用户名: 密码: 验证码:
红外微波兼容材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对红外和微波的机理进行了概述,由红外和微波的作用机理可知单一材料体系很难实现红外微波兼容,所以本文将以复合涂层体系为出发点,即分为吸波部分、控温(热红外)部分及低红外发射部分,分别针对各个部分进行了红外微波兼容性能的研究,在保留其主要性能指标的同时尽可能提高其另一性能,并探索了复合涂层的兼容特性。主要研究内容如下:
     1、采用离子交换热解法制备了碳包覆单一金属及复合金属纳米颗粒,在对前驱体的热解特征、热解产物的表面形貌、微观结构等进行表征以及对热解产物红外微波性能的研究中发现:通过该方法制备的样品中金属纳米颗粒分散性较好;前驱体的热解过程主要发生在150℃-500℃,最佳热解温度为600℃;碳包覆磁性纳米粒子具有一定的微波特性,其中Fe/C的微波性能较好,在涂层厚度为2.5mm时,在14GHz附近,Rmin为-5.6dB;碳包覆铜纳米颗粒在8-14μm波段的红外发射率较好,约为0.7左右;引入非磁性的低红外辐射金属后,Fe&Cu/C的红外性能有所改善,在温度为100℃时,发射率下降了0.06,且保留了其微波性能。
     2、通过微乳液聚合的方法首次将改性后的铁氧体掺杂到相变微胶囊中,制备出了具有磁性的相变微胶囊;通过对制备工艺的分析以及其红外微波兼容性能的研究发现:本实验采用水溶性引发剂,乳化剂用量在为1wt%时得到的胶囊形态较好;有效地防止因石蜡固-液相变而引起的石蜡和铁氧体的泄漏,以及铁氧体与石蜡分层;具有磁性的相变微胶囊可有效的遮蔽目标的红外辐射,即通过控制目标表面温度,控制目标的发射率,表面最大温差达10℃左右,其表面发射率降低了0.2左右;而且该胶囊具有一定的微波吸收特性,实现了对第一部分的微波补偿。
     3、本文发现硅纳米晶超晶格薄膜有较好的红外性能。在对不同周期、不同硅纳米晶颗粒尺寸的样品研究中发现:硅纳米晶超晶格薄膜的红外发射率受超晶格周期及硅纳米晶尺寸的影响较大,当超晶格周期为25周期,硅纳米晶颗粒尺寸为4nm时,红外发射率最低可达到0.324;通过研究其机理发现:硅纳米晶超晶格薄膜的红外发射率较低主要是由nc-Si颗粒形成粗糙的表面导致漫反射较高引起的。
     4、通过对碳包覆金属与微胶囊复合涂层进行吸波和热红外测试,探索复合后涂层具有微波吸收性能和热红外性能;并分析了复合层的微波机理,为下一步工作提供了理论依据。
This paper explained the principle of infrared camouflage and radar camouflage, according to influencing factors of infrared stealth, several material-systems were-selected to study the infrared microwave compatibility.
     First, in this paper, the method of resin pyrolysis was chosen to prepare carbon-coated single metal and composite metal nano-particles. Through the performance and mechanism analysis, it was found that the dispersion of metal nanoparticles was better; pyrolysis process mainly occurred in the 150℃-500℃. In the 8-14μm the infrared emissivity of Cu/C was better, the emissivity value is around 0.7. Microwave performance of Fe/C is better, when the coating thickness is 2.5mm, in the 14GHz, the Rmin is-5.6dB.
     Secondly, in this paper, the method of microemulsion polymerization was used to prepare magnetic phase-change microcapsulats. The ferrite, which was modificatd, was doped in the phase-change micro-capsules, for the first time. It was found that the water-soluble initiator is better, and when the amount of emulsifier was the lwt%, the capsule form is better. The infrared radiation of targets can be effectively shielded by the magnetic micro-phase change capsules, so that the infrared emissivity value could be controled, which was about 0.6.
     Third, it is found that nc-Si superlattice films have a better IR performance for the first time. The infrared properties of nc-Si superlattice films was mainly due to the formation of a rough surface caused by diffuse reflection; when the superlattice period was 25 and the particle size was 4nm, he emissivity value is around 0.324, when the size of nc-Si is 4 nm.
     Fourth, microwave absorption properties and thermal infrared properties were explored, and the mechanism of composite layer for further provided a theoretical basis was analyzed.
引文
[1]胡传炘.隐身涂层技术[M].北京:化学工业出版社,2004,1-2.
    [2]王自荣,余大斌,孙晓泉,於定华.激光与红外复合隐身涂料初步研究[J].激光与红外.2001,31(5),301-303.
    [3]马成勇,程海峰,唐耿平,谢炜.红外雷达兼容隐身材料的研究进展[J].材料导报.2007,21(1),126-128.
    [4]马格林,曹全喜,黄云霞.红外和雷达复合隐身材料——掺杂氧化物半导体[J].2003,25(4),78-80.
    [5]徐记伟,姚冰,常怀东.几种新型的红外雷达复合隐身材料[J].舰船电子对抗.2007,30(4),39-42.
    [6]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004.
    [7]胡传忻.隐身涂层技术.北京:化学工业出版社,2004,122-123,194.
    [8]陈衡.红外物理学[M].北京:国防工业出版社,1985:68-75.
    [9]侯振林.红外隐身技术的发展[[J].光机电信息.2001,(11):41-45
    [10]高南,华家栋.特种涂料[M].上海:上海科协技术出版社,1984:314-315.
    [11]邹南智等.关于半球全发射率与温度关系的讨论[J].红外技术,1997,19(3):1
    [12]周方桥.红外光学材料[M].华中理工大学出版社,1995.
    [13]费逸伟,黄之杰,刘芳,李华强.聚合物微球——新型热红外涂料用填料性能研究[J].红外技术,2003,25(3):55-59
    [14]费逸伟.新型热红外伪装涂料用填料中空微珠性能研究[J].红外技术,2003,25(3):55-59
    [15]武利民.涂料技术基础[M].北京:化学工业出版社,1999.
    [16]Aspens D. E. Optical response of microscopically rough surface [J]. Phys. Rev. B.1990,41 (10): 10334-10343.
    [17]李风雷,徐国跃,余慧娟,胡晨,邵春明,程传伟.红外隐身涂层的制备及其与雷达吸波涂料的兼容性研究[J].红外技术,2009,Vol.31(7),415-419
    [18]卢意红,吕绪良,胡江华.红外与雷达复合隐身研究[J].红外,2007,28(7),33-36.
    [19]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004,194.
    [20]张卫东,冯小云,孟秀兰.国外隐身材料研究进展[J].宇航材料工艺,2000,30(3),1-4
    [21]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报,2006,27(2),317-321.
    [22]张幼文.红外光学工程[M].上海:上海科学技术出版社,1981:23
    [23]毕松,苏勋家,侯根良,王德鹏.涂覆型雷达红外复合隐身材料研究现状[J].化工新型材料.2006,34(3),8-11.
    [24]Schmidt R N. Infrared Diffuse Reflector Coating. [Report of Honrywell Inc]. AD802201, Minneapolis:Minn.1967.
    [25]Fulghum, David A. New Look at Stealth [J]. Aviation Week and Space Technology (New York).2003,159 (15),24-29.
    [26]蒋耀庭,王跃.红外隐身技术与发展.红外技术,2003,25(5):7-9,14
    [27]王自荣,余大斌,龄定华,等.ITO涂料在8-14μm波段红外发射率的研究[J].红外技术.1999,21(1),41-44
    [28]宋兴华.红外低发射率材料的制备及性能研究:[硕士学位论文]上海:华东理工大学,2003
    [29]万梅香,李素珍,李军朝等.微波与红外兼容的新型隐身材料[J].宇航材料工艺,(6):26-29,1991
    [30].邢丽英.隐身材料[M].北京:化学工业出版社.2004.
    [31]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社.2007.
    [32]P C Fannin, S W Charles, T Relihan. Broad-band measurement of the complex susceptibility of magnetic fluids[J]. Meas. Sci. Technol.,1993,4,1160
    [33]N Rezlescu, E Rezlescu, C Pasniou. Effects of the rare-earth ions on some properties of a nickel-zinc ferrite[J]. J. Phys. Condens. Mater,1994,6,5707
    [34]S A Mazen, F Metawe, S F Mansour. IR absorption and dielectric properties of Li-Ti ferrite[J]. J. Phys. D:Appl. Phys.,1997,30,1799
    [35]Wu K H, Ting T H, Liu C I, et al. Electromagnetic and microwave absorbing properties of Nio.SZno,5Fe204/bamboo charcoal core-shell nano-composites[J]. Compos. Sci. Technol., 2008,68,132-139.
    [36]Zhang LY, Li Z W. Synthesis and characterization of SrFel2O19/CoFe2O4 nano-composites with core-shell structure [J]. J. Alloys Compd.,2008,456,220-223.
    [37]Li G, Hu G G, Zhou H D, et al. Attractive microwave-absorbing properties of Lal-xSrxMnO3 manganite powders [J].Mater. Chem. Phys.,2002,75,101-104.
    [38]Peng C H, Hwang C C, Wan J, et al. Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded Ni-Zn-ferrites prepared by combustion synthesis method[J]. Mater. Sci. Eng., B.2005,117,27-36.
    [39]Lima U R, Nasar M C, Nasara R S, et al. Ni-Zn nanoferrite for radar-absorbing material[J]. J. Magn. Magn. Mater.,2008,320,1666-1670.
    [40]张中太,林元华,唐子龙等.纳米材料及其技术的应用前景[J].材料工程,2000,3,42-48.
    [41]王光华,董发勤,贺小春.纳米吸波材料研究进展[J].中国粉体技术,2007,13(4),35-38.
    [42]余泉茂,陈焕铭,胡本芙.纳米技术研究新进展及发展展望[J].材料导报,2002,16(8),5-7.
    [43]Tadayoshi I, Osamu H. FDTD analysis for protecting human body from electromagnetic wave using thin resistive sheet[J]. Electron. Commun.(Japan),2000,83(9),86-92.
    [44]巩晓阳,曹万民.纳米材料用语吸收电磁波的物理机制[J].物理与工程,2007,17(5),39-41,62
    [45]焦桓,罗发,周万成.纳米吸波材料研究与发展趋势[J].宇航材料工艺,2001,Vol.31(5),9-11.
    [46]Jaggard D L, Engheta N. Chirosorb as an invisible medium [J]. Electronics Letters,1989,25(3), 173-174.
    [47]Jaggard D L, Engheta N, Liu J. Chiroshield:a Salisbury/Dallenbach shield alternative [J]. Electronics Letters,1990,26(17),1332-1334.
    [48]Jaggard D L, Liu J C, Sun X. Spherical chiroshield [J].Electronics Letters,1991,27(1),77-79.
    [49]赵东林,沈曾民.炭纤维结构吸波材料及其结构设计[J].兵器材料科学与工程,2000,23(6),51-56.
    [50]赵东林,沈曾民.螺旋形手征碳纤维的微波介电特性[J].无机材料学报,2003,18(5),1057-1062
    [51]Huang J, Wan M. Temperature and pressure dependence of conductivity of polyaniline synthesized by in situ doping polymerization in the precence of organic function acid as dopants [J]. Solid. State. Commun.,1998,108(4),255-259.
    [52]Chandrakanthi N, Careem M A. Preparation and characterization of fullyoxidized form of polyaniline [J]. Polym. Bull.,2000,45,113-120.
    [53]陈晓,熊忠,陶雪钰等.导电聚苯胺的合成及电磁学性能、吸波性能研究[J].塑料工业,2005,33(5),5-7.
    [54]董星龙,左芳,钟武波,等.纳米镍/聚苯胺复合粒子的制备与表征[J].功能材料,2005,36(10),1558-1560.
    [55]Pant R P, Dhawan S K, Kataria N D, et al. Investigations on ferrofluid-conducting polymer composite and its application [J]. J. Magn. Magn. Mater.,2002,252,16-19.
    [56]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展[J].飞航导弹,2008,(7),58-61.
    [57]Wang Z Z, Bi H, Liu J, et al. Magnetic and microwave absorbing properties of polyaniline/g-Fe2O3 nanocomposite[J]. J. Magn. Magn. Mater.,2008,320,2132-2139.
    [58]Li X A, Han X J, Tan Y J, et al.Preparation and microwave absorption properties of Ni-B alloy-coated Fe304 particles[J]. J. Alloys Compd.,2008,464 (1-2),352-356.
    [59]Dong X L, Zhang Z D, Zhao X G, et al. The preparation and characterization of uhrafine Fe-Ni particles[J].J Mater Res.1999,14(2):398-406.
    [60]李灿权,张雪峰,王威娜等.铁、镍及其合金纳米粒子的制备及电磁性能研究[J].材料工程.2006,2,46-50.
    [61]张雪峰,王登科,李璞,等.壳/核型金属纳米胶囊的制备及性能研究[J].功能材料.2007,38(A08):2997-3000.
    [62]Lee G H, Huh S H, Park J W, et al. Arrays of Ferromagnetic Iron and Cobalt nanocluster Wires[J]. J. Phys. Chem. B.2002,106:2123-2126.
    [63]高国华,官建国,何玲燕,等.纳米铁/SiO:核壳复合粒子的制备与性能表征[[J1.武汉理工大学学报.2004,26(9):1-3.
    [64]王维.官建国,王琦.球磨时间对制备Fe-ZnO核壳纳米复合粒子的结构和性能的影响[[J].无机材料学报.2005,20(3):599-607.
    [65]Carum F, Susha A S, Gqersig M, et al.Magnetic Core-shell Particles:Preparation of Magnetite Multilayers Oil Polymer Latex Microspheres[J].Adv. Mater.1999,11,950-953.
    [66]Caruso F, Shi X, Caruso RA, et al.Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J].Adv. Mater.2001,13,740-744.
    [67]Wu M Z, Zhang Y D, Hui S, ET al. Microwave magnetic properties of CoSO/(SiO2)SO nano-particles[J]. Appl. Phys. Lett.,2002,80(23),4404-4406.
    [68]宇天,王强.纳米隐身涂料特性及应用分析[J].光电技术.应用,2005,.20(4),29.
    [69]沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究[J].新型炭材料.2001,16(1),1-4.
    [70]陆峰,徐成海,闻立时.ZAO薄膜的研究现状和发展趋势[J].真空与低温,2001,7(3),125
    [71]Chen E, Pei Z L. Sun C. et al. ZAO:an attractive potential substitute for ITO in flat display panels[J]. Mater. Sci. Eng.,2001, (85),212
    [72]汪晓芹,廖晓兰,周安宁等.聚苯胺及其复合材料研究现状[J].应用化工,2001,30(1),4.
    [73]马成勇,程海峰,唐耿平,谢炜.红外/雷达兼容隐身材料的研究进展[J].材料导报.2007,21(1),126-132.
    [74]H. W. Kroto, J. R. Health, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature (London) 1985, 318,162.
    [75]Iijima S. Helical microtubules of graphitic carbon[J]. Nature.1991,354(6348):56-58.
    [76]Iijima S, Ichihashi T, Ando Y. Pentagons heptagons and negative curvature in graphite microtubule growth [J]. Nature.1991,356(6372):776-778.
    [77]Kratschmer W,. Lamb L D, Fostiropoulos K, et al. Solid C60:a new form of carbon[J]. Nature. 1990,347,354-358.
    [78]P. M. Ajayan and S. Iijima, Nature(London).1993,361,333.
    [79]S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R. Loutfy, Nature(London).1993,362,503.
    [80]R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, and S. Subramoney, Science.1993,259,346.
    [81]S. A. Majetich, J. O. Artman, M. E. McHenry, N. T. Nuhfer, and S. W. Staley, Phys. Rev. B., 1993,48,16845.
    [82]Dong X L, Zhang Z D, Jin S R, et al. Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane[J]. J Mater Res.1999,14(5),1782-1790.
    [83]Dong X L, Zhang Z D, S Jin R, et al. Carbon-encapsulated Fe-Co(C) nanocapsules prepared by arc discharge in methane[J]. J. Appl. Phys.,1999,86(12),6701-6706.
    [84]Collins P Q, Zettl A, Bando H, et al. Nanotube nanodevice[J]. Science.1997,278 (5335): 100-103.
    [85]Bubkle K, Gnewuch H, Hempstead M, et al. Optical anisotropy of dispersed carbon nanotubes induced by an electric-field[J]. App. Phys. Lett.,1997,71 (14),1906-1908.
    [86]Nolan P E, Lynch D C, Cutler A H. Catalytic disproportionation of CO in the absence of hydrogen:encapsulating shell carbon formation [J]. Carbon.1.994,32(3),477-483.
    [87]Nolan P E, Schabel M J, Lynch D C, et al. Hydrogen control of carbon deposit morphology [J]. Carbon.1995,33(1),79-85.
    [88]Liu B H, Ding J, Zhong Z Y, et al. Large-scale preparation of carbon-encapsulated cobalt nano-particles by the catalytic method[J]. Chem. Phys. Lett.,2002,358,96-102.
    [89]Patricia B Oliete, T. Cristina Rojas. Characterization and magnetic behavior of nickel nano-particles encapsulated in carbon[J]. Acta. Mater.,2004,52 (8):2165-2171.
    [90]陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成明.材料研究学报.2002,16(2):146-150.
    [91]陈晓红,宋怀河,周成.二茂铁加压热解的研究[[J].新型碳材料.2002,17(1):10-12.
    [92]Liu Z, Ling L, Qiao W, Chunxiang Lu, Dong Wu, Lang Liu. Effects of various metals and their loading methods on the mesopore formation in pitch-based spherical activated carbon[J]. Carbon.1999,37,1333-1335.
    [93]Delaunay JJ, Hayashi T, Tomita M, Hirono S, Umemura S. Copt-C nanogranular magnetic thin films[J]. Appl. Phys Lett.,1997,71(23):3427-3429.
    [94]何炳林,黄文强.离子交换与吸附[M].上海:上海科技教育出版社,1995.
    [95]Saito Y Nanoparticles and filled nanocapsules[J]. Carbon.1995,33(7):979-988.
    [96]Host J J, Block J, Dravid V P, et al. Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals[J]. J. Appl. Phys.,1998,83(2):793-801..
    [97]Oya A, Mochizuki M, Otani S, Tomizuka I. An electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel[J]. Carbon. 1979,17(1):71-76.
    [98]Oya A, Otani S. Effects of particles size of calcium and calcium compounds on catalytic graphitization of phenolic resin carbon[J]. Carbon.1979,17(2):125-129.
    [99]Oya A, Otani S. Catalytic graphitization of carbons by various metals[J]. Carbon.197917(2): 131-137.
    [100]Inagaki M, Okada Y, Vignal V, Konno H, Oshida K. Graphite formation from a mixture of Fe3O4 and polyvinylchloride at 10000C [J]. Carbon.1998,26(11),1706-1708.
    [101]Alivisatos A P Semiconductor clusters, nanocrystals, and quantum dots[J]. Science.1996, 271(5251),933-937.
    [102]Klimov V L, Mikhailovsh A A. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science.2000,290(5490),314-317.
    [103]Charles K. Theory of the Structure o:f Ferromagnetic Domains in Films and Small Particles[J]. Phys. Rev.1946,70(11),965-971.
    [104]Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nat. Biotechnol.,2003,21(1),41-46.
    [105]Duan X F, Niu C M, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons[J]:Nature.2003,425(6955):274-278.
    [106]Rodriguez-Viejo J, Mattoussi H, Heine J R, et al. Evidence of photo and electrodarkening of (CdSe) ZnS quantum dot composites[J]. Appl. Phys.2000,87(12),8526-8534.
    [107]都有为,徐明祥,吴坚等.镍超细微颗粒的磁性[[J].物理学报.1992,41(1),149-154.
    [108]孟新强.国外雷达隐身和红外隐身技术的发展动向与分析[J].飞行导弹.2005,6,7,21-41
    [109]张忠廉,刘榴娣.紫外线技术在军事上的应用研究[J].光学技术,2000,26(4),28-30
    [110]孙浩,吴文健.石蜡微胶囊化及其红外伪装隐身性能研究[J].光电技术应用,2005,20(3),41-44.
    [111]张寅平,胡汉平,相变蓄能-理论和应用[M].中国科学技术大学出版社,1996,8-13
    [112]严东.相变型红外隐身材料研究[D],上海交通大学硕士学位论文,1990.
    [113]李发学.新型红外伪装纺织品的研究[D].东华大学硕士学位论文,2003,1.
    [114]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [115]王岐东.多级复合相变材料隔热降温体系的基础及应用研究[D].北京理工大学硕士学位论文,1996,2,9-19.
    [116]吕舒眉,张拴勤,等.相变材料用于红外示假技术研究[C].中国兵工学会工程装备专业委员会伪装专业学组第八届学术年会论文集,2004,9,403-408
    [117]张建勇,钟生东.紫外线技术在军事工程技术中的应用[J].光学技术,2000,26(4):32-34
    [118]贾治勇,王群,周美玲.石蜡基相变吸波多谱兼容隐身材料研究[J].功能材料,2006,增刊(37),899-902.
    [119]张团红,胡小玲,乔吉超,管萍,杨峰.纳米胶囊的制备与应用进展[J].材料科学与工程学报,2007,25(1),143-146.
    [120]Chen Y. C., Dimonie V., EI-Aasser M. S., Interfacial phenomena controlling particle morphology of composite latexes[J]. J. Appl. Polym. Sci.,1991,42 (4),1049-1063
    [121]Chao 1., Lee K. W., Morphology of latex particles formed by poly (methyl methacrylate)-seeded emulsion polymerization of styrene[J]. J. Appl. Polym. Sci.,1985,30(5), 1903-1926
    [122]方玉堂,匡胜严,张正国,高学农.纳米胶囊相变材料的制备[J].化工学报,2007,58(3),771-775.
    [123]胡传炘.隐身涂层技术[M].北京:化学工业出版社,2004,180-181.
    [124]L. T. Canham, Gaining light from silicon[J]. Nature,2000,408,411-412.
    [125]L.T.Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett.,1990,57(10),1046-1048.
    [126]U. Serincan, G, Aygun, R. Turan. Spatial distribution of light-emitting centers in Si-implanted SiO2[J]. J. Lumin.,2005,113(3-4),229-234.
    [127]M. Glover, A. Meldrum. Effect of "buffer layers" on the optical properties of silicon nanocrystal superlattices[J]. Opt. Matter.,2005,27,977-982.
    [128]A. R. Wilkinson, R. G. Elliman. Passivation of Si nanocrystals in SiO2:Atomic versus molecular hydrogen[J]. Appl. Phys. Lett.,2003,83,5512.
    [129]T Ficher, V. Petrova. Koch, K. Shcheglov, et al. Continuously tunable photoluminescence from Si+-implanted and thermally annealed SiO2 films[J]. Thin solid film,1996,276,100-103.
    [130]Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, Edwin L. Thomas,A Dielectric Omnidirectional Rebector[J], Science.1998,282,1679
    [131]A. Bruyant, G. Le'rondel, P. J. Reece and M. Gal. All-silicon omnidirectional mirrors based on one-dimensionalphotonic crystals [J]. Appl. Phys. Lett..2003,19 (82),3227-3229
    [132]D. J. Lockwood and A. G. Wang, Solid State Commun,1995,94,905.
    [133]L. X. Yi, J. Heitmann and R. Scholz, et al, Si rings, Si cluster, and Si nanocrystals-different states of ultra thin SiOx layers[J]. Appl. Phys. Lett,2002,81,4248.
    [134]Aspnes DE. Optical response of microscopically surface[J]. Phys. Rev. B.,1990,41(10), 10334-10343
    [135]吴伶芝,谢国华,吴瑞彬,张卫东.激光、红外隐身兼容涂料的前景分析[J].宇航材料工艺.2001,2,1-4
    [136]陈恩光,衣立新,王申伟,等.氢钝化对硅纳米晶发光强度的影响[J].光谱与光谱分析,2008,28(2),246-248.
    [137]周国运,高卫东,徐国定,等.多孔硅镍钝化处理的光致发光谱研究[J].光谱学与光谱分析,2001,21(4),441-442.
    [138]王娟,张长瑞,冯坚,等.纳米多孔SiO2薄膜的制备与红外光谱研究[J].光谱学与光谱分析,2005,25(7),1045-1048.
    [139]K. S. Min, K. V. Shcheglov, C. M. Yang, and Harry A. Atwater. Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2[J]. Appl. Phys. Lett., 1996,69:2033-2035.
    [140]Ovchinnikov V, Novikov S, Toivola T, Sinkkonen J. Electroluminescence from B-and P-doped silicon nanoclusters[J]. Microelectronics Journal,2005,36,502-505.
    [141]方英翠,解志强,赵有源,等.CeF3掺杂增强纳米晶Si光致发光强度的研究[J].真空科学与技术学报,2005,25(5),335-338.
    [142]林理彬,辐射固体物理学导论,四川:四川科学技术出版社,2004.
    [143]Endo M, Kenji T, Kobori K. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon,1995,33(7),873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700