向电泳技术的2.5倍左右,并且许多低丰度蛋白得以显现。随IPG胶条长度的增加,能够进一步提高龙眼胚性培养物蛋白质2D电泳图谱的分辨率,采用18 cm的IPG胶条比13 cm的胶条可增加2倍左右的蛋白点数,但是采用18 cm的IPG胶条,第一向等电聚焦的运行参数需做相应的改变,并结合第二向SDS-PAGE高质量凝胶,才能获得最佳的龙眼胚性培养物蛋白质2D电泳图谱。
     2龙眼体胚发生早期各阶段胚性培养物蛋白质双向电泳分析
     ①龙眼体胚发生早期各阶段可溶性蛋白的变化。采用考马斯亮蓝G-250法对龙眼体胚发生早期各阶段胚性培养物可溶性蛋白含量进行测定。结果表明,在松散型胚性愈伤组织阶段可溶性蛋白维持较低水平,随着体胚发育的启动和进行,可溶性蛋白含量迅速增加,胚性愈伤II含量最高,之后各阶段维持一个较高水平,但略有下降。龙眼松散型胚性愈伤组织阶段可溶性蛋白含量明显少于其他阶段,差异极显著(P<0.01),而其他各阶段的差异不大。这显示了龙眼体胚发生早期蛋白总量的变化与体胚的发育有关。
     ②龙眼体胚发生早期各阶段蛋白质2D图谱获取及蛋白点数目的变化。龙眼体胚发生早期能检测到的平均蛋白点数经历了一个先大幅减少后大幅度增加又大幅度减少的过程。其中以第4阶段CpECGE最多,有1798个蛋白点;第2阶段ECII最少,为1203个;其余各阶段蛋白点数分别是FEC阶段为1461个,ICpEC为1582个,GE阶段为1499个。表明在龙眼体胚发生早期,表达的蛋白经历了一个急剧变化的过程,可能与龙眼体胚发生早期相关基因的特异表达有关。
     ③龙眼体胚发生早期各阶段蛋白质等电点(pI)和分子量(MW)变化。龙眼体胚发生早期的蛋白pI值主要集中在5~7之间,且后面3个阶段的蛋白点数一般都比前面2个阶段来得多,但不论哪个范围pI值蛋白点数最高时一般是在CpECGE阶段,ECII阶段除pI值6~7的蛋白点比FEC多外,其它范围都是各阶段最低的,GE阶段蛋白点数都呈下降趋势;不同分子量范围的蛋白点数变化情况显示,ECII阶段除了分子量20.1 kD到30 kD之间的蛋白点数比FEC阶段多外,其它分子量范围的蛋白点数都是整个早期过程最低的,而CpECGE阶段的蛋白点数目除MW≥66 kD外,在其它分子量范围的蛋白点数都是各个阶段中最多的。这表明在龙眼体胚发生早期ECII阶段和CpECGE阶段可能是体胚早期形态建成的2个关键阶段。而GE阶段除了分子量大于66 KD的蛋白质点数比CpECGE阶段略有增加外,其它分子量范围或pI范围的蛋白点数目都呈现一个下降的趋势,可能与龙眼早期体胚发育到GE阶段前期的许多体胚发生相关基因表达关闭有关。
     ④龙眼体胚发生早期各阶段部分差异表达蛋白分析。选取了体胚发生早期表达具有差异性的148个蛋白点进行分析。结果表明,这些蛋白质中有10个蛋白点009、044、047、060、075、090、093、094、138、148是阶段性特异表达的,蛋白点009只出现在CpECGE和GE阶段,044在GE不表达,047在ICpEC阶段不表达,060只在FEC、ICpEC和CpECGE表达,075只在ECII阶段表达,090、093、138在ECII阶段不表达,094只在ICpEC和CpECGE中表达,148在FEC、CpECGE和GE阶段表达。但大部分的蛋白是阶段差异性表达的,蛋白表达有自己的变化规律,其中较有规律的是002、010、024、043和078蛋白随龙眼体胚发育的进行被下调,008、028、030、35、36、120蛋白被上调,032、033、038、039、050、055、071、089、091、119和121在FEC中表达量大,ECII表达量下降,而后随体胚发育逐渐升高,到GE阶段最高,其它的蛋白点在龙眼体胚发生早期过程中呈不规律变化。这种蛋白质差异表达变化表明,在龙眼体胚发生早期过程中,一个庞大的蛋白质群体协同作用,推动龙眼体胚向前发育。
     3龙眼体胚发生早期各阶段部分差异表达蛋白的质谱鉴定和相关蛋白的功能
     选取龙眼体胚发生早期差异表达的118个蛋白进行质谱鉴定,其中有45个蛋白点得到可信的匹配,蛋白质鉴定的成功率约为37%。按其功能可以大致可分成8类,其中蛋白是和能量与糖代谢有关的蛋白有10个,占22%;信号转导和细胞凋亡有关的蛋白有3个,占7%;与调控相关的蛋白有5个,占11%;与胁迫反应和防御相关的蛋白有12个,占27%;细胞结构蛋白有2个,占4%;与蛋白质合成、折叠、组装和分解相关的蛋白有3个,占7%;氨基酸代谢相关蛋白有1个,占2%;功能未知蛋白有9个,占20%。
     在成功鉴定的45个蛋白中,有4个点被鉴定为烯醇化酶(enolase),点067和068被鉴定为同一个蛋白(桤木烯醇化酶),069和070也被鉴定为同一个蛋白(大豆烯醇化酶),它们分布在胶上的不同位置,其中067、068、069分子量相近,但是等电点却不一样,而点070与其它3点差距较大,这很可能它们是同一个蛋白的不同形式,存在不同的翻译后修饰;133和139蛋白点被鉴定为磷酸丙糖异构酶,它们也在2D图谱上不同位置。以上情况表明在龙眼体胚发生早期基础能量代谢很旺盛,是龙眼体胚发生发育的基础,但它们有的表达量在龙眼体胚发生早期过程中变化比较大,可能这些基础代谢的蛋白还有其它功能。点041、066和100分别为ATP合酶的不同亚基,其中041和066是定位在线粒体的,而100是液泡型的,这说明在龙眼体胚发生过程中,能量代谢很旺盛。点111、112、113、114、116、117被鉴定为同一蛋白(烟草过氧化物酶),点115被鉴定为亚麻过氧化物酶,从2D胶上可以看出他们在胶上的不同位置,有的分子量相近也有等电点相近的,可能它们是同一个蛋白的不同形式,翻译后不同修饰。在龙眼体胚发生早期成功鉴定的蛋白中,与氧化胁迫反应相关的蛋白比例最多,表明在龙眼体胚发育的过程中,氧化胁迫是一个普遍的生理现象,在龙眼体胚发生的触发和体胚的发育中有重要功能。从成功鉴定但功能未知的蛋白来看,它们的分子量都在30 kD以下,说明是一些小分子量的蛋白,可能是调控体胚发育顺利进行的一些关键的调控蛋白。
     4龙眼体胚发生早期部分相关蛋白基因克隆及其在体胚发生过程中的表达分析
     ①克隆了龙眼胚性愈伤组织线粒体ATP合酶β亚基基因cDNA序列,该序列全长2099 bp,包含1个由1677 bp核苷酸组成的ORF,编码一558个氨基酸的蛋白。龙眼线粒体ATP合酶β亚基基因转录水平随龙眼体胚的发育呈动态变化,其中以球形胚阶段的转录水平最高,但该基因在体胚各阶段中蛋白表达水平却较恒定,这种情况说明从胚性愈伤组织到球形胚阶段其mRNA转录水平的提高,有利于保持ATP合酶的稳定,从而为复杂的体胚形态建成提供充足的能量。
     ②克隆了龙眼胚性愈伤组织2个类型的磷酸丙糖异构酶基因(TPI)。TPI基因类型I基因cDNA的全长序列,为1084 bp,其最大开放框从第73个碱基开始,到837个碱基终止,共765个碱基编码254个氨基酸。TPI基因类型II基因cDNA的全长序列,为1113 bp,其最大开放框从第157个碱基开始,到921个碱基终止,共765个碱基编码254个氨基酸。在2个类型TPI基因的保守区域设计引物进行实时荧光定量PCR分析,结果表明龙眼TPI基因在FEC阶段的转录水平比较低,但到了ECII阶段转录水平急剧升高,这种情况一直持续到胚性紧实球形结构阶段,到球形胚阶段转录水平大幅下调,之后到子叶胚阶段都维持在一个较低水平。表明TPI在龙眼体胚发生过程中除维持基础代谢外,有其它的生物学功能。
     ③分离了龙眼胚性培养物DlUP-3基因,cDNA的全长序列有1681 bp,其最大开放框从第391个碱基开始,到1407个碱基终止,共1017个碱基编码338个氨基酸。该基因与其它植物的同类未知蛋白或蓖麻推定的GTP -binding protein在核苷酸序列和推导的氨基酸序列方面均有着比较高的相似性。该在龙眼松散胚性愈伤组织阶段转录水平极低,而在球形胚阶段异常高,推测该基因是龙眼体胚特异表达的基因,并且是在体胚发生早期阶段特异表达的,它在龙眼球形胚的形成过程中扮演重要的角色或是决定性的因素。
     ④分离了龙眼胚性培养物DlUP-4基因,cDNA的全长序列为1061 bp,其最大开放框从第112个碱基开始,到846个碱基终止,共735个碱基编码244个氨基酸。该基因与其它植物的同类未知蛋白或拟南芥的60S ribosomal protein L7在核苷酸序列和推导的氨基酸序列方面均有着比较高的相似性。从龙眼体胚DlUP-4基因mRNA转录水平变化可知其在龙眼体胚发生过程中具有阶段表达的特点,可能参与部分体胚特异表达蛋白质的合成。
     ⑤分离了龙眼胚性培养物DlUP-5基因,cDNA的全长序列为887 bp,其最大开放框从第7个碱基开始,到687个碱基终止,共681个碱基编码226个氨基酸。该基因与其它植物的同类未知蛋白或蓖麻推定的Frigida在核苷酸序列和推导的氨基酸序列方面均有着比较高的相似性。从龙眼体胚DlUP-5基因mRNA转录水平变化,推测其在龙眼愈伤组织胚胎发生能力维持方面可能起到关键作用,并且其在龙眼体胚发生的早期和体胚成熟期都有其特殊的功能。
     ⑥2个龙眼胚性培养物未知功能蛋白基因的克隆,DlUP-6基因和DlUP-7基因是根据质谱鉴定成功且在其它植物上也为未知功能蛋白的基因,目前已经得到保守区和3'部分cDNA序列,与质谱肽段比较后,初步确定其为质谱鉴定成功的、为2D凝胶上显示的未知功能蛋白。
In this experiment, five early-different-stage embryogenic culutures obtained after synchronization regulation from the embryogenic callus (EC) were used as the materials for the following studies in longan (Dimocarpus longan Lour. cv. Honghezi):①establishment of the high-resolution two-dimensional electrophoresis technology system for analysis of the proteins from early-different-stage embryogenic cultures in longan;②separation and preparation of proteins from 5 early-different-stage embryogenetic culutures by two-dimensional electrophoresis, and the analysis of protein differential expression using the soft of ImageMaster 2D Platinum 6.0( GE Healthcare;③identification of parts of differential expression proteins from 5 early-different-stage embryogenetic culutures by mass spectrometry and analyses of their functions;④cloning of parts of early embryogenic cultures related protein genes with homologous cloning or degenerate primers according to the protein identified results, and detection of transcriptional expressions of these genes during somatic embryogenesis of longan by real-time fluorescence quantified PCR (qRT-PCR). The main results were summarized as follows:
     1. Establishment of high-resolution two-dimensional electrophoresis technology for the analysis of the proteins from early embryogenic cultures in longan
     The synchronization of embryogenic cultures was carried out by regulating the concentration of 2, 4-D on the medium and microscopic observation as reported previously. Five early-different-stage embryogenetic culutures of longan were obtained including the friable-embryogenic callus (FEC), embryogenic callus II (ECII), incomplete compact pro-embryogenic cultures (ICpEC), compact pro-embryogenic cultures globular embryos (CpECGE) and globular embryos (GE). Immobilized pH gradients (IPG) two-dimensional electrophoresis was developed to investigate the separation of proteins from early embryogenic cultures of longan. The results indicated that the isoelectric points (pI) of proteins mainly focused on the pH value between 3.5 and 7.0. The better result was obtained under the condition of the pH value between 4 and 7 using same length IPG strips. The resolution was improved by the IPG two-dimensional electrophoresis. The numbers of protein spots separated using IPG two-dimensional electrophoresis with 13 cm strips were two and a half times of that using traditional two-dimensional electrophoresis, and many low abundance proteins could be detected. The resolution of proteins could be further improved with increasing of strip lengths. The numbers of protein spots detected in 18 cm gels strips was about two times of that in 13 cm gels strips. But a perfect 2-D map could be obtained by adjusting of isoelectric focusing parameters and with high quality gels of SDS-PAGE.
     2. 2-DE analysis of embryogenic cultures at early different stages in longan
     ①The variation of soluble protein amounts of embryogenic cultures at early different stages during longan somatic embryogenesis. The soluble protein contents of embryogenic cultures at early different stages during longan somatic embryogenesis were detected by method of Coomassie brilliant blue G-250. The results showed that the soluble protein contents increased with the initiation of longan somatic embryogenesis. They were low in FEC stage and reached highest in ECII stage, then decreased slightly and remained at a higher level than that of FEC at subsequential stages. The soluble protein contents at FEC stage were extremely significant (P<0.01) lower than that of other stages, but there was little differences at other stages. These results suggested that the variation of soluble protein contents of different embryogenic cultures at early stages during longan somatic embryogenesis be related to development of somatic embryos.
     ②Obtaining of 2-DE gels of the total proteins of five early-different-stage embryogenic cultures in longan and changes of the number of their total proteins. The average numbers of total protein spots decreased sharply at first and then increased greatly, subsequently decreased abruptly again. The spots of total protein were maximum at CpECGE stage with 1798 spots, and it reduced to a minimum with 1203 spots at ECII stage. Total protein numbers at other stages were 1461 (FEC), 1582 (ICpEC) and 1499 (GE) spots. It was concluded that the sharp fluctuation of total protein numbers of different embryogenic cultures may be related to specific expression of genes at early stage during somatic embyogenesis in longan.
     ③Changes of isoelectric point (pI) and molecular weight (MW) of total proteins in different embryogenic cultures at early stage during longan somatic embryogenesis. The results showed that pI of most proteins ranged from 5 to 7. The average numbers of these proteins was more at last three stages than that at the first two stages. And the numbers reached the highest at CpECGE stage under any range of pH values. ECII stage had lowest numbers of proteins than other stages expect under the pI value with 6 to 7. Average number of proteins at ECII stage was lowest than that of other stages, but it had more proteins than FEC stage in the range of MW from 20.1 kD and 30 kD. The numbers of proteins with other MW at this stage were lower than that of other stages. Number of proteins with different MW at CpECG stage was more than that of other stages, except that proteins with MW larger than 66 kD. This implicated that ECII and CpECGE stages were critical for morphogenesis. Number of proteins with different MW decreased at GE stage, except that proteins with MW larger than 66 kD, which increased slightly at this stage. These may be related to shut down the expression of some genes involved in somatic embryogenesis, which was only obligatory at early stages.
     ④Analysis of differentially expressed proteins in different embryogenic cultures at early stage during longan somatic embryogenesis. 148 differentially expressed proteins were selected for followed analysis. The results showed that 10 proteins (spots of 009, 044, 047, 060, 075, 090, 093, 094, 138 and 148) were specific expressed at different stages. Spot of 009 only expressed at CpECGE stage and GE stage. Spot of 044 was absent at GE stage, spot of 047 was absent at ICpEC stage, spot of 060 only expressed at FEC stage, ICpEC stage and CpECGE stage. Spot of 075 only expressed at ECII but spots of 090, 093 and 138 were absent at this stage. Spot of 094 only expressed at ICpEC stage and CpECGE stage. Spot of 148 expressed at FEC stage, CpECGE stage and GE stage. Most of the proteins were differentially expressed in rules, spots of 002, 010, 024, 043 and 078 were down regulated with early development of somatic embryo. Spots of 008, 028, 030, 35, 36 and 120 were opposite. Expression level of spots of 032, 033, 038, 039, 050, 055, 071, 089, 091, 119 and 121 were higher at FEC stage. They decreased at EC II stage, then increased with somatic embryo growth and reached the highest at GE stage. These suggested that the development of somatic embryo during the early stage be modulated by large sets of proteins.
     3. Identification of some differential expression proteins by mass spectrometry and analysis of their functions
     118 proteins were subjected to mass spectrometry (MALDI-TOF/TOF) analysis. 45 (37%) of them were identified, and they were classified to eight functional classes, which including 10 proteins involved in energy and glucose metabolism (22%), 3 proteins involved in signal transduction and programmed cell death (7%), 5 proteins involved in regulation (11%), 12 proteins involved in stress response and defense (27%), 2 proteins involved in cell structural (4%),
     3 proteins involved in protein synthesis and processing (7%), 1 proteins involved in amino acid metabolism (2%), and 9 unknown proteins (20%).
     Among of the identified proteins, 4 proteins were identified as enolases. Spots of 067 and 068 were identified as alnus enlases and spots of 069 and 070 were identified as soybean enlase. But they were located on the different sites in the 2D gels. Spots of 067, 068 and 069 were almost the same in molecular weight but different with pI. Spot of 70 was different from others. These proteins may be the different forms of the same protein which had different post translated modifications. Spots of 133 and 139 were identified as triosephosphate isomerase. These results suggested basal metabolism was activity at early stages of longan somatic embryogenesis, which was the basis of embryo development, but their expression levels were different which implicated that they may have other functions. Spots of 41, 66 and 100 were subunits of ATP synthase, Spots of 41 and 66 loclalized in mitochondria, and spot of 100 was subunit of vacuolar ATP synthase. These suggested that energy metabolism was activity during somatic embryogenesis. Spots of 111, 112, 113, 114, 116 and 117 were identified as tobacco peroxidase, spot of 115 was fiberflax peroxidase. Some of them had the same MW and some of them had the same pI. They may be different post translated modification products of peroxidase. Most of the identified proteins were related to oxidative stress response, which indicated oxidative stress is general during early somatic embryogenesis. They might play an important role in the activation and developments of longan somatic embryos. MW of most unknown proteins was lower than 30 kD, which were critical in regulation of somatic embryogenesis.
     4. Cloning of several embryogenic cultures associated protein genes at early stage during somatic embryogenesis of longan
     ①The full-length cDNA sequence of longan embryogenic callus mitochondrial F1-ATPase beta subunit gene was 2099 bp. It contained a 1677-nucleotides-long open reading frame (ORF) which encoded protein of 588 amino acid residues. Transcription level of mitochondrial ATP synthaseβsubunit changed with development of somatic embryogenesis in longan and reached highest at GE stage, but its protein expression level remained constantly. The results showed the increase of its transcription level was good for stabilization of this protein, and could supply sufficient energy to the morphogenesis forming.
     ②Two longan embryogenic callus triosephosphate isomerase (TPI) genes were cloned. The cDNA full-length of TPI I was 1084 bp and its ORF was 765 bp which started from the 73rd base and ended in the 837th base. It encoded 254 amino acids. The cDNA full-length of TPI II was 1113 bp and its ORF was 765 bp which started from the 157th base and ended in the 921st base. It encoded 254 amino acid residues. A pair of primers were designed according to the conserved sequence of these two TPI genes and used for real-time fluorescence quota PCR analysis. The results indicated their mRNA transcription level was low at FEC stage, then increased sharply at ECII stage and remained stable until CpECGE stage. The level decreased dramatically at GE stage and remained at a lower level from GE stage to cotyledonary stage. These implicated they had other function during somatic embryogenesis in addition to basal metabolism.
     ③DlUP-3 gene was cloned and its cDNA full-length was 1681 bp. Its ORF was 1017 bp which started from the 391st base and ended in the 1407th base and encoded 338 amino acids. Its sequence was highly similar to that of castor-oil plant putative GTP-binding protein. Its transcript level was low at FEC stage and over expressed at GE stage. It might be a specific protein, which played an important role during GE stage forming in longan.
     ④DlUP-4 gene was cloned which cDNA full-length was 1061 bp. Its ORF was 735 bp which started from the 1121st base and ended in the 846th base and encoded 244 amino acids. Its sequence was high similar to other plants and 60S ribosomal protein L7 of Arabidopsis thaliana. It specifically expressed during somatic embryogenesis in longan, and might involved in synthesis of somatic embryos related specific proteins.
     ⑤DlUP-5 gene was cloned which cDNA full-length was 887 bp. Its ORF was 681 bp which started from the 7th base and ended in the 687th base and encoded 226 amino acids. Its sequence was highly similar to that of castor-oil plant putative Frigida. According to its variations of mRNA transcription levels, It might play a critical role in maintaining ability of somatic embryogenesis and a particular role in early somatic embryogenesis and maturation of somatic embryos.
     ⑥Cloning of two unknown protein genes related to early somatic embryogenesis in longan. Conserved regions and 3 'end cDNA sequences of DlUP-6 and DlUP-7 were obtained. DlUP-6 gene and DlUP-7 gene were the two unknown protein genes in other plants. Furthermore, compared with the peptide sequences information from mass spectrometry, it was primarily proved that the two conserved regions and the two 3 'end cDNA sequences were the unknown proteins in the 2D maps.
引文
[1]安娜,赖钟雄,郭志雄.龙眼体细胞胚胎发生过程中特异表达蛋白的双向电泳分析.福建农林大学学报(自然科学版),2007,36(3):245-249.
    [2]安娜.龙眼体细胞胚胎发生的蛋白质组学研究.福州:福建农林大学硕士学位论文,2006.
    [3]曹景林,张献龙,金双侠,杨细燕,朱华国,付莉莉.棉花高效体细胞胚发生及同步控制培养体系研究.作物学报, 2008, 34(2): 224-231.
    [4]曹尚银,张秋明,郭俊英,陈玉玲.蛋白质组学研究技术及其在果树学中的应用.果树学报, 2005, 22(2): 138-142.
    [5]曹尚银,张秋明,朱志勇,郭俊英,陈玉玲,薛华柏.苹果花芽孕育蛋白质组学初步分析.中国农业科学, 2007, 40(10): 2281-2288.
    [6]车建美.荔枝体细胞胚胎发生的早期生化事件.福州:福建农林大学硕士学位论文, 2003
    [7]陈春玲,赖钟雄.龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察.福建农林大学学报(自然科学版), 2002, 31(2): 192-194.
    [8]陈春玲,赖钟雄.龙眼体胚发生过程中特异蛋白的IEF和SDS-PAGE分析.福建农林大学学报(自然科学版), 2002, 31(1): 135-137.
    [9]陈春玲.龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察.福建农林大学学报(自然科学版), 2002, 2: 192-194.
    [10]陈春玲.龙眼体细胞胚胎发生机理的初步研究.福州:福建农林大学硕士学位论文,2001.
    [11]陈根云,肖元珍,李立人.高等植物Rubisco的组装及其中间产物的鉴定.植物生理学报, 2000, 26(1): 16-22.
    [12]陈小飞,萧浪涛,鲁旭东,刘素纯.体细胞胚胎发生相关类受体蛋白激酶基因(SERK)的研究进展.植物生理学通讯, 2005, 41(5): 570-576.
    [13]陈毓荃.生物化学实验方法和技术.北京:科学出版社,2002,95-97.
    [14]陈志伟,吴为人.植物中的反转录转座子及其应用.遗传, 2004, 26(1): 122-126.
    [15]崔杰,徐德昌,李滨胜,杨谦,孙璟晗.甜菜ATP合酶β亚基基因atpB的克隆、序列分析及进化.植物研究, 2006, 26(5): 583-588.
    [16]崔凯荣,王君健,邢更妹,王亚馥.枸杞胚性细胞分化的超微结构和ATP酶的细胞化学定位研究.西北植物学报, 1997, 17(6):106-110.
    [17]范海延,陈捷,曲波等.蛋白质组学及其在植物科学研究中应用.生物学通报,2006,41(1):6-8.
    [18]方智振,赖钟雄.龙眼体胚发生中期发育同步化的初步调控.中国农学通报, 2009,25(1):152-155.
    [19]郭尧君,郭强,黄力力,等.目前最高分辨率的电泳——固相pH梯度等电聚焦.生物化学与生物物理进展,1994,21(2):143-146.
    [20]郭玉琼.龙眼、荔枝胚性培养物超低温保存研究.福州:福建农林大学博士学位论文,2006.
    [21]郭志雄,林琳,吕柳新.垂直板小型分析型蛋白质双向电泳技术体系的改进.福建农林大学学报:自然科学版,2006,35(2):182-186.
    [22]郭志雄.龙眼胚胎乙醇脱氢酶的分离纯化、鉴定及其cDNA克隆.福州:福建农林大学博士学位论文,2006.
    [23]韩贻仁主编.分子细胞生物学.北京:科学出版社, 2001: 71-75.
    [24]何园.龙眼体胚成熟过程的蛋白质组学研究.福州:福建农林大学硕士学位论文,2009.
    [25]贾彩凤,李悦,瞿超.木本植物体细胞胚胎发生技术.中国生物工程杂志, 2004, 24(3):26-29.
    [26]贾莉芳,王晓军,赵民安.新疆雪莲体细胞胚胎发生.植物学通报, 2008, 25 (1): 85-88.
    [27]赖呈纯,赖钟雄,何园,方智振,欧阳建树.龙眼胚性培养物高分辨率蛋白质双向电泳技术.福建农林大学学报(自然科学版),2008,37 (1): 37-41.
    [28]赖呈纯.荔枝转基因抗性胚性愈伤组织的继代保持及其应用初探.福州:福建农林大学硕士学位论文,2004.
    [29]赖钟雄陈春玲.龙眼体细胞胚胎发生过程中的内源激素变化.热带作物学报, 2002, 23(2): 41-47.
    [30]赖钟雄陈春玲.龙眼体细胞胚胎发生过程中内源多胺的变化.福建农林大学学报(自然科学版), 2006, 35(4): 381-383.
    [31]赖钟雄,陈振光.龙眼胚性愈伤组织的高频率体细胞胚胎发生.福建农业大学学报, 1997b, 26(3): 271-276.
    [32]赖钟雄,李惠华.龙眼胚性愈伤组织体胚发生过程中生物大分子的动态变化.福建农林大学学报(自然科学版), 2006a, 35(3): 258-261.
    [33]赖钟雄,林玉玲,赖呈纯,陈义挺,蔡英卿,李惠华,李焕苓,何园,方智振,林秀莲,徐清锋,郭玉琼,陈发兴.植物体细胞胚胎发生的分子调控机制.李健,连勇,徐涵主编.植物细胞与组织培养技术研究.北京:中国科学技术出版社, 2009: 18-39.
    [34]赖钟雄,潘良镇,陈振光.龙眼胚性细胞系的建立与保持.福建农业大学学报, 1997a, 26(2):160-167.
    [35]赖钟雄,潘良镇,陈振光.龙眼体细胞胚胎的高频率萌发与植株再生.福建农业大学学报, 1998, 27(1): 31-36.
    [36]赖钟雄.龙眼生物技术研究.福州:福建科学出版社,2003
    [37]赖钟雄.龙眼原生质体培养再生系统的研究.福州:福建农业大学博士学位论文,1997.
    [38]李冬梅,赖钟雄.龙眼体胚成熟过程中淀粉含量的变化.福建农林大学学报(自然科学版),2005,34(2):220-223.
    [39]李冬梅.龙眼体细胞胚胎成熟机理的研究.福州:福建农林大学硕士学位论文, 2003.
    [40]李焕苓.福州市荔枝古树遗传多样性的RAPD分析及离体保存研究.福建农林大学硕士学位论文,2009,74-98.
    [41]李惠华,赖钟雄.龙眼体胚发生过程中抗坏血酸过氧化物酶活性的变化.亚热带植物科学,2006, 35(3):9-11.
    [42]林庆光,崔百明,彭明. SERK基因家族的研究进展.遗传, 2007, 29(6): 681-687.
    [43]林玉玲,赖钟雄.植物体细胞胚胎发生的基因调控网络.农业生物技术学报, 2007, 15(增刊): 1-11.
    [44]刘华英.柑橘体细胞胚发生的细胞学及生理生化特性研究.长沙:湖南农业大学博士学位论文, 2003.
    [45]柳展基,杨小红,毕玉平.蛋白质组学在农业中的应用.分子植物育种,2006,4(3):106-110.
    [46]吕品,李建华,张岩,刘银谦,陈玉玲.植物小G蛋白研究进展.河北师范大学学报(自然科学版), 2005, 29(2):193-198, 216.
    [47]罗正,杨澄,翟中和.植物细胞中间纤维角蛋白性质的分析.实验生物学报,1996,9(3):297-304.
    [48]倪张林,魏家绵. ATP合酶的结构与催化机理.植物生理与分子生物学学报, 2003, 29(5): 367-374.
    [49]彭睿,秦浚川.蛋白酶体结构和功能研究进展.生物化学与生物物理进展, 1998, 25(3): 235-238.
    [50]钱小红,贺福初主编.蛋白质组学:理论与方法.北京:科学出版社, 2003, 1-18.
    [51]阮松林,马华升,王世恒,忻雅,钱丽华,童建新,赵杭苹,王杰.植物蛋白质组学研究进展I.蛋白质组关键技术.遗传, 2006, 28(11):1472-1486.
    [52]邵巍,赖钟雄,陈义挺,蔡英卿,林玉玲. (2008)龙眼胚性愈伤组织肌动蛋白基因(actin)片段的克隆与序列分析.中国农学通报,24(3): 40-43.
    [53]邵巍,赖钟雄,赖呈纯,孙云,陈义挺,蔡英卿.龙眼胚性培养物APX同工酶的分析方法建立及其在龙眼体胚发生过程中的变化.福建农林大学学报(自然科学版), 2008, 37(2):140-144.
    [54]邵巍.龙眼胚性培养物胞质型apx基因克隆及其表达研究.福州:福建农林大学硕士毕业论文,2008.
    [55]沈桂芳,丁任瑞.走向后基因组时代的分子生物学.杭州:浙江教育出版社, 2005, 80-83.
    [56]孙昌辉,邓晓建,方军,储成才.高等植物开花诱导研究进展.遗传, 2007, 29(10):1182-1190.
    [57]孙建忠. GTP结合蛋白研究的进展.生命的化学, 1993, 13(5):12-14.
    [58]孙有平,王正华,王勇献.后基因组时代生物信息学的新进展.国防科技大学学报, 2003, 25(1):1-6,44.
    [59]汪新颖,王波,侯松涛,朱国萍.苹果酸脱氢酶的结构及功能.生物学杂志,2009,26(4):69-72.
    [60]王凤华,赖钟雄,郑金贵,吕柳新.龙眼胚胚性愈伤组织维生素C过氧化物酶基因(chapx)及NADH脱氢酶基因(nad 2)部分序列的克隆.应用与环境生物学报,2005,11 (1) : 45-48.
    [61]王凤华,赖钟雄,郭志雄,等.龙眼胚性培养蛋白质水平双向电泳技术体系的建立.福建农林大学学报(自然科学版),2003,32(2):196-200.
    [62]王凤华,赖钟雄,郑金贵,吕柳新.龙眼胚性愈伤组织体胚发生的同步化调控及其DNA与RNA的提取方法.热带作物学报, 2003, 24(3): 31-35.
    [63]王凤华.龙眼体细胞胚胎发生过程中的基因差别表达.福州:福建农林大学博士学位论文,2003.
    [64]魏岳荣,杨护,黄秉智,黄霞,黄学林,邱继水,许林兵. Picloram, ABA和TDZ对香蕉体细胞胚胎发生的影响.园艺学报, 2007, 34(1) :81-86.
    [65]吴冬兰,翟中和,袁绍祥.植物细胞中含有类角蛋白多肽及角蛋白cDNA的同源序列.实验生物学报,1991,24(3):215-221.
    [66]刑登辉,赵云云,黄承芳.皇冠草体细胞胚胎发生及其体胚发生过程中内源激素的变化.生物工程学报,1999,15(1): 98-102.
    [67]邢更生,崔凯荣,山仑,王亚馥.植物体细胞胚发生的分子基础.遗传, 1999, 21(1): 30-34.
    [68]尹维波,张发云,石锐,杨晨敏,胡赞民.毛白杨叶绿体ATP合酶β亚基基因序列,植物生理与分子生物学学报, 2002, 28(6), 493-494.
    [69]于志水,张志毅,李云,胡崇福,王胜东.杨树体细胞胚胎发生研究概况.东北林业大学学报,2005,233(1): 60-63.
    [70]张宏一.蛋白质组学研究技术及其进展.生物技术通报2005, 4:31-35.
    [71]张笑天,熊咏民.硫氧还蛋白还原酶研究进展.国外医学医学地理分册,2005,26(4):148-151.
    [72]张燕子,马锋旺,张军科,梁东.苹果脱氢抗坏血酸还原酶(DHAR)基因cDNA片段的克隆及序列分析.西北农林科技大学学报(自然科学版) ,2007,35(1):180-183, 178.
    [73]张宇,沈海龙.植物体细胞胚同步化发生的控制.植物生理学通讯, 2007, 43(3):583-587.
    [74]赵大中,陈丹英,杨澄,翟中和.植物细胞类角蛋白的纯化序列分析与类中间纤维cDNA的克隆.中国科学(C辑),2000,30(3):316-321.
    [75]周爱文,柯铁,梅兴国,赵春芳.低温诱导红豆杉细胞同步化的研究.武汉化工学院学报, 2001, 23(1): 12-14.
    [76]周涵韬,许莉,郑文竹,林庆同.微管蛋白与玉米细胞质雄性不育的相关性研究.厦门大学学报(自然科学版), 2003, 42(1):107-111.
    [77]朱长甫,镰田博,原田宏,何孟元,郝水.与胡萝卜胚胎发生相关的胚性细胞蛋白63 cDNA分离及其基因表达研究. Acta Botanica Sinica, 1997, 39(12); 1091-1098.
    [78]朱理安,方宁远.α烯醇化酶——古老的蛋白,崭新的功能.国际病理科学与临床杂志,2007,27(4):347-350.
    [79]朱美财,刘成刚.分子伴侣蛋白结构与功能的研究进展.空军总医院学报, 1999, 15(4):312-220.
    [80] [澳]辛普森主编,何大澄主译.蛋白质与蛋白质组学实验指南.北京:化学工业出版社, 2006, 5-10.
    [81] [美]本杰明·卢因编著,余龙,江松敏,赵寿元主译.基因VIII.北京:科学出版社, 2005, 240-241.
    [82] Ackerman S H, Tzagoloff A. Function, structure, and biogenesis of mitochondrial ATP Synthase. Progress in Nucleic Acid Research and Molecular Biology, 2005, 80: 95-133.
    [83] Adams J. The proteasome: structure, function, and role in the cell. Cancer Treatment Reviews, 2003,29(1):3-9.
    [84] Aker J, Borst J W, Karlova R, de Vries S. The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane. Journal of Structural Biology, 2006, 156, 62-71.
    [85] Altamura M M. Agrobacterium Rhizogenes rolB and rolD Genes: Regulation and Involvement in Plant Development. Plant Cell, Tissue and Organ Culture, 2004, 77(1): 89-101.
    [86] Andersson I. Catalysis and regulation in Rubisco. Journal of Experimental Botany, 2008,59(7): 1555-1568.
    [87] Apuya N R and Zimmermanl J L. Heat Shock Gene Expression 1s Controlled Primarily at the Translational Leve1 in Carrot Cells and Somatic Embryos. The Plant Cell, 1992, 4:657-665.
    [88] Baba A I, Nogueira F C S, Pinheiro C B, et al.. Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Science, 2008, 175:717-723.
    [89] Baba A I, Nogueira F C S, Pinheiro C B, et al.. Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Science, 2008, 175:717-723.
    [90] Bachmann RA, Kim JH, Wu AL, Park IH, Chen J. A nuclear transport signal in mammalian target of rapamycin is critical for its cytoplasmic signaling to s6 kinase 1. The Journal of Biological Chemistry, 2006, 281(11):7357-7363.
    [91] Baudino S, Hansen S, Brettschneider R, Hecht V F G, Dresselhaus T, L?rz H, Dumas C, Peter M. Rogowsky P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213(1): 1-10.
    [92] Belmonte M F, Stasolla C. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiology and Biochemistry, 2009, 1-8.
    [93] Blum H, Beier H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1986, 8: 93-99.
    [94] Bondarevaa AA, Capecchib MR, Iversona SV, Lia Y, Lopezc NI, Lucasa O, Merrillc GF, Priggea JR, Sidersa AM, Wakamiyad M, Wallina SL, Schmidt EE. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radical Biology and Medicine, 2007,43(6):911-923.
    [95] Borkird C, Choi J H, Sung Z R. Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryogenic program in carrot. Plant Physiol., 1986, 81:1143-1146.
    [96] Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14:1737-1749.
    [97] Bowles D J. Signal transduction in plants. Trends in Cell Biology. 1995, 5(10):404-408.
    [98] Bradford M M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem., 1976, 72, 248–254.
    [99] Brunn GJ, Willams J, Sabers C,Wiederrecht G, Lawrence JC, Jr., Abraham RT. Direct inhibition of the signalling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors wortmannin and LY294002. The EMBO Journal, 1996, 15:5256-5267.
    [100] Cairney J, Xu N, Pullman G S, Ciavatta V T, Johns B. Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and DNA arrays. Applied Biochemistry and Biotechnology, 1999, 77(1-3):5-17.
    [101] Chapman A, Helleboid S, Blervacq A, Vasseur J, Hilbert J L. Removal of the fibrillar network surrounding Cichorium somatic embryos using cytoskeleton inhibitors: analysis of proteic components. Plant Science, 2000, 150:103-114.
    [102] Chen F W, Ioannou Y A. Ribosomal proteins in cell proliferation and apoptosis. International Reviews of Immunology, 1999, 18(5-6):429-448.
    [103] Chen Z, Wu I, Richter M L, Gegenheimer P. Over-expression and refolding ofβ-subunitfrom the chloroplast ATP synthase. Fedcralion of European Biochemical Sociaics, 1992, 298(1): 69-73.
    [104] Choi J H, Liu L S, Borkird C, Sung Z R. Cloning of genes developmentally regulated during plant embryogenesis. Proc. Nati. Acad. Sci., 1987, 84: 1906-1910.
    [105] Chugh A, Khurana P. Gene expression during somatic embryogenesis: recent advances. Curr. Sci., 2002, 83: 715-730.
    [106] Ciavatta V T, Egertsdotter U, Clapham D, von Arnold S, Cairney J. A promoter from the loblolly pine PtNIP1; 1 gene directs expression in an early-embryogenesis and suspensor-specific fashion. Planta, 2002, 215(4): 694-698.
    [107] Ciavatta V T, Morillon R, Pullman G S, ChrispeelsM J, Cairney J. An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiology, 2001, 127: 1556-1567.
    [108] Clarke S R, Staiger C J, Gibbon B C, Franklin-Tonga V E. A potential signaling role for profilin in pollen of papaver rhoeas. The Plant Cell, 1998, 10:967–979.
    [109] Conrad M, Cemile Jakupoglu C, Moreno SG, et al.. Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function. Molecular and Cellular Biology, 2004, 24(21):9414-9423.
    [110] Cordewener J, Booij H, van der Zandt H, van Engelen F, van Kammen A, de Vries S. Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta, 1991, 184:478-486.
    [111] Corre V L, Roux F, Reboud X. Dna polymorphism at the frigida gene in arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time. Mol. Biol. Evol. , 2002, 19(8):1261-1271.
    [112] Cui K R, Xing G S, Liu X M, Xing G M, Wang Y F. Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant science, 1999, 146(1): 9-16.
    [113] de Gara L, Tommasi F.Ascortabe redox enzymes: a network of reaction involved in plant development. Recent Dev Phytochem, l999, 3:1-15.
    [114] de Jong A J, Cordewener J, Schiavo F L, Terzi M, van dekerckhove J, A. van Kammen A, de Vries S C. A Carrot Somatic Embryo Mutant Is Rescued by Chitinase. The Plant Cell, 1992, 4(4): 425-433.
    [115] de Oliveira Santos M, Eduardo Romano, Karla Suemy Clemente Yotoko, Maria Laine Penha Tinoco, Bárbara Barreto Andrade Dias, Francisco JoséLima Arag?o. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Science, 2005, 168, 723-729.
    [116] Demirev P A, Ramirez J, Fenselau C. Tandem Mass Spectrometry of Intact Proteins for Characterization of Biomarkers from Bacillus cereus T Spores. Anal Chem, 2001, 73 (23): 5725-5731.
    [117] Di Cola A, Poma A, SpanòL. RolB expression pattern in the early stages of carrot somatic embryogenesis. Cell Biology International, 1997, 21(9): 595-600.
    [118] Dickson R, Weiss C, Howard R J, Alldrick S P, Ellis R J, Lorimer G, Azem A, Viitanen P V. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. The Journal of Biological Chemistry, 2000, 275(16):11829-11835.
    [119] Dodeman V L, Ducreux G, Kreis M. Zygotic embryogenesis versus somatic embryogenesis. Journal of Experimental Botany, 1997, 48(313):1493-1509.
    [120] Dodeman V L, Ducreux G. Total protein pattern expression during induction and development of carrot somatic embryos. Plant Sci., 1996, 120:57- 69.
    [121] Dong J Z, Dunstan D I. Cloning and characterization of six embryogenesis-associated cDNAs from somatic embryos of Picea glauca and their comparative expression during zygotic embryogenesis. Plant Molecular Biology, 2004, 39(4): 859-864.
    [122] Du H, Clarke A E, Bacic A. Arabinogalactan-proteins: a class of extracellular matrix proteoglycans involved in plant growth and development. Trends in Cell Biology, 1996, 6(11): 411-414.
    [123] Du H, Simpson R J, Moritz R L, Clarke A E, Bacic A. Isolation of the Protein Backbone of an Arabinogalactan-Protein from the Styles of Nicotiana alata and Characterization of a Corresponding cDNA. The Plant Cell, 1994, 6(11): 1643-1653.
    [124] Duby G, Degand H, Boutry M. Structure requirement and identification of a cryptic cleavage site in the mitochondrial processing of a plant F1-ATPaseβ-subunit presequence. Federation of European Biochemical Societies, 2001, 505: 409-413.
    [125] Dyachok J V, Wiweger M, Kenne L, von Arnold S. Endogenous nod-factor-like signal molecules promote early somatic embryo development in norway spruce. Plant Physiol, 2002, 128: 523-533.
    [126] Earnshaw B A, Morris A. Johnson. Control of wild carrot somatic embryo development by antioxidants. Plant Physiol., 1985:273-276.
    [127] Earnsiaw B A, Johnson M A. The effect of glutathione on development in wild carrot suspension cultures. Biochem Biophys Res Commun, 1985, 133: 988-993.
    [128] Elisa Cabiscol, Eva Piulats, Pedro Echave, Enrique Herrero, and Joaquim Ros. Oxidative Stress Promotes Specific Protein Damage in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2000, 275(35): 27393–27398.
    [129] Feher A, Pasternak T P, Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult. 2003, 74: 201–228.
    [130] Footitt S, Ingouff M, Clapham D, von Arnold S. Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). Journal of Experimental Botany, 2003, 54(388):1711-1719.
    [131] Fu Q, Bai-Chen Wang B C, Jin X, Hong-Bing Li H B, Pei Han P, Wei K H, Xue-min Zhang X M, Yu-Xian Zhu Y X. Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. Journal of Biochemistry and Molecular Biology, 2005, 38(6): 650-660.
    [132] Fujimura T, Komamine A. Synchronization of Somatic Embryogenesis in a Carrot Cell Suspension Culture. Plant Physiol., 1979, 64: 162-164.
    [133] Fünfschilling U, Rospert S. Nascent Polypeptide–associated Complex Stimulates Protein Import into Yeast Mitochondria. Molecular Biology of the Cell, 1999, 10: 3289–3299.
    [134] Gang D R, Kasahara H, Xia Z Q, et al.. Evolution of Plant Defense Mechanisms. The Journal of Biological Chemistry, 1999, 274(11):7516–7527.
    [135] Giltsu Choi, Hankuil Yi, Jaeho Lee, Yong-Kook Kwon, Moon Soo Soh, Byongchul Shin, Zigmund Luka, Tae-Ryong Hahn, Pill-Soon Song. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature, 1999, 401: 610-613.
    [136] Giroux R W, Pauls K P. Characterization of somatic embryo genesis-related cDNAs from alfalfa(Medicago sativa L.) . Plant Mol. Biol., 1997, 33: 393-404.
    [137] Goldberg R B, de Paiva G, Yadegari R. Plant embryogenesis: Zygote to seed. Science, 1994, 266: 605-614.
    [138] Gǒrg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4(12) :3665-3685.
    [139] Govorun V M, Archakov A I. Proteomic technologies in modern biomedical science. Biochemistry (Moscow), 2002,67(10): 1109-1123.
    [140] Grabowska A, Wisniewska A, Tagashira N, Malepszy S, Filipecki M. Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. Journal of Plant Physiology, 2009, 166, 310-323.
    [141] Guillaumot D, Lelu-Walter M-A, Germot A, Meytraud F, Gastinel L, Catherine Riou-Khamlichi. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix_marschlinsii). Journal of Plant Physiology, 2008, 165:1003-1010.
    [142] Gupta P, Lee K H. Genomics and proteomics in processdevelopment: opportunities and challenges. Trends in Biotechnology, 2007, 25(7):324-330.
    [143] Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in Yeast. Molecular and Cellular Biology, 1999, 19(3): 1720-1730.
    [144] Harding E W, Tang W, Nichols K W, Fernandez D E, Perry S E. Expression and Maintenance of Embryogenic Potential Is Enhanced through Constitutive Expression of AGAMOUS-Like 15. Plant Physiology, 2003, 133: 653-663.
    [145] Harvey A J, Kind K L, Thompson J G. REDOX regulation of early embryo development. Reproduction, 2002, 123: 479-86.
    [146] Hasson E, Wang I N, Zeng L W, et a1. Nueleotide variation in the triosephosphate isomerase(Tpi) locus of Drosophila melanogaster and Drosophila simulans. Mol Biol Evol, 1998, 15(6):756-769.
    [147] Hasunuma K, Yabe N, Yoshida Y, Ogura Y, Hamada T. Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi. Journal of Bioenergetics and Biomembranes, 2003, 35: 57-65.
    [148] Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Ann. Rev. Biochem. 1985, 54: 1015-1069.
    [149] Hatzopoulos R, Fen g F, Sung Z R. Abscisic acid regulation of DC8, a carrot embryonic gene. Plant Physiol, 1990, 94:690-695.
    [150] Hecht V, Vielle-Calzada J P, Hartog M V, et al.. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in cultures. Plant Physiology, 2001, 127: 803-816.
    [151] Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222(1): 107?117.
    [152] Hutchinson M J, KrishnaRaj S, Saxena P K. Inhibitory effect of GA3 on the development of thidiazuron-induced somatic embryogenesis in geranium. Plant Cell Reports, 2005, 16(6): 435-438.
    [153] Ilka W, Hermann S. Structural organization of mitochondrial ATP synthase. Biochimica et Biophysica Acta, 2008, 1777: 592-598.
    [154] Imin N, Nizamidin M, Daniher D, et al. Proteomic analysis of somatic embryogenesis in Medicago truncatula Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol., 2005, 137: 1250-1260.
    [155] Imin N,DeJong F,Mathesius U,et al.Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts[J].Proteomics,2004,4:1883-1896.
    [156] Jakupoglu C, Przemeck GKH, Schneider M, et al.. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Molecular and Cellular Biology, 2005, 25(5):1980-1988.
    [157] Jknowles J R. Enzyme catalysis: not diferent,just better. Nature, 1991, 350(6314):121-124.
    [158] Joosen R, Cordewener J, Supena E D J, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K. Combined transcriptome and proteome analysisidentifies pathways and markers associated withthe establishment of rapeseed microspore-derived embryo development1. Plant Physiology, 2007, 144:155-172.
    [159] Jorge1 C, Mangolin1 C A, Machado M F P S. Malate Dehydrogenase Isozymes (MDH; EC 1.1.1.37) in Long-Term Callus Culture of Cereus peruvianus (Cactaceae) Exposed to Sugar and Temperature Stress. Biochemical Genetics, 2004, 35:155-164.
    [160] Keeling P J, Doolitize W F. Evidence that eukaryotic triosephosphate isomerase is alpha-proteobacterial origin. Proc Natl Aead Sci USA, 1997, 94(4):1270-1275.
    [161] Keller T, Damude H G, Werner D, Doerner P, Dixon R A, Lamb C. A plant homolog of the neutrophil nadph oxidase gp91phox subunit gene encodes a plasma membrane protein with ca2+ binding motifs. The Plant Cell, 1998, 10:255–266.
    [162] Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H, Harada H. Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol. Biol., 1992, 19: 239-249.
    [163] Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H, Harada H. CDNA cloning of ECP40, embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol Biol., 1993, 21: 1053-1068.
    [164] Klaas J. van Wijk. Challenges and Prospects of Plant Proteomics. Plant Physiology, 2001, 126: 501-508.
    [165] Krause E, Wenschuh H, Jungblut P R. The dominance of arginine-containing peptides in MALDI-Derived tryptic mass fingerprints of proteins. Anal Chem, 1999, 71 (19): 4160-4165.
    [166] Kumar M, Tuli R. Plant regeneration in cotton: A short-term inositol starvation promotes developmental synchrony in somatic embryogenesis. In Vitro Cell Dev Biol-Plant, 2004, 40: 294-298.
    [167] Kumar S, Nei M, Dudley J, Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Biolinformatics, 2008, 9(4): 299-306.
    [168] Lai Z.X., Chen C.L., Chen Z.G. Progress in biotechnology research in longan. Horticulture Acta, 2001, 558:137-141.
    [169] Lai Z.X., Chen C.L., Chen Z.G. Progress in biotechnology research in longan[J]. Horticulture Acta, 2001, 558:137-141.
    [170] Lai Z.X., Chen C.L., Zeng L.H., Chen Z.G. Somatic embryogenesis in longan (Dimocarpus longan Lour.). Forestry Sciences, 2000, 67:415-432.
    [171] Lai Z.X., Chen Z.G., He B.Z. Somatic embryogenesis in longan. Proceedings of the 4th Asia-Pacific Conference on Agricultural Biotechnology. UTC Publishing House, Canberra, Australia, 1998, 369-371.
    [172] Leu S, Weinberg D, Michaels A. Transcription and translation of the chloroplast atpB-gene and assembly of ATP synthase subunitβ. Federation of European Biochemical Societies, 1990, 269(1): 41-44.
    [173] Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK. an Arabidopsis LRRreceptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110: 213-222.
    [174] Lin Y L, Lai Z X. Reference genes selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 2010, 178 , 359-365.
    [175] Lippert D, Zhuang J, Ralph S, Ellis D E, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas C J, Bohlmann1 J. Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics, 2005, 5:461-473.
    [176] Lotan T M, Ohto K M, Yee M A. L, West R, Lo R W, Kwong K, Yamagishi R L, Fischer R B, Goldberg J J, Harada. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell,1998, 93: 1195-1205.
    [177] Ma H. GTP-binding proteins in plants: new members of an old family. Plant Molecular Biology, 1994, 26(5): 1611-1636.
    [178] Maillot P, Sylvain Lebel, Paul Schellenbaum, Alban Jacques, Bernard Walter.Differential regulation of SERK, LEC1-Like and Pathogenesis-Related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiology and Biochemistry, 2009, 47, 743-752.
    [179] Maity S N, de Crombrugghe B. Biochemical analysis of the B subunit of the heteromeric CCAAT-binding factor. The Journal of Biological Chemistry, 1992, 267(12):8286-8292.
    [180] Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Research, 1998, 26(5): 1135-1143.
    [181] Marsoni M, Bracale M, Espen L, et al.. Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Reports, 2007, 27(2): 347-356.
    [182] Minárik P, Tomá1kováN, KollárováM, Antalík M. Malate Dehydrogenases—Structure and Function. Gen. Physiol. Biophys., 2002, 21, 257-265.
    [183] Moreau A, wagner v. Yotov WV, Glorieux FH, St-arnaud R. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-jun-mediated transcription. Molecular and Cellular Biology, 1998, 18(3): 1312–1321.
    [184] Nadel B L, Altman A, Ziv M. Regulation of somatic embrogenesis in celery cell suspensions: 2. Early detection of embryogenic potential and induction of synchronized cell cultures. Plant Cell Tiss Org Cult, 1990, 20: 119-124.
    [185] Nancy R. Forsthoefel, Mary Ann F. Cushman, and John C. Cushman. Posttranscriptional and Posttranslational Control of Enolase Expression in the Facultative Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum L. Plant Physiol., 1995,108:1185-1195.
    [186] Neumann F, Krawinkel U. Constitutive expression of human ribosomal protein l7 arrests the cell cycle in g1 and induces apoptosis in jurkat T-lymphoma cells. 1997, 230(2):252-261.
    [187] Neutelings G, Domon J M, Membre N, Bernier F, Meyer Y, David A, David H. Characterization of a germin-like protein gene expressed in somatic and zygotic embryos of pine (Pinus caribaea Morelet). Plant Molecular Biology, 1998, 38(6): 1179-1190.
    [188] Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 1997, 10(1):1-6.
    [189] Nogueira F. C. S., Gonc E. F., Jereissati E. S., Santos M., Costa J. H., Oliveira-Neto O. B., Soares A. A., Domont G. B., Campos F. A. P.. Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata) . Plant Cell Rep, 2007, 26:1333-1343.
    [190] Nolan KE, Irwanto RR, Rose RJ. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiology, 2003, 133: 218-230.
    [191] O’Farrell P H. High resolution two - dimensional gel electrophoresis of proteins. J Biol Chem, 1975, 250(10): 4007-4021.
    [192] Osuga K, Masuda H, Komamine A. Synchronization of somatic embryogenesis from carrot cells at high frequency using carrot suspension cultures: model systems and application in plant development. Methods Cell Sci, 1999, 21: 129-140.
    [193] Pan Z, Rui Guan R, Zhu S, Deng X. Proteomic analysis of somatic embryogenesis in Valencia sweet orange ( Citrus sinensis Osbeck). Plant Cell Reports, 2008, 28(2): 281-289.
    [194] Peck S C. Update on Proteomics in Arabidopsis. Where Do We Go From Here?. Plant Physiology, 2005, 138:591–599.
    [195] Pieles U, Zürcher W, Sch?r M, Moser H. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Research, 1993, 21(14):3191-3196.
    [196] Qiu YE,Yin XU,Fang YAN,Lin TANG,Fang CHEN. Molecular cloning and characterization of rice pollen profilin. Acta Biochimica et Biophysica Sinica, 2001,33(4):452-456.
    [197] Raghavan V. Molecular embryology of flowering plants. Cambridge University Press, New York, 1997, 467-499.
    [198] Rajinder S. Dhindsa . Drought Stress, Enzymes of Glutathione Metabolism, Oxidation Injury, and Protein Synthesis in Tortula ruralis. Plant Physiol., 1991, 95:648-651.
    [199] Ramachandran S, Christensen H E M, Ishimaru Y, Dong C H, Wen C M, Cleary A L, Chua N H. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiology, 2000, 124:1637-1647.
    [200] Rani A R,Reddy V D,Prakash Babu P,et al.Changes in protein profiles associated with somatic embryogenesis in peanut[J].Biol.Plant,2005,49:347-35.
    [201] Reinert J. Morphogenese and ihre kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften, 1958, 43, 344-345.
    [202] Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response toprogressive water deficit in maize: Quantitative variation and polypeptide identification. Plant Physiol. 1998, 117:1253-1263.
    [203] Rodriguez D L, Kitto S L, Lomax K M. Mechanical purification of torpedo stage somatic embryos of Daucus carota L. Plant Cell Tiss Org Cult, 1990, 23: 9-14.
    [204] Roger I. Pennell and Chris Lamb. Programmed Cell Death in Plants. The Plant Cell, 1997, 9:1157-1168.
    [205] Rose J K C, Bashir S, Giovannoni J J, Jahn M M, Saravanan R S. Tackling the plant proteome: practical approaches, hurdles and experimental tools. The Plant Journal, 2004, 39: 715-733.
    [206] Rospert S, DubaquiéY, Gautschi M. Nascent-polypeptide-associated complex. Cellular and Molecular Life Sciences, 2002, 59(10): 1632-1639.
    [207] Ross J H E, Hutchings A, butcher G W, Bmgitte Lane E, Lloyd C W. The intermediate filament-related system of higher plant cells shares an epitope with cytokeratin 8. Journal of Cell Science, 1991, 99:91-98.
    [208] Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. Plant Physiol., 1998, 117: 651-658.
    [209] Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. Approach to analyzing drought and salt-responsiveness in rice. Field Crops Res. 2002, 76:199-219.
    [210] Sallandrouze A, Faurobert M, Maataoui M E, et al. Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L.. Electrophoresis, 1999, 20: 1109-1119.
    [211] Sato S, Toya T, Kawahara R, Whittier R F, Fukuda H, Komamine A. Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Molecular Biology, 1995, 28(1): 39-46.
    [212] Sato Y, Hong S K, Tagir A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M. A rice homeobox gene, OSHJ, is expressed before organ differentiation in a specific region during early embryogenesis. Proc. Natl. Acad. Sci., 1996, 93: 8117-8122.
    [213] Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124:2049-2062.
    [214] Schürenberg M, Dreisewerd K, Hillenkamp F. Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem, 1999, 71 (1): 221-229.
    [215] Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC, Jr.. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA, 1998, 95:7772-7777.
    [216] Seigle J L, Celotto A M and Palladino M J. Degradation of Functional Triose Phosphate Isomerase Protein Underlies sugarkill Pathology. Genetics, 2008, 179:855–862.
    [217] Sghaier B, Kriaa W, Bahloul M, et al.. Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Scientia Horticulturae, 2009, 120:379-385.
    [218] Sghaier-Hammami B, Driraa N, Jorrín-Novob J V. Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Proteomics, 2009, 73:161-177.
    [219] Sghaier-Hammami B, Driraa N, Jorrín-Novob J V. Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Proteomics, 2009, 73:161-177.
    [220] Shah k, Gadella T W Jr, van Erp H, Hecht, de Vries S C. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J. Mol. Biol., 2001, 309: 641-655.
    [221] Shailesh K. Lal, Chwenfang Lee, and Martin M. Sachs. Differential regulation of enolase during anaerobiosis in maize. Plant Physiol. 1998, 118:1285-1293.
    [222] Sharma S K, Millam S, Hein I,Bryan G J. Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta, 2008, 228(2): 319-330.
    [223] Shunping Yan, Zhangcheng Tang, Weiai Su and Weining Sun. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 2005, 5:235-244.
    [224] Sonia Dorion, Parveen, Julie Jeukens, Daniel P. Matton, Jean Rivoal. Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves. Plant Science, 2005, 168:183–194.
    [225] Special Section. How does a single somatic cell become a whole plant. Science, 2005, 309: 86.
    [226] Stasolla C, Belmonte M F, van Zyl L, Craig D L, Liu,W, Yeung, E C, Sederoff R R. Theeffect of reduced glutathione on morphologyand gene expression of white spruce (Picea glauca) somatic embryos. J. Exp. Bot. 2004, 55: 695–709.
    [227] Stasolla C, Bozhkov P V, Chu T M, et al. Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol., 2004, 24: 1073-1085.
    [228] Steven p. Gygi, Yvan Rochon, B. Robert Franza and Ruedi Aebersold. Correlation between protein and mRNA abundance in Yeast. Molecular and Cellular Biology, 1999, 19(3): 1720-1730.
    [229] Steward F C, Mapes M O, Mears K. Growth and organized development of cultured cells: II. Organization in cultures grown from freely suspended cells. Am J Bot, 1958, 45:705-708.
    [230] Stock D, Gibbons C, Arechaga I, Andrew GW Leslie and John E Walker. The rotary mechanism of ATP synthase. Current Opinion in Structural Biology, 2000, 10: 672-679.
    [231] Stock D, Leslie A G W, Walker J E. Molecular architecture of the rotary motor in ATP synthase. Science,1999, 286 : 1700-1705.
    [232] Sukmin K O, Thitamadee S, Yang H P, Chang-Ho EUN, Kimiyo SAGE-ONO, Katsumi HIGASHI, Shinobu SATOH, Hiroshi KAMADA. Comparison and characterization of cis- regulatory regions in some embryo - specific and aba- responsive carrot genes, DCECPs. Plant Biotechnology, 2001, 18(1): 45-54.
    [233] Sukmin KO, Kamada H. Isolation of carrot basic leucine zipper transcription factor using yeast one-hybrid screening. Plant Molecular Biology Reporter, 2002, 20: 301a–301h.
    [234] Takeda H, Kotake T, Nakagawa N, Sakurai N, Nevins D J. Expression and function of cell wall-bound cationic peroxidase in asparagus somatic embryogenesis. Plant Physiology, 2003, 131: 1765-1774.
    [235] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
    [236] Teppei Morita, Hiroshi Kawamoto, Taisei Mizota, Toshifumi Inada and Hiroji Aiba. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Molecular Microbiology, 2004, 54(4): 1063– 1075.
    [237] Tonon G, Berardi G, Rossi C, Bagnaresi U. Synchronized somatic embryo development in embryogenic suspensions of Fraxinus angustifolia. In Vitro Cell Dev Biol-Plant, 2001, 37: 462-465.
    [238] Toonen M A J, Verhees J A, Schmidt E D L, van Kammen A , de Vries S C. The Plant Journal, 1997, 12(5): 1213-1221.
    [239] Torres A C, Ze N M, Cantliffe D J. Abscisic acid and osmotic induction of synchronous somatic embryo development of sweet potato. In Vitro Cell Dev Biol-Plant, 2001, 37: 262-267.
    [240] Trelogan S A, Martin S L. Tightly regulated, developmentally specffic expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc. Natl. Acad. Sci., 1995, 92: 1520-1524.
    [241] Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F. Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiology, 2004, 134:1527-1535.
    [242] van Hengel A J, Guzzo F, van Kammen A, de Vries S C. Expression Pattern of the Carrot EP3 Endochitinase Genes in Suspension Cultures and in Developing Seeds. Plant Physiol., 1998, 117: 43-53.
    [243] van Wijk K J. Challenges and prospects of plant proteomics. Plant Physiology, 2001,126:501–508.
    [244] Viitanen P V, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer G H, Gatenby A, Soll J. Functional characterization of the higher plant chloroplast chaperonins. The Journal of Biological Chemistry, 9995, 270(30):18518-18164.
    [245] Warren G S, Fowler M W. A physical method for the separation of various stages in the embryogenesis of carrot cell culturess. Plant Sci Lett, 1997, 9: 71-76.
    [246] Wasteneys G O, Yang Z. New views on the plant cytoskeleton. Plant Physiology, 2004, 136:3884-3891.
    [247] Wasteneys G O. Progress in understanding the role of microtubules in plant cells. Current Opinion in Plant Biology 2004, 7:651–660.
    [248] Waters E R, Garrett J. Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 1996, 47(296):325-338.
    [249] Winkelmann T,Heintz D,van Dorsselaer A,et al.Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill.reveal new insights into seed and germination physiology.Planta,2006,224(3):508-519.
    [250] Wool I G. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci., 1996, 21(5):164-165.
    [251] Wu X, Li F, Zhang C, Liu C, Zhang X. Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol, 2009, 01, 012.
    [252] Xu Y,Yu H,Hall T C. Rice triosephosphate isomerase gene 5' sequence directsβ-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol, 1994, 106: 459-467.
    [253] Xu Z.H, Sunderland N. Glutamine, inositol and conditioning factor in the production of barley pollen callus in vitro. Plant Science Letters, 1981, 23(2):161-168.
    [254] Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5:235-244.
    [255] Yang C, Xing L, Zhai Z. Intermediate filaments in higher plant cells and their assembly in a cell-free system. Protoplasma, 1992, 171:44-54.
    [256] Yang H, Saitou T, Komeda Y, Harada H, Kamada H. Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4. Gene, 1997, 184: 83-88.
    [257] Yang H, Saitou T, Komeda Y, Harada H, Kamada H. Late embryogenesis abundant protein in Arabidopsis thaliana hornologous to carrot ECP31. Plant Physiol., 1996, 98: 661-666.
    [258] Yang X, Zhang X. Regulation of Somatic Embryogenesis in Higher Plants. Critical Reviews in Plant Sciences, 2010, 29(1): 36-57.
    [259] Yotov WV, Moreau A, St-arnaud R. The Alpha Chain of the Nascent Polypeptide- Associated Complex Functions as a Transcriptional Coactivator. Molecular and Cellular Biology, 1998, 18(3): 1303-1311.
    [260] Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X. A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics,2007, 90: 620-628.
    [261] Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X. A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics,2007, 90: 620-628.
    [262] Zhu C, Huang M J, Niu X M, Li X Q, Fu X D. Fractional selection of somatic embryos in the production of carrot artificial seeds. Acta Bot Sin, 1990, 32(11): 871-877.
    [263] Zhu C, Kamada H, Harada H, He M, Hao S. Isolation and characterization of a CDNA encoded an
    [264] Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. Plant Cell, 1993, 5: 1411–1423.
    [265] Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal, 2002, 30: 349–359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700