用户名: 密码: 验证码:
东营凹陷北带古近系次生孔隙发育带成因机制及演化模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次生孔隙发育带的成因及演化是中深层优质储层评价和油气勘探部署的重要依据。一个含油气盆地往往发育多个次生孔隙发育带,目前普遍认为埋藏相对较浅、与有机质演化成熟阶段相对应的第一个次生孔隙发育带为有机酸溶解长石和碳酸盐胶结物成因;而对深层次生孔隙发育带的成因存在不同的观点,一种观点认为深层次生孔隙发育带为深层溶蚀成因,另一种观点认为深层次生孔隙发育带为浅层形成、保存至深层的古次生孔隙发育带。如果对次生孔隙发育带成因及演化认识不清,将直接影响中深层油气勘探成功率。因此,开展次生孔隙发育带成因机制及演化模式研究对中深层油气勘探具有重要的理论指导意义。本论文以东营凹陷北带古近系沙三中亚段~沙四段砂砾岩体为研究对象,综合运用岩心观察、薄片鉴定、图像分析、扫描电镜观察、流体包裹体分析、粘土矿物分析、镜质体反射率测试和岩心物性分析等多种技术方法,结合构造演化史、有机质热演化史、油气成藏史等研究成果,对中深层次生孔隙发育带的形成机制和演化模式进行了系统研究。
     次生孔隙发育带指次生孔隙百分含量大于50%的高孔隙度储层(或称为有效储层)集中发育带。据此,研究发现民丰洼陷北带沙四段次生孔隙发育带最为典型,共发育四个次生孔隙发育带,其中,沙四上亚段发育次生孔隙发育带Ⅰ、Ⅱ,深度范围分别为2800m-3500m、3750m-4050m;沙四下亚段发育次生孔隙发育带Ⅲ、Ⅳ,深度范围分别为4300m-4500m,4700m-4900m。因此,论文以民丰洼陷北带沙四段次生孔隙发育带为重点展开论述。
     民丰洼陷北带沙四段次生孔隙发育带储层均为近岸水下扇扇中辫状水道砂砾岩,次生孔隙主要为长石溶解孔隙,其次为碳酸盐胶结物溶解孔隙,发育少量石英溶解孔隙、黄铁矿溶解孔隙和裂缝。次生孔隙发育带Ⅰ、Ⅱ内储层主要为油层,少量为油水同层和含油水层;次生孔隙发育带Ⅲ、Ⅳ内储层均为气层。次生孔隙发育带Ⅰ、Ⅱ储层成岩作用以长石溶解强烈、碳酸盐胶结物充填长石溶解孔隙现象普遍、碳酸盐胶结物溶解为典型特征;次生孔隙发育带Ⅲ、Ⅳ内储层成岩作用以大量沥青和黄铁矿充填孔隙、碳酸盐自形程度高、溶解作用弱、长石溶解弱及其溶解孔被碳酸盐充填现象不明显为典型特征。次生孔隙发育带Ⅰ、Ⅱ内储层经历了“碱性-酸性-碱性-酸性-弱碱性”、“常压-常压-常压”、“地温升高-降低-升高”的成岩环境演化,具有“压实作用/黄铁矿胶结/菱铁矿胶结/石膏胶结→长石溶解/石英次生加大→碳酸盐胶结/石英溶解/长石加大→碳酸盐和长石的溶解/黄铁矿胶结”的成岩作用演化序列特征。次生孔隙发育带Ⅲ、Ⅳ内储层经历了“碱性-酸性-碱性-酸性-弱酸性”、“常压-超压-常压”、“升温-降温-升温”的成岩环境演化,具有“压实作用/硬石膏胶结/石盐胶结/黄铁矿胶结/菱铁矿胶结→长石溶解/石英加大→碳酸盐胶结/石英溶解/长石加大→碳酸盐溶解/长石溶解/石英加大→黄铁矿胶结和沥青充填”的成岩作用演化序列特征。
     在次生孔隙发育带成岩环境演化和成岩作用序列研究的基础上,分别建立了沙四上亚段和沙四下亚段成岩环境演化及储层改造模式。次生孔隙发育带Ⅰ、Ⅱ为近岸水下扇沉积旋回中上部扇中辫状水道砂体中部储层在早期有机酸作用下形成大量次生孔隙,演化成以原生孔隙为主的孔隙发育带,之后受到碳酸盐胶结轻微破坏形成古次生孔隙发育带,在地层抬升过程中古次生孔隙发育带又经历了有机酸的再次溶解改造,最后油气充注成藏对次生孔隙发育带进行保护,形成现今次生孔隙发育带,其成因机制可概括为“酸溶为主、碱溶为辅、早期成孔、早期成带”,演化概括为“早期成因-多期改造-晚期油气充注保护”型演化模式。次生孔隙发育带Ⅲ、Ⅳ为近岸水下扇沉积旋回中上部扇中辫状水道砂体中部储层在早期有机酸作用下形成以原生孔隙为主(次生孔隙绝对量较大)的孔隙发育带,由于油气早期充注和超压的保护,在地层抬升和再次沉降过程中受轻微改造,直到深埋藏(埋深大于4000m,地层温度大于160℃)时“古油藏”原油裂解形成大量沥青和黄铁矿充填原生孔隙后才形成的现今次生孔隙发育带,其成因机制可概括为“酸溶为主、碱溶为辅、早期成孔、晚期成带”,其演化可概括为“早期油气充注-超压保护-晚期成因”型演化模式。
The genesis and evolution of secondary pore development zone is important basis for the high-quality reservoir evaluation and the deployment of oil and gas exploration in mid-deep formation. Generally, several secondary pore development zones are developed in a petroliferous basin. At present, it is considered that feldspar and carbonate cements dissolved by organic acids is the cause of the first secondary pore development zone corresponding to organic matter maturity in shallow formation. While,there are two views on the causes of deep secondary pore development zones. One is that deep secondary pore development zones were formed in deep formation;Another is that deep secondary pore development zones were the secondary pore development zones forming in the shallow formation and preserved to the deep formation. If the genesis and evolution of secondary pore development zones can’t be determined, the success rate of hydrocarbon exploration will be affected a lot. So the research on the genetic mechanism and evolution model of secondary pore development zones has great leading significance in theory for oil and gas exploration in mid-deep formation. This dissertation focused on the case study of the sand-conglomerate body of the middle part of Es3z~Es4 of Paleogene in Dongying depression. Based on a conjunction of core observation, thin section identification, image analysis, SEM observation, fluid-inclusion analysis, core X-ray analysis, testing of vitrinite reflectance and core properties analysis and other methods, and the research achievements as the tectonic evolution history, thermal evolution of organic matters, and the history of hydrocarbon accumulation, the genetic mechanism and evolution model of secondary pore development zones in mid-deep formation were systematically studied.
     Secondary pore development zone is defined as the zone where high porosity reservoirs (also called effective reservoirs), whose secondary pore is more than 50%, intensively develops. Accordingly, the study shows that the secondary pore development zone in Es4 of Minfeng sag is most typical. It develops 4 secondary pore development zones totally. The secondary pore development zoneⅠandⅡdevelops in Es4s, the depth range of which is 2800m-3500m and 3750m-4050m. The secondary pore zoneⅢandⅣdevelops in Es4x, the depth range of which is 4300m-4500m and 4700m-4900m. So this dissertation focus on the discussion of the secondary pore development zones of Es4 in Minfeng sag.
     The reservoirs of the secondary pore development zones in Es4 in Minfeng sag are sand - conglomerate of braided channel in nearshore subaqueous fan, and the secondary pores of which are mainly feldspar dissolution pores, secondly carbonate cement dissolution pores, a few quartz dissolution pores, pyrite dissolution pores and cracks. The reservoirs of secondary pore zoneⅠandⅡare mainly oil reservoirs, and secondly a few oil-water layers and oil-bearing water layers. The reservoirs of secondary pore zoneⅢandⅣare gas layers. The typical diagenetic characteristics of reservoirs in secondary pore development zoneⅠ,Ⅱis that the feldspar dissolution is strong, the phenomenon that feldspar dissolution pores filled by carbonate cements is common, and carbonate cements dissolution is obvious. The typical diagenetic characteristics of reservoirs in secondary pore development zoneⅢandⅣis that a lot of pores were filled by asphalt and pyrite, carbonate cements are high-shaped and dissolved weakly, feldspars are also dissolved weakly, and the phenomenon that feldspar dissolution pores filled by carbonate cements is not obvious. The reservoirs in secondary pore development zoneⅠandⅡexperienced the diagenetic environment with“alkaline-acid-alkaline-acid-weak alkaline”,“normal pressure - normal pressure - normal pressure”,“formation temperature increasing - decreasing - increasing”, and diagenetic evolution sequence of which is“compaction / pyrite cementation / siderite cementation / gypsum cementation→feldspar dissolution / quartz overgrowth→carbonate cementation/ quartz solution / feldspar overgrowth→carbonate and feldspar late period solution / pyrite cementation”. The reservoirs in secondary pore development zoneⅢandⅣexperienced the diagenetic environment with“alkaline - acid -alkaline-acid-weak acid”,“normal pressure - overpressure-normal pressure”,“formation temperature increasing-decreasing-increasing”, and diagenetic evolution sequence of which is“compaction / gypsum cementation / halite cementation / gypsum cementation / pyrite cementation / siderite cementation→feldspar dissolution / quartz overgrowth→carbonate cementation / quartz solution / feldspar overgrowth→carbonate dissolution / feldspar dissolution / quartz overgrowth→pyrite cementation and asphalt filling”.
     Based on the research of the diagenetic environment evolution and the diagenetic sequence of the secondary pore development zones, the models of diagenetic environment evolution and reservoir reconstruction in Es4s and Es4x have been established respectively. The genetic mechanism of the secondary pore development zoneⅠandⅡis that the middle reservoirs of brained channels of mid-fan of nearshore subaqueous fan in middle-upper part of sedimentary cycle formed pore development zone with the primary pore in leading position because of massive secondary pore formed by early organic acid dissolution, and because of the slight destruction of primary pore by carbonate cementation, the pore development zone formed the paleo secondary pore development zone, which experiences the dissolution effect again by organic acid in the process of strata uplifting, and the paleo secondary pore development zone formed the present secondary pore development zone finally due to the protection of hydrocarbon charging. The genetic mechanism of the secondary pore development zoneⅠandⅡcan be summarized as“dissolution in acidic environments is main, dissolution in alkaline environment is secondary, secondary porosity formed in early stage, secondary porosity development zone formed in early stage”.The evolution model he secondary pore development zoneⅠandⅡcan be summarized as“early generated-multiple phase deformation-late hydrocarbon charging protection”. The genetic mechanism of the secondary pore development zoneⅢandⅣis that the middle reservoirs of brained channels of mid-fan of nearshore subaqueous fan in middle-upper part of sedimentary cycle formed the pore development zone with the primary pore in leading position (the absolute amount of secondary pore is high) because of the early organic acid effect, and because of early hydrocarbon charging and overpressure protection, the pore development zone was slightly transformed during the process of strata uplifting and resettlement, and the pore development zone finally formed the present secondary pore development zone due to the filling of primary pore by massive asphalt and pyrite from oil cracking of deep buried paleo-reservoirs (the buried depth was more than 4000m and the formation temperature was more than 160℃). The genetic mechanism of the secondary pore development zoneⅢandⅣcan be summarized as“dissolution in acidic environments is main, dissolution in alkaline environment is secondary, secondary porosity formed in early stage, secondary porosity development zone formed in early stage”.The evolution model of the secondary pore development zoneⅢandⅣcan be summarized as“early hydrocarbon charging- overpressure protection-late cause”.
引文
[1]妥进才.深层油气研究现状及进展[J].地球科学进展,2002,17(4):555-571
    [2]方少仙,侯方浩.石油天然气储层地质学[M].东营:石油大学出版社,1998:297-304
    [3]袁静,王乾泽.东营凹陷下第三系深部碎屑岩储层次生孔隙垂向分布及成因分析[J].矿物岩石,2001,21(1):43-47
    [4]陈永峤,于兴河,周新桂,等.东营凹陷各构造区带下第三系成岩演化与次生孔隙发育规律研究[J].天然气地球科学,2004,15(1):68-74
    [5]朱筱敏,王英国,钟大康,等.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J].地质学报,2007,81(2):197-204
    [6]刘琼,何生,陈振林,等.江汉盆地西南缘白垩系渔洋组砂岩储集层成岩作用和孔隙演化[J].矿物岩石,2007,27(2):78-85
    [7]刘伟,朱筱敏.柴西南地区第三系碎屑岩储集层次生孔隙分布及成因[J].石油勘探与开发,2006,33(3):315-318
    [8]曾溅辉.东营凹陷第三系水-盐作用对储层孔隙发育的影响[J].石油学报,2001,22(4):39-43
    [9]张以明,侯方浩,方少仙,等.冀中饶阳凹陷下第三系沙河街组第三段砂岩次生孔隙形成机制[J].石油与天然气地质,1994,15(3):208-215
    [10]王正允,王方平,林小云,等.塔北三叠、侏罗系孔隙类型及次生孔隙的成因[J].石油与天然气地质,1995,16(3):203-210
    [11]李捷,王海云.东北晚中生代断陷盆地储层次生孔隙形成机制[J].沉积学报,1999,17(4):591-595
    [12]王鹏,赵澄林.东濮凹陷杜桥白地区深部储集层次生孔隙成因探讨[J],石油勘探与开发,2001,28(4):44-46
    [13]马维民,王秀林,任来义,等.东濮凹陷超压异常与次生孔隙[J].西北大学学报(自然科学版),2005,35(3):325-330
    [14]张文才,李贺,李会军,等.南堡凹陷高柳地区深层次生孔隙成因及分布特征[J].石油勘探与开发,2008,35(3):308-312
    [15]王勇,钟建华,马锋,等.济阳坳陷陡坡带深层砂砾岩体次生孔隙成因机制探讨[J].地质学报,2008,82(8):1152-1159
    [16]张福顺,朱允辉,王芙蓉.准噶尔盆地腹部深埋储层次生孔隙成因机理研究[J].沉积学报,2008,26(3):469-478
    [17]赵国泉,李凯明,赵海玲,等.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J].石油勘探与开发,2005,32(1):53-55
    [18]钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J].石油勘探与开发,2003,30(6):51-53
    [19]王成,邵红梅.大庆长垣以西地区中部油层组合次生孔隙研究[J].大庆石油地质与开发,1999,18(5):5-7
    [20] Jodry R.L. Rapid method for determining magnesium-calcium ratios of well samples and its use in predicting structure and secondary porosity in calcareous formations[J]. AAPG Bulletin, 1955, 39: 493-511
    [21] Maxwell J. C. Influence of depth, temperature, and geologic age on porosity of quatzose sandstone[J]. AAPG Bulletin, 1964, 48: 697-709
    [22] Atwater G. I., Miller E. E. The effect of decrease in porosity with depth on future development of oil and gas reserves in south Louisiana[J]. Bulletin of the American Association of Petroleum Geologists, 1965, 49(3): 334
    [23] Schmidt V., McDonald D. A. Role of secondary porosity in sandstone diagenesis[J].AAPG Bulletin, 1977, 61(8): 1390-1391
    [24] Schmidt V., McDonald D. A. Texture and recognition of secondary porosity in sandstones[J]. Special Pullicatin-Society of Economic Paleontologists and Mineralogists, 1979, 26: 209-225
    [25] Larese R. E., Thomas J. B., Pittman E. D. Development of secondary porosity in reservoir sandstones by dissolution of silicate mineral constituenets[J]. AAPG Bulletin, 1980, 64(5): 737
    [26] Mcbride E. F. Importance of secondary porosity in sandstones to hydrocarbon exporation[J].AAPG Bulletin, 1980, 64(5): 747
    [27] Zuhair Al-Shaieb Z., Shelton J. W. Migration of hydrocarbons and secondary porosity in sandstones[J]. AAPG Bulletin, 1981, 65: 2433-2436
    [28] Bjφrlykke K. O. Formation of secondary porosity in sandstones; how important is it and what are controlling factors?[J]. AAPG Bulletin, 1982, 66(5):549-550
    [29] Davis D. G. Cave development in the Guadalupe Mountains; a critical review of recent hypotheses[J]. National Speleological Society Bulletin, 1980, 42(3): 42-48
    [30] Curtis C. D. Link between aluminum mobility and destruction of secondary porosity[J]. AAPG Bulletin, 1983, 67: 380-384
    [31] Behar F. H., Albrecht P. Correlations between carboxylic acids and hydrocarbons in several crude oils; alteration by biodegradation[J]. Organic Geochemisty, 1984, 6: 597-604
    [32] Surdam R. C., Boese S. W., Crossey G. J. The chemistry of secondary porosity[J]. AAPG Memoir, 1984, 37: 127-151
    [33] Shanmugam G. Secondary porosity in sandstones; basic contributions of Chepikov and Savkevich[J]. AAPG Bulletin, 1984, 68: 106-107
    [34] Pye K., David H. Krinsley. Formation of secondary porosity in sandstones by quartz framework grain dissolution[J]. Nature, 1985, 317(6032): 54-56
    [35] Thomson A., and Stoessell R. K. Nature of secondary porosity created by dissolution of aluminum silicates[J]. AAPG Bulletin, 1985, 69(2):311
    [36] Hogg M. D. Secondary porosity in Miocene sandstones of Louisiana Gulf Coast and its significance in reservoir properties[J]. AAPG Bulletin, 1985, 69(2): 266
    [37] Shanmugam G. Significance of secondary porosity in interpreting sandstone composition[J]. AAPG Bulletin, 1985, 69: 378-384
    [38] Parnell J. Secondary porosity in hydracarbon-bearing transgressive sandstones on an unstable lower Paleozoic continental shelf, Welsh Borderland[J]. Geological Society Special Publications, 1987, 36: 297-312
    [39] Horton R. A., Menzie R J. Secondary Porosity and hydrocarbon reservoirs in lower-middle Miocene sandstones, southern San Joaquin Basin, California[J]. AAPG Bulletin, 1987, 71(5): 568
    [40] Giles M. R. Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J]. Marine and Petroleum Geology, 1987, 4(3): 188-204
    [41] Giles M. R., de Boer R. B. Secondary porosity; creation of enhanced porosities in the subsurface from the dissolution of carbonate cements as a result of cooling formationwaters[J]. Marine and Petroleum Geology, 1989, 6(3): 261-269
    [42] Surdam R. C., Crossey L. J., Hagen E. S. Organic-inorganic and sandstone diagenesis. AAPG Bulletin, 1989, 73: 1-23
    [43] Stoessell R. K., Pittman E. D. Secondary Porosity revisited; the chemistry of feldspar dissolution by carboxylic acids and anions[J]. AAPG Bulletin, 1990, 74: 1795-1805
    [44] Hill C. A. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas[J]. AAPG Bulletin, 1990, 74:1685-1694
    [45] Fein J. B. Experimental study of aluminum-oxalate complexing at 80℃: Implications for the formation of secondary porosity within sedimentary reservoirs[J]. Geology, 1991,19: 1037-1040
    [46] Bloch S. Role of secondary porosity and permeability in predrill prediction of total porosity and permeability in sandstones[J]. AAPG Bulletin, 1991, 75(3): 543-544
    [47]梁卫、张晓宇.铁岭-昌图盆地上侏罗统砂岩储层次生孔隙形成机制研究[J].矿物岩石,1994,14(3):62-68
    [48]刘林玉.吐鲁番-哈密盆地中生界砂岩次生孔隙研究[J].石油实验地质,1996,18(3):317-324
    [49]覃建雄,张长俊,徐国盛.西昌盆地上三叠统白果湾组砂岩储层次生孔隙成因探讨[J].中国海上油气,1996,10(2):83-89
    [50]陈忠,罗蛰潭,沈明道,等.论砂岩储层次生孔隙的形成机制[J].成都理工学院学报,1996,23(增刊):35-41
    [51] Wilkinson M., Darby D., Haszeldine R.S., et al. Couples. Secondary porosity generation during deep burial associated with overpressure leak-off; Fulmar Formation, United Kingdom Central Graben[J]. AAPG Bulletin, 1997, 81: 803-813
    [52]王海云,李捷.东北含油气盆地储层次生孔隙形成机制[J].大庆石油学院学报,1998,22(4):5-8
    [53]陈丽华,赵澄林,纪友亮,等.碎屑岩天然气储集层次生孔隙的三种成因机理[J].石油勘探与开发,1999,26(5):77-79
    [54]谢继容.砂岩次生孔隙形成机制[J].天然气勘探与开发,2000,23(1):52-55
    [55]刘爱永,陈刚,刘林玉.吐哈盆地三叠系砂岩的孔隙类型及次生孔隙形成机理探讨[J].石油实验地质,2002,24(4):345-347
    [56]李义军.浅述次生孔隙的成因[J].西北地质,2002,35(1):65-69
    [57]郭春清,沈忠民,张林晔,等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球化学,2003,31(3):53-57
    [58]党犇,赵虹,周立发.台北凹陷侏罗系储层次生孔隙特征及形成机理[J].西北大学学报(自然科学版),2002,32(3):281-285
    [59] Franca A.B., Araújo L.M., Maynard J.B., et al. Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America[J]. AAPG Bulletin, 2003, 87: 1073-1082
    [60]吴富强,鲜学福,胡雪,等.次生孔隙形成机制探讨—以渤南洼陷为例[J].油气地质与采收率,2003,10(1):3-5
    [61]肖丽华,姜明媚,邵学军,王志国,罗宪婴.歧北凹陷储层碳酸盐胶结物同位素特征与次生孔隙成因[J].地学前缘,2004,11(3):
    [62]杨晓宁,陈洪德,寿建峰,等.碎屑岩次生孔隙形成机制[J].大庆石油学院学报,2004,28(1):4-6
    [63]施振飞,张振城,叶绍东,等.苏北盆地高邮凹陷阜宁组储层次生孔隙成因机制探讨[J].沉积学报,2005,23(3):429-436
    [64]何宏、蔡忠东.渤南洼陷沙河街组次生孔隙形成机理分析[J].石油天然气学报(江汉石油学院学报),2005,27(5):557-559
    [65]李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前沿[J].岩石学报,2006,22(8):2113-2122
    [66]徐徽,何幼斌.岐口凹陷沙河街组次生孔隙特征及成因研究[J].海洋石油,2006,26(2):7-12
    [67]郭少斌,杜佳,林小云.鄂尔多斯盆地三叠系延长组长2油层组次生孔隙控制因素及有利区预测[J].石油天然气学报(江汉石油学院学报),2006,28(4):236-238
    [68]张莉,朱筱敏,钟大康,等.惠民凹陷古近系碎屑岩次生孔隙纵向分布规律[J].地球科学-中国地质大学学报,2007,32(2)253-259
    [69]黄洁,朱如凯,侯读杰,等.深部碎屑岩储层次生孔隙发育机理研究进展[J].地质科技情报,2007,26(6):76-82
    [70]司学强,张金亮.博兴洼陷沙四上亚段滩坝砂岩次生孔隙形成机制[J].地质科技情报,2008,27(1):59-63
    [71]陈忠,罗蛰潭,沈明道,等.由储层矿物在碱性驱替剂中的化学行为到砂岩储层次生孔隙的形成[J].世界地质,1996,18(2):15-19
    [72]邱隆伟,姜在兴,操应长,等.泌阳凹陷碱性成岩作用及其对储层的影响[J].中国科学(D辑),2001,31(9):752-759
    [73]邱隆伟,姜在兴,陈文学,等.一种新的储层孔隙成因类型—石英溶解型次生孔隙[J].沉积学报,2002,20(4):621-627
    [74]邱隆伟,赵伟,刘魁元.碱性成岩作用及其在济阳坳陷的应用展望[J].油气地质与采收率,2007,14(2):10-15
    [75]李忠,李蕙生.东濮凹陷深部次生孔隙成因与储层演化研究[J].地质科学,1994,29(3):267-275
    [76]陈振林,王果寿,王筠,等.松南地区登娄库组砂岩成岩作用与孔隙演化[J].江汉石油学院学报,1996,18(1):14-18
    [77]王琪,史基安,肖立新,等.石油侵位对碎屑储集岩成岩序列的影响及其与孔隙演化的关系—以塔西南坳陷石炭系石英砂岩为例[J].沉积学报,1998,16(3):97-101
    [78]罗静兰,张晓莉,张云翔,等.成岩作用对河流-三角洲相砂岩储层物性演化的影响—以延长油区上三叠统延长组长2砂岩为例[J].沉积学报,2001,1(94):541-547
    [79]罗静兰,Morad S.,阎世可,等.河流-湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响[J].中国科学(D辑),2001,31(12):1006-1015
    [80]刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-49
    [81]张忠民,朱伟,赵澄林.辽河盆地下第三系深部碎屑岩储层次生孔隙演化模式及其分布[J].大庆石油学院学报,2002,26(3):12-14
    [82]张琴,钟大康,朱筱敏,等.东营凹陷下第三系碎屑岩储层孔隙演化与次生孔隙成因[J].石油与天然气地质,2003,24(3):281-285
    [83]王瑞飞,陈明强.储层沉积-成岩过程中孔隙度参数演化的定量分析—以鄂尔多斯盆地沿25区块、庄40区块为例[J].地质学报,2007,81(10):1432-1438
    [84]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3):114-123.
    [85]杨香华,叶加仁,周士科,等.成岩动力学分析与深部储层孔隙预测[J].现代地质,1998,12(1):108-114
    [86]庄松生,左燕春,黎琼.苏北溱潼凹陷戴南组二段成岩作用与次生孔隙预测[J].矿物岩石,1998,18(4):64-71
    [87]寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J].地质科学,1998,32(2):244-250
    [88]寿建峰.碎屑岩储层控制因素及钻前定量地质预测[J].海相油气地质,1999,4(1):20-24
    [89]肖丽华,孟元林,侯创业,等.松辽盆地升平地区深层成岩作用数值模拟与次生孔隙带预测[J].地质论评,2003,49(5):544-551
    [90]孟元林,刘德来,贺如,等.歧北凹陷沙二段超压背景下的成岩场分析与储层孔隙度预测[J].沉积学报,2005,23(3):389-396
    [91]刘伟.苏北溱潼凹陷戴南组一段次生孔隙形成与分布特征[J].岩相古地理,1997,17(2):24-31
    [92]纪友亮,赵澄林,刘孟慧.东濮凹陷沙河街组碎屑岩成岩作用与有机质演化的关系[J].石油与天然气地质,1995,16(2):148-154
    [93]郑浚茂,吴仁龙.黄骅坳陷砂岩储层的成岩作用与孔隙分带性[J].石油与天然气地质,1996,17(4):268-275
    [94]王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体-岩石相互作用特征[J].沉积学报,1999,17(4):584-590
    [95]蔡春芳,梅博文,马亭,等.塔里木盆地有机酸来源、分布及对成岩作用的影响[J].沉积学报,1997,15(3):103-108
    [96]钟大康,朱筱敏、周新源,等.次生孔隙形成期次与溶蚀机理—以塔中地区志留系沥青砂岩为例[J].天然气工业,2006,26(9):21-24
    [97]塔里木盆地不整合附近成岩改造体系烃-水-岩相互作用[J].科学通报,1995,40(24):2253-2256
    [98] McMahon P. B., Chapelle F H, Falls W, et al. Role of microbiol processes in linking sandstone diagenesis with organic-rich clays. Journall of Sedimentary Petrology, 1992,62:1-10
    [99] Hayes M. J., Boles J. R. Volumetric relaions between dissolved plagioclase andkaolinite in sandstones: implications for aluminum mass transfer in the San Joaquin basin, California[J]. Special Publication Society of Economic Paleontologists and Mineralogists, 1992, 47: 111-123
    [100] Emery D., Myers K. J., Yong R. Ancient subaerial exposure and freshwater leaching in sandstones[J]. Geology(Boulder), 1990,18:1178-1181
    [101] Ramm M. Porosity-depth trends in reservoir sandstones theoretical models related to Jurassic sandstones offshore Norway [J]. Marine and Petroleum Geology, 1992 , 9 : 553-567
    [102] Bloch S., Franks S. G. Preservation of shallow plagioclase dissolution porosity during burial implications for porosity prediction and aluminum mass balance[J]. AAPG Bulletin, 1993, 77: 1488-1501
    [103]张枝焕,胡文瑄,曾溅辉,等.东营凹陷下第三系流体-岩石相互作用研究[J].沉积学报,2000,18(4):560-566
    [104]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报,2003,28(4):419-424
    [105] Hill C. A. Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas[J]. New Mexico Bureau of Geology & Mineral Resources Bulletin, 1987,117: 150
    [106]袁静,赵澄林.水介质的化学性质和流动方式对深部碎屑岩储层成岩作用的影响[J].石油大学学报(自然科学版),2000,24(1):60-63
    [107]袁静.东营凹陷下第三系深层成岩作用及次生孔隙发育特征[J].煤田地质与勘探,2003,31(3):20-23
    [108]朱光有,张水昌,马永生,等.TSR(H2S)对石油天然气工业的积极性研究-H2S的形成过程促进储层次生孔隙的发育[J].地学前缘,2006,13(3):141-149
    [109]朱光有,张水昌,梁英波,等.川东北飞仙关组H2S的分布与古环境的关系研究[J].石油勘探与开发,2005,32(4):65-69
    [110] Anisimov L. A. Conditions of a biogenic reduction of sulfate in oil and gas bearing basins[J]. Geochem Inter, 1978, 15: 63-71
    [111] Goldhaber M. B., Orr W. L. Kinetic controls on thermochemical sulfate reduction asa source of sedimentary H2S[M]// Vairavamurthy M A, Schoonen M A A. Geochemical transformations of sedimentary sulfer,ACS symposium series, 1995, 612: 412-425
    [112] Claypool G. E., Mancini E. A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, sourhwestern Alabama[J]. AAPG Bulletin, 1989, 73: 904-924
    [113] Rooney M. A. Carbon isotopic ratios of light hydrocarbons as indicators of thermochemical sulfate reduction[M]//Grimalt J O. Organic geochemistry: applications to energy, climate, environment and human history. San Sebastian:A.I.G.O.A., Donostia, 1995:523-525
    [114] Machel H. G. Gas souring by thermochemical sulfate reduction at 140℃:discussion[J]. AAPG Bulletin, 1998,82: 1870-1873
    [115] Worden R. H., Smalley P. C., Oxtoby N. H. Gas souring by thermochemical sulfate reduction at 140℃[J]. AAPG Bulletin, 1995, 79(6): 854-863
    [116] Bildstein R. H., Worden E. B. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction[J]. Chemical Geology, 2001, 176: 173-189
    [117]黄思静,HairuoQing,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007,25(6):815-824
    [118]陈福.酸性含矿热液的成因及成矿演化模式[J].地质地球化学,2000,28(1):48-52.
    [119]岳伏生,张景廉,杜乐天.济阳坳陷深部热液活动与成岩成矿[J].石油勘探与开发,2003,30(4):29-31
    [120]金之钧,杨雷,曾溅辉,等.东营凹陷深部流体活动及其生烃效应初探[J].石油勘探与开发,2002,25(2):42-44
    [121]熊振.东营凹陷现代热流场特征及地热异常成因[J].石油勘探与开发,1999,26(4):38-41
    [122] Robert H. G., Carlos R. Recrystallization in quartz overgrowths[J]. Journal of Sedimentary Research, 2002,72(3): 432-440
    [123]张丽洁,汪本善,马万怡,等.泌阳凹陷羊毛甾烷的检出及其意义[J].中国科学(D辑),1990,(1):69-71
    [124]文冬光,曾建华.泌阳碱矿形成的地球化学模拟研究[J].地球科学,1997,22(1):69-74
    [125]杨俊杰,裴锡古.中国天然气地质学,鄂尔多斯盆地[M].北京:石油工业出版社,1996
    [126]朱彤.成岩作用对致密砂岩储层储集性的控制作用研究[J].成都理工学院学报,1999,26(2):157-160
    [127]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986:194-199
    [128]刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992:138
    [129] Gratz A. J., Bird P. Quartz dissolution: Theory of rough and smooth surfaces[J]. Geochim. Cosmochim. Acta, 1993, 57(5): 977-989
    [130] Patricia M. Dove. The dissolution kinetics of quartz in sodium chloride solutions at 25℃to 300℃[J]. American Journal of Science, 1994, 294: 665-712
    [131]刘孟惠,赵澄林.碎屑岩储层成岩演化模式[M].山东东营:石油工业出版社,199:10-13
    [132]傅强.成岩作用对储层孔隙的影响—以辽河盆地荣37块气田下第三系为例[J].沉积学报,1998,16(3):92-96
    [133]许建华,张世奇,纪友亮.藏北羌塘盆地中上侏罗统碎屑岩储层成岩演化特征[J].石油大学学报(自然科学版),2001,25(1):4-8
    [134]张生.二氧化硅水溶物种与热力学性质[J].世界地质,1997,16(2):16-22
    [135] Surdam R. C., Crossey L. J. Integrated diagenetic modeling: a process-oriented approach for clastic systems[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 141-170
    [136] Ezat H., William J. W. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis[J].AAPG Bulletin, 2002, 86:1285-1303
    [137]卢焕勇,袁佩芳,祝总祺,等.胜利油田下第三系沙河街组烃源岩热解产物初析[J].西北大学学报(自然科学版),1996,26(6):515-518
    [138] Crosscy L. J., Frost B. R., Surdam R. C. Secondary porosity in laumontite-bearing sandstones, clastic diagenesis[J]. AAPG Memoir, 1984,37(z): 225-238
    [139]王成,赵海玲,邵红梅,等.松辽盆地北部登娄库组砂岩次生孔隙形成时期与油气成藏[J].岩石矿物学杂志,2007,26(3):253-258
    [140] Meshri I. D. On the reactivity of carbonic and orgnic acids and generation of secondary porosity[J]. SEPM Spec Pub, 1986, 28: 123-128
    [141]季汉成,徐珍.深部碎屑岩储层溶蚀作用实验模拟研究[J].地质学报,2007,81(2):212-219
    [142]黄福堂,邹信方,张作祥.地层水中主要酸类对储层物性影响因素研究[J].大庆石油地质与开发,1998,17(30):7-9
    [143] Bjφrlykke K., Nedkvitne T., Ramm M., et al. Diagenetic processes in the Brent Group(Middle Jurassic) reservoirs of the North Sea: an overview[J]. Geological Society Special Publications, 1992,61: 263-287
    [144] Ehrenberg S. N. Kaolinized, potassium-leached zones at the contacts of the Garn formation, Haltenbanken, mid-Norwegian continental shelf[J].Marine and Petroleum Geology, 1991,8:250-269
    [145] MacGowan D. B., Surdam R. C. Difunctional carboxylic acid anions in oilfield waters[J]. Organic Geochemistry, 1988,12:245-259
    [146] Bennett P., Siegel D. I. Increased solubility of quartz in water due to complexing by organic compounds[J]. Nature, 1987, 326(6114):684-686
    [147] Bennett P. C. Quartz dissolution in organic-rich aqueous systems[J]. Geochimica et Cosmochimica Acta, 1991,55(7):1781-1797
    [148] Blake R. E., Walter L. M. Kinetics of feldspar and quartz dissolution at 70-80 degress C and near-neutral pH; effects of organic acids and NaCl[J].Ceochimica et Cosmochimica Acta, 1999,63(13-14):2043-2059
    [149]刘林玉,陈刚,柳益群,等.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析[J].沉积学报,1998,16(2):97-101
    [150]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:121-129
    [151]苗建宇,祝总祺,刘文荣,等.济阳坳陷砂岩次生孔隙的基本特征及控制因素[J].西北大学学报(自然科学版),2000,30(2):154-158
    [152]吴富强,宁兴贤.影响渤南洼陷深部储层次生孔隙形成的因素及其作用[J].沉积与特提斯地质,2004,24(2):76-82
    [153]苗建宇,祝总祺,刘文荣,等.济阳坳陷下第三系温度、压力与深部储层次生孔隙的关系[J].石油学报,2000,21(3):36-40
    [154]罗静兰,刘小洪,林潼,等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673
    [155]钟大康,朱筱敏,周新源,等.塔里木盆地中部泥盆系东河砂岩成岩作用与储集性能控制因素[J].古地理学报,2003,5(3):378-390
    [156]田克勤,于志海,冯明,等.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社,2000
    [157]游俊,郑浚茂.黄骅坳陷中北区深部储层物性影响因素分析[J].现代地质. 1999,13(3):350-354
    [158]康玉柱.中国塔里木盆地石油地质特征及资源评价[M].北京:地质出版社,1996
    [159]王宝清,张获南,刘淑芹,等.龙虎泡地区高台子油层成岩作用及其对储集岩孔隙演化的影响[J].沉积学报,2000,18(3):414-418
    [160]张金亮,杜桂林.塔中地区志留系沥青砂岩成岩作用及其对储层性质的影响[J].矿物岩石,2006,26(3):85-93
    [161]杨庆杰,刘立,迟元林,等.盆地流体的基本类型及其驱动机制[J].世界地质,2000,19(1):15-19
    [162]杨绪充.东营凹陷地温特征及深部勘探问题[J].石油学报,1984,5(3):19-26
    [163]纪友亮,赵澄林,刘孟慧.东濮凹陷地层流体的热循环对流与成岩圈闭的形成[J].石油实验地质,1995,17(1):8-16
    [164]叶加仁,杨香华.沉积盆地热流体活动及其成藏动力学意义[J].沉积学报,2001,19(2):214-218
    [165]郝芳,邹华耀,倪建华等.沉积盆地超压系统演化与深层油气成藏条件[J].地球科学——中国地质大学学报,2002, 27(5):610-615
    [166] Hao Fang, Sun Yongchuan, Li Sitian, et al. Overpressure rerardation of organic-matter maturation and petroleum generation: a case study from the Yinggehai and Qiongdongnan Basins, South China Sea[J]. AAPG Bulletin, 1995, 79(4): 551-562
    [167] Hancock N. J. Possible cause of Rotliegend sandstone diagenesis in northern WestGermany[J]. Journal of the Geological Society, London, 1978, 135: 35-40
    [168] Walderhang O. A fluid inclusion study of quartz cemented sandstones from offshore Mid-Norway possible evidence for continued quartz cementation during oil emplacement[J]. Journal of Sedimentary Petrology, 1990, 60: 203-210
    [169] Nedkvitne T., Karlsen D. A., Bjφrlykke K., et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J]. Marine and Ptroleum Geology, 1993, 10(3): 255-270
    [170]李艳霞,刘洪军,袁东山,等.石油充注对储层成岩矿物演化的影响[J].石油与天然气地质,2003,24(3):274-280
    [171]蔡进功,张枝焕,朱筱敏,等.东营凹陷烃类充注与储集层化学成岩作用[J].石油勘探与开发,2003,30(3):79-83
    [172]陈纯芳,赵澄林,李会军.板桥和歧北凹陷沙河街组深层碎屑岩储层物性特征及其影响因素[J].石油大学学报(自然科学版),2002,26(1):4-7
    [173]王德仁,王生朗,王秀林,等.河南东濮凹陷深层储层分析[J].现代地质,2002,16(2):199-204
    [174]高勇,张连雪.板桥-北大港地区深层碎屑岩储集层特征及影响因素研究[J].石油勘探与开发. 2001,28(2):36-39
    [175] Osborne M. J., Swarbrick R. E. Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology, 1999,16(4):337-353
    [176]李忠,费卫红,寿建峰,等.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约[J].地质学报,2003,77(1):126-134
    [177]李会军,吴泰然,吴波,等.中国优质碎屑岩深层储层控制因素综述[J].地质科技情报,2004,23(4):76-82
    [178]刘晓峰.评述异常压力研究中的石油地质学新思想[J].地球科学进展,2003,18(2):245-250
    [179]陈振岩,苏晓捷.辽河西部凹陷船舱式油气运聚系统特征初探[J].石油勘探与开发,2003,30(4):31-41
    [180]肖丽华,孟元林,牛嘉玉,等.歧口凹陷沙河街组成岩史分析和成岩阶段预测[J].地质科学,2005,40(3):346-362
    [181]祝总祺,苗建宇,刘文荣,等.论压力封存箱及其对次生孔隙的保护作用[J].西北大学学报(自然科学版),1997,73-78
    [182]王光奇,岳云福,漆家福.黄骅坳陷白唐马地区下第三系深层碎屑岩储层裂缝分析[J].中国海上油气(地质),2002,16(6):384-388
    [183]李元奎,王铁成.柴达木盆地狮子沟地区中深层裂缝性油藏[J].石油勘探与开发.2001,28(6):12-15
    [184]常津焕,赵立民.辽河盆地断裂与油气运移和聚集.天然气地球科学,2000,11(3):13-17
    [185]孙吉原,单冬梅,辛仁臣.松辽盆地头台地区扶杨油层砂岩次生孔隙特征及其控制因素[J].大庆石油学院学报,2001,25(4):11-14
    [186]蔡春芳,顾家裕,蔡洪美.塔中地区志留系烃类侵位对成岩作用的影响[J].沉积学报,2001,19(1):60-65
    [187]樊爱萍,柳益群,杨仁超,等.东胜直罗组砂岩成岩作用过程与古流体运移事件分析[J].地质学报,2006,80(5):694-699
    [188]陈瑞银,罗晓容,吴亚生.利用成岩序列建立油气输导格架[J].石油学报,2007,28(6):43-46
    [189]朱筱敏,孙超,刘成林,等.鄂尔多斯盆地苏里格气田储层成岩作用与模拟[J].中国地质,2007,34(2):276-282
    [190]王琪,禚喜准,陈国俊,等.鄂尔多斯西部长6砂岩成岩演化与优质储层[J].石油学报,2005,26(5):17-23
    [191] Beard D. C., Weyl P. K. Influence of Texture on Porosity and Permeability of Unconsolidated Sand[J]. AAPG Bulletin, 1973, 57(2): 349-369
    [192]刘建清,赖兴运,于炳松,等.库车凹陷克拉2气田深层优质储层成因及成岩作用模式[J].沉积学报,2005,23(3):412-419
    [193]张忠民,涂强,赵澄林.吐哈盆地台北凹陷侏罗系成岩作用特征及其对油气藏形成的控制[J].大庆石油学院学报,2003,27(3):8-11
    [194]孙永传,陈红汉,李蕙生,等.莺-琼盆地YA13-1气田热流体活动与有机/无机成岩响应.地球科学-中国地质大学学报,1995,20(3):276-282
    [195]杨俊杰,黄月明,张文正,等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,1995,22(4):82-86
    [196]罗孝俊,杨卫东,李荣西,等.pH值对长石溶解度及次生孔隙发育的影响[J].矿物岩石地球化学通报,2001,20(2):103-107
    [197]杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下白云岩溶解过程的实验模拟研究[J].沉积学报,1995,13(3):83-88
    [198]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17
    [199]杨俊杰,黄思静,张文正,等.表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J].沉积学报,1995,13(4):49-54
    [200]刘国勇,金之钧,张刘平.碎屑岩成岩压实作用模拟实验研究[J].沉积学报,2006,24(3):407-413
    [201]吕希学,钟大康,朱筱敏,等.东营凹陷古近系砂岩储集层特征对比[J].石油勘探与开发,2003,30(3)91-94
    [202]张琴,朱筱敏,钟大康,等.山东东营凹陷古近系碎屑岩储层特征及控制因素[J].古地理学报,2004,6(4):493-502
    [203]钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩储集层物性控制因素评价[J].石油勘探与开发,2003,30(3):95-98
    [204]袁静,张善文,乔俊,陈鑫.东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J].沉积学报,2007,25(6):840-846
    [205]张善文,袁静,隋风贵,等.东营凹陷北部沙河街组四段深部储层多重成岩环境及演化模式[J].地质科学,2008,43(3):576-587
    [206]路慎强.渤海湾盆地东营凹陷古近系碎屑岩储层成岩研究[J].石油实验地质,2008,30(5):456-459
    [207]李军亮.渤海湾盆地东营凹陷深层砂砾岩储层成岩演化特征[J].石油实验地质,2008,30(3):252-255
    [208]夏景生,王成明,王志坤,陈刚,朱鑫,冀晓静.山东东营凹陷东部深层浊积扇储层的微观特征及影响因素[J].中国地质,2008,35(5):975-983
    [209]司学强,张金亮,杨子成.博兴洼陷沙四上亚段滩坝砂岩成岩作用及其与储层质量的关系[J].中国石油大学学报(自然科学版),2008,32(2):6-11
    [210]李丕龙,姜在兴,马在平.东营凹陷储集体与油气分布[M].北京:石油工业出版社,2000:1-5
    [211]张永刚,许卫平,王国力,等.中国东部陆相断陷盆地油气成藏组合体[M].北京:石油工业出版社,2006:127-131
    [212]宋来亮.东营凹陷陡坡带深部储层储集空间演化特征[J].油气地质与采收率,2008,15(5):8-12
    [213]隋风贵.断陷湖盆陡坡带砂砾岩扇体成藏动力学特征[J].石油与天然气地质,2003,24(4):335-340
    [214]孔凡仙.东营凹陷北带砂砾岩扇体勘探技术与实践[J].石油学报,2000,21(5):27-31
    [215]赵勇.东营凹陷北带构造-层序-成藏动力学研究[D].广州:中国科学院地球化学研究所,2005
    [216]陈中红,查明,张善文等.东营凹陷古近系天然气成藏条件及其主控因素[J].天然气工业,2008,28(9):9-12
    [217]马艳萍,刘立,闫建萍,等.松辽盆地齐家-古龙凹陷扶杨油层次生孔隙特征及其与烃类侵位的关系[J].世界地质,2003,22(1)36-40.
    [218]隋风贵,操应长,刘惠民,等.东营凹陷北带东部古近系近岸水下扇储集物性演化及其油气成藏模式[J].地质学报,2010,84(2):246-256
    [219]王艳忠,操应长,宋国奇,等.试油资料在渤南洼陷深部碎屑岩有效储层评价中的应用[J].石油学报,2008,29(5):709-714
    [220]王艳忠,操应长,宋国奇,等.东营凹陷古近系深部碎屑岩有效储层物性下限的确定[J].中国石油大学学报(自然科学版),2009,33(4):16-21
    [221]郭睿.储集层物性下限值确定方法及其补充.石油勘探与开发,2004,31(5):140-144
    [222]杨通佑,范尚炯,陈元千,等.石油及天然气储量计算方法[M].北京:石油工业出版社,1990:31-32
    [223]邱楠生,李善鹏,曾溅辉.渤海湾盆地济阳坳陷热历史及构造-热演化特征[J].地质学报,2004,78(2):263-269
    [224]王淑萍.东营凹陷民丰地区沙四下亚段膏盐层系天然气储层成岩作用研究[D].东营:中国石油大学(华东),2007
    [225]宋国奇,蒋有录,刘华,等.东营凹陷利津-民丰地区中深层裂解气成藏史[J].天然气工业,2009,29(4):14-17
    [226]张厚福,方朝亮,张枝焕,等.石油地质学[M].北京:石油工业出版社,1999:62-72
    [227]刘军鄂.东营北带砂砾岩扇体成藏规律与目标评价[R].东营:胜利油田分公司地质科学研究院,2006
    [228]宋国奇,金强,王力,等.东营凹陷深层沙河街组天然气生成动力学研究[J].石油学报,2009,30(5):672-677
    [229]宫秀梅,曾溅辉.渤南洼陷古近系膏盐层对深层油气成藏的影响[J].石油勘探与开发.2003,30(5):24-27
    [230]尹忠、赵晓东.石膏CaSO4·2H2O在碳酸盐岩酸化过程中的溶解度[J].西南石油学院学报.西南石油学院学报,1995,17(4):110-113
    [231]徐天光,顾家裕,薛叔浩.盐湖沉积硬石膏特征及其在油气勘探中的应用[J].石油勘探与开发,1997,24(5):54-57
    [232]邱隆伟,姜在兴.陆源碎屑岩的碱性成岩作用[M].北京地质出版社,2006:22
    [233]罗权生,荆文波,聂朝强.台北凹陷第三系膏盐岩对油气运聚的意义[J].石油勘探与开发,2000,27(1):29-31
    [234]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [235]钟建华,王国壮,高祥成,等.东营凹陷北部陡坡带丰1扇背斜的特征、成因及其与油气的关系[J].地质科学,2008,43(4):625-636
    [236]王志刚.东营凹陷北部陡坡带构造岩相带油气成藏模式[J].石油勘探与开发,2003,20(4):10-12
    [237]孔凡仙.东营凹陷北部陡坡带砂砾岩体的勘探[J].石油地球物理勘探.2000,35(5):669-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700