用户名: 密码: 验证码:
转换波三维三分量地震勘探方法技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转换波三维三分量地震勘探方法技术经过长时间的研究和探索,21世纪以来在海上油气勘探中得到广泛推广应用,见到良好的勘探效果。近几年来,随着转换波资料采集、处理、解释技术的不断完善和发展,陆上转换波勘探技术试验和工业化生产项目呈快速上升趋势,各大石油公司都投入了大量的人力、物力开展相关研究。在全球性或地区性的学术研讨会上,关于多波多分量研究的学术论文也越来越多(如San Antonio 2007 SEG年会和Las Vegas 2008 SEG年会)。由于转换波三维三分量地震勘探能够获得比纵波勘探更加丰富的岩性、裂缝和流体信息,因而有利于复杂或隐蔽油气藏的勘探。
     为推动转换波3D3C地震勘探技术的工业化应用进程,在以下几个方面开展了系统研究并取得重要进展。
     转换波三维三分量地震资料采集技术:以P波和C波传播特性为基础,针对P波、C波同一观测系统采集,以及方位各向异性研究必须的CMP和CCP面元属性良好分布的要求,结合勘探目标和任务,建立了先进、实用的转换波三维三分量地震资料采集参数论证和观测系统设计分析方法。提出了符合目前经济技术条件、完全满足转换波处理、储层预测、裂缝检测、含气性识别等特殊要求的转换波三维三分量地震资料采集观测系统。
     转换波三维三分量地震资料处理技术:解决了转换波三维三分量资料处理的重定向、坐标旋转、去噪、静校正、地表一致性处理、速度分析、剩余静校正、叠前时间偏移处理等关键技术难题。建立了P波和C波各向同性及各向异性处理流程,能同时满足纵横波联合的储层预测、裂缝检测及含气性识别的要求。
     转换波三维三分量地震资料解释技术:解决了转换波正演模拟、P波和C波标定、时间匹配、波组特征匹配、层位对比追踪技术难题。建立了全波属性概念,形成了纵横波联合的地震资料解释工作流程。
     多波多分量储层预测技术:建立了纵横波叠前联合自动匹配反演、纵横波叠后同时联合反演、弹性波阻抗反演等关键技术,形成了纵横波联合的岩性识别、优质储层预测技术。
     多波多分量裂缝检测技术研究:建立了多层介质各向异性介质转换波3D3C正演模拟技术,完善了P波方位各向异性AVAZ、VVAZ裂缝检测技术,建立了C波方位各向异性AVAZ裂缝检测、C波横波分裂相对时差法裂缝检测、C波横波分裂层剥离法裂缝检测技术等裂缝预测新技术。
     多波多分量含气性检测技术:建立了多子波分解含气性识别、多尺度频率与吸收含气性识别、全波属性含气性识别等技术。
     多波多分量综合应用方法技术:在储层基本地质特征、岩石物理特征、测井响应特征、地震响应特征研究基础上,建立了基于全波属性的川西深层致密裂缝型气藏天然气富集带综合预测和评价方法技术。
     上述方法技术的研究与应用,为川西地区天然气增储上产提供了坚实的技术支撑,取得了良好的勘探开发效果,建议的新2井、新3井、新5、新8、新10、新11、新202、新301均获得高产工业气流,勘探开发成功率由前期的50%上升到89%左右,高产井由前期的不到17%上升到67%以上。
Considerable progress of methods and technologies of converted-wave 3D3C seismic exploration have been made since the twenty-first century after a very long period of intensive research and development, and it is now extensively applied in offshore oil and gas exploration. In recent years, along with continuously improving and developing of converted-wave 3D3C seismic data acquisition, data processing and interpretation techniques, the number of onshore land 3D3C exploration pilot and industrial projects has risen rapidly as well. Major oil and gas companies have invested a great amount of manpower and material resources in this area, and the number of academic papers on multi-component seismic is greatly increased in global and regional seminars, such as the SEG 2007 annual meeting in San Antonio and 2008 annual meeting in Las Vegas. As converted-wave 3D3C data often carries more information about fracture, lithology and fluid property than P-wave does, it is more desirable to use multi-component seismic including both the P-wave and C-wave to explore complicated or hidden oil and gas reservoirs.
     For the sake of pushing the progress of industrial application of converted-wave 3D3C seismic technology, systematic researches have been done and significant achievements have been made in many aspects as follow.
     Converted-wave 3D3C seismic data acquisition:A series of advanced and practicable 3D3C acquisition parameter design and geometry analysis method are established according to the propagation characters of converted-waves, the request of receiving P and C waves in same geometry, and the good attributes distribution of CMP and CCP bins, combining characteristic of target layer and project task. Geometry of 3D3C acquisition was proposed, which coincide with the current economic and technological conditions, and satisfies completely the particular requests of converted-wave processing, reservoir prediction, cracks detection and gas-bearing recognition, etc.
     Converted-wave 3D3C seismic data processing:Many data processing technical problems have been solved such as 3D3C seismic data reorientation, coordinate rotation, denoise, converted-wave statics correction, surface consistent processing, converted-wave velocity analysis, residual statics, pre-stack time migration, etc. then P-wave and C-wave isotropic and anisotropic data processing flow chart have been established, which can satisfy the needs of fracture detection, reservoir prediction and gas bearing recognition by joint using P-wave and C-wave simultaneously.
     Converted-wave 3D3C seismic data interpretation:A lot of multi-component interpretation problems have been solved including converted-wave forward modeling, P wave and C wave joint calibration, time registration, frequency matching and phase correction, P-wave and C-wave horizon picking, etc. the concept of full-wave attribute has been proposed and the work flow chart of multi-component data interpretation by joint using P-wave and C-wave has been established.
     Multi-component reservoir prediction: Lithology discrimination and high quality reservoir prediction techniques have been established including many key technologies like P-wave and C-wave auto-matching pre-stack joint inversion, P-wave and C-wave post-stack simultaneously joint inversion, elastic impedance inversion, etc.
     Multi-component fracture detection: Including converted-wave 3D3C seismic forward modeling of multi-layer anisotropy media, AVAZ, VVAZ crack detection techniques based on P-wave azimuthal anisotropy, and new fracture detection techniques such as AVAZ based on C-wave azimuthal anisotropy, relative delta T and layer stripping based on shear wave splitting. Multi-component gas-bearing recognition: including gas-bearing recognition using wavelet decomposition, multi-scale frequency and absorption, and full-wave attributes analysis.
     Multi-component integrated application methods: Methods and technologies of comprehensive prediction and evaluation of deep ultra-tight fractured reservoirs in Western Sichuan Basin have been established by using full-wave attributes, based on researches of reservoir geological character, petrophysics, logging response and seismic response.
     Researches and applications of the above new seismic methods and technologies have conduced to essential contribution to the growth of gas reserves and production Western Sichuan Basin. The proposed wells such as X2, X3, X5, X8, X10, X11, X202, X301, etc. already got commercial production. As a result, the successful rate of exploration and production wells rises from the early 50% to 89%, and the high-yield well rate from the previously around 17% to over 67%.
引文
[1]李健,吴智勇,曾大乾等.深层致密砂岩气藏勘探开发技术[M].北京:石油工业出版社, 2002: 4-8
    [2] Law B E. Basin-centered gas system [J]. AAPG Bulletin, 2002 ,86 (11): 1891-1919
    [3]张金川,金之钧.深盆气成藏机理及分布预测[M].北京:石油工业出版社, 2005: 5-9, 82-83
    [4] Stenphen A Holditch著,徐合献译.非常规油气藏在未来油气行业中日益增强的作用[J] .国外油田工程, 2004, 20(3): 32-35
    [5] E. H. Vidas, R. H. Hugman and P. S. Springer. Assessing Natural Gas and Oil Resources- Technical Details of Resource Allocation and Economic Analysis[M].RAND Science and Technology, 2003
    [6]王涛.中国深盆气田[M].北京:石油工业出版社, 2002: 1-6, 242-254, 279
    [7]张金亮,常向春.深盆气地质理论及应用[M].北京:地质出版社,2002: 4-22
    [8]金之钧,张一伟,王捷等.油气成藏机理与分布规律[M].北京:石油工业出版社, 2003: 247-253
    [9]汪凯明.我国非常规油气资源勘探开发前景[J].国外测井技术, 2009: 7-11
    [10]张杰,金之钧,张金川.中国非常规油气资源潜力及分布[J].当代石油石化, 2004, 12(10): 17-19
    [11]刘成林,李景明,李剑.中国天然气资源研究.西南石油学院学报, 2004, 26(1): 9-12
    [12]杨克明.川西坳陷须家河组天然气成藏模式探讨[J]石油与天然气地质, 2006, 27(6): 786-793
    [13]唐建明,杨军,张哨楠.川西坳陷中、浅层气藏储层识别技术[J].石油与天然气地质, 2006, 27(6): 879-894
    [14]曹烈,安凤山,王信.川西坳陷须家河组气藏与古构造关系[J].石油与天然气地质, 2005, 22(2): 224-229
    [15]黄中玉,孙建库,朱仕军等.多分量地震技术[M].北京:石油工业出版社, 2007
    [16]黄绪德,杨文霞.转换波地震勘探[M].北京:石油工业出版社, 2008
    [17] Crampin, S. and Lovel, J.H. A decade of shear-wave splitting in the Earth’s crust: what does it means? what use can we make of it? what should we do next? Geophysical Journal International 107, 1991,387-407.
    [18] H.H.普济廖夫等著,裘慰庭等译.横波和转换波法地震勘探.北京:石油工业出版社,1993
    [19] James Gaiser, Colin Macbeth, Simon Spitz, et all. Multicomponent technology: the players, problems,applications, and trends[J]. The Leading Edge. 2001, 20(9): 974-977
    [20]黄中玉.多分量地震勘探的机遇和挑战[J].石油物探. 2001, 40(2): 131-137
    [21] John Gibson, Roy Burnett, Shuki Ronen, et al. MEMS sensors: Some issues for consideration[J]. The Leading Edge. 2005, 24(8): 786-790
    [22] Jack Bouska, Rodney Johnston. The first 3D/4-C ocean bottom seismic surveys in the Caspian Sea: Acquisition design and processing strategy[J]. The Leading Edge. 2005, 24(9): 910-921
    [23] Dominic M., Manley, Sean F., Rowland W. et al. Structural interpretation of the deepwater Gunashli Field, facilitated by 4-C OBS seismic data[J]. The Leading Edge. 2005, 24(9): 922-926
    [24] Jianming Tang, Xiang-Yang Li. Case study of PP and PS seismic response from fractured tight gas reservoirs[C]. SEG Expanded Abstracts, SEG/San Antonio 2007 Annual Meeting, 2007, 1049-1053
    [25] Zhou Xuefeng, Zhan Shifan, Deng Zhiwen, et al. 3C/3D Seismic exploration technology and application results[C]. SEG, Expanded Abstracts, 2007, 26: 1059-1063
    [26] Louis M. Houston, James A. Rice, Drake S. et al. Method for shear-wave static corrections using converted wave refractions[J]. SEG Expanded Abstracts, 1989, 8(1): 1298-1301
    [27] Armin W. Schafer. Determination of converted-wave statics using P refractions together winth SV refraction[J]. SEG Expanded Abstracts, 1991, 10(1): 1413-1415
    [28] Peter W. Cary, David W.S. Eaton. A simple method for resolving large converted-wave (P-SV) statics[J]. Geophysics, 1993,58(3): 429-433
    [29] Slotboom. Converted wave (P-SV) moveout estimation[J]. SEG Expanded Abstracts, 1990, 9(1): 1104-1106
    [30] Arcangelo G. Sena et al. Kirchhoff migration and velocity analysis for converted and nonconverted waves in anisotropic media[J]. Geophysics, 1993,58(2): 265-276
    [31] Yaohui Zhang. Nonhyperbolic Converted Wave Velocity Analysis and Normal Moveout[J]. SEG Expanded Abstracts, 1996, 15(1): 1555-1558
    [32] Don C.Lawton, Shaowu Wang. Converted-wave (P-SV) processing and interpretation for 3-D surveys: A physical modeling example[J]. SEG Expanded Abstracts, 1994, 13(1): 1445-1448
    [33] Shaowu Wang, John C. Bancroft, Don C. Lawton. Converted-wave (P-SV) Prestack Migration and Migration Velocity Analysis[J]. SEG Expanded Abstracts, 1996, 15(1): 1575-1578
    [34] Peter W. Cary. A strategy for layer-stripping 3-D converted-wave data[J]. SEG Expanded Abstracts, 1995, 14(1): 356-359
    [35] Richard R. Van Dok, James E. Gaiser, Alexander R. Jackson et al. 3-D converted-wave processing: Wind river basin case history[J]. SEG Expanded Abstracts, 1997, 16(1): 1206-1209
    [36] James E.Gaiser, Paul J. Fowler Alexander R. Jackson, et al. Challenges for 3-D converted-wave processing[J]. SEG Expanded Abstracts, 1997, 16(1): 1199-1202
    [37] Leon Thomsen. Converted‐wave reflection seismology over anisotropic, inhomogeneous media[J]. SEG Expanded Abstracts, 1998, 17(1): 2048-2051
    [38] Richard Bale, Paul Farmer, Jan Ove Hansen, et al. Prestack depth migration of converted wave data in anisotropic media[J]. SEG Expanded Abstracts, 1998, 17(1): 1108-1111
    [39] Vladimir Grechka, Stephen Theophanis, Llya Tsvankin. Joint inversion of P- and PS-waves in orthorhombic media: Theory and a physical modeling study[J]. Geophysics, 1999,64(1): 146-161
    [40] Matthew Brzostowski, Xianhuai Zhu, Suat Altan, et al. 3-D converted-wave processing over the Valhall Field[J]. SEG Expanded Abstracts, 1999, 18(1): 695-698
    [41] Xinxiang Li, John C. Bancroft. Converted wave migration and common conversion point binning by equivalent offset[J]. SEG Expanded Abstracts, 1997, 16(1): 1587-1590
    [42] Jianxin Yuan, Xiang-Yang Li. A new approach for converted-wave moveout in transversely isotropic media[J] SEG Expanded Abstracts, 1998, 17(1): 1495-1498
    [43] Heng-chang Dai, Colin MacBeth. Converted wave phase stability in seabed seismic data[J]. SEG, Expanded Abstracts, 1999, 18(1): 884-887
    [44] Xiang-Yang Li, Hengchang Dai, Michael C.,ea tal. Compensating for the effects of gas clouds on C-wave imaging: A case study from Valhall[J]. The Leading Edge, 2001, 20(9): 1022-1028.
    [45] Hanson R.., MacLeod M., Bell C., et al. 4-C seismic data and reservoir modeling at Alba Field, North Sea[C]. SEG, Expanded Abstracts, 2000,19(1): 1453-1455.
    [46] Laura Vetri, Eugenio Loinger, James Gaiser,et al. 3D/4C Emilio: Azimuthal processing and anisotropy analysis in a fractured carbonate reservoir[J]. The Leading Edge, 2003, 22(7): 675-679.
    [47] Mark Chapman. The dynamic fluid substitution problem[J]. SEG, Expanded Abstracts, 2001,20: 1708-1781
    [48] Enru Liu, John H. Queen, Xiang Yang Li, et all. Analysis of frequency-dependent seismic anisotropy from a multicomponent VSP[C]. SEG, Expanded Abstracts, 2002,21: 101-104
    [49] Mark Chapman and Enru Liu. Frequency dependent anisotropy with a multi-scale equant porosity model[C]. SEG, Expanded Abstracts, 2002,21: 197-200
    [50] Enru Liu, Mark Chapman, Sonja Maultzsch, et al. Frequency-dependent anisotropy: effects of multi-fracture sets on shear-wave polarizations[C]. SEG, Expanded Abstracts, 2003,22: 101-104
    [51] Mark Chapman and Enru Liu. The frequency dependent azimuthal AVO response of fractured rock[C]. SEG, Expanded Abstracts, 2003,22: 105-108
    [52] Sonja Maultzsch, Enru Liu, Mark Chapman. Modeling attenuation anisotropy and its interpretation in terms of fracture properties[C]. SEG, Expanded Abstracts, 2003,22: 109-112
    [53] Enru Liu, Sonja Maultzsch, Mark Chapman. Frequency-dependent seismic anisotropy and its implication for estimating fracture size in low porosity reservoirs[J]. The Leading Edge, 2003, 22(6): 662-665
    [54] Mark Chapman and Enru Liu. Frequency dependent azimuthal amplitude variations in reflections from a fractured layer[C]. SEG, Expanded Abstracts, 2004,23: 147-150
    [55] Mark Chapman, Enru Liu, and Xiang-Yang Li. The influence of abnormally high reservoir attenuation on the AVO signature[J]. The Leading Edge, 2005, 24(11): 1120-1125
    [56] Mark Chapman and Enru Liu. Seismic attenuation in rocks saturated with multi-phase fluids[C]. SEG, Expanded Abstracts, 2006,25: 1988-1991
    [57] Zhongping Qian, Xiang-Yang Li, Mark Chapman. Effects of oil-water saturation on shear-wave splitting in multicomponent seismic data[C]. SEG, Expanded Abstracts, 2007,26: 1019-1023
    [58] Mark Chapman. Fluid-substitution theories for reservoirs with complex fracture patterns[C]. SEG, Expanded Abstracts,2007,26: 164-168
    [59] Zhongping Qian, Xiang-Yang Li, and Mark Chapman. Azimuthal variations of PP- and PS-wave attributes: A synthetic study[C]. SEG, Expanded Abstracts, 2007,26: 184-188
    [60] Enru Liu, Mark Chapman, Isabel Varela, et al. Velocity and attenuation anisotropy: Implication of seismic fracture characterizations[J]. The Leading Edge, 2007, 26(9): 1170-1174
    [61] Zhongping Qian, Mark Chapman, Xiang-Yang Li, et al. Use of multicomponent seismic data for oil-water discrimination in fractured reservoirs[J]. The Leading Edge, 2007, 26(9): 1176-1184
    [62] Tang Jianming, Zhang Shaonan, Xiang-Yang Li. PP and PS seismic response from fractured tight gas reservoirs: a case study[J]. Journal of geophysics and engineering, 2008, 5(1), 92~102.
    [63] Tianji Xu, Bing-jie Cheng, Qi-gang Gan. Research and Application of 3D Post-stack PP and PS Waves Joint Inversion[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1243, 2009
    [64] Xu Xiangrong, Tang Jianming. Optimization of Converted Wave 3D3C Seismic Acquisition Geometry for Fissured Gas Reservoir[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1246, 2009
    [65] Ye Tairan, Tang Jianming, John Tinnin. Application of Combined PP/PS Wave Inversion in the Prediction of Deep Tight Clastic Rock Reservoir in the Area of West Sichuan[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1248, 2009
    [66] Ma Zhaojun, Tang Jianming, Xu Xiangrong. Technology of Prestack Time Migration For Converted Wave and Its Applications[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1249, 2009
    [67] Cheng Bingjie, Tianji Xu, Jianming Tang. Splitting Estimation and Compensation of Converted Wave in Multilayer Fracture Media: A Numerical Modeling Study[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1249, 2009
    [68] Tessmer,G and Behle,A. Common reflection point data-stacking technique for conveted waves[J].Geophysics,1988,36, 671-688
    [69]傅旦丹,朱宏彰,何汉漪.一种确定转换点的方法及其应用[J].石油物探,2002,41(1):26-30
    [70] Crampin S. A review of wave motion in anisotropic and cracked elastic medium[J]. Wave Motion. 1981, 3: 343-391
    [71] Crampin S. Suggestion for a consistent terminology for seismic anisotropy[J]. Geophysical Prospecting. 1989,37: 753-770
    [72] Thomsen L. Weak elastic anisotropy[J]. Geophusics,1986,51:1954-1966
    [73] Tasvankin and Thomsen. Non-hyperbolic reflection move-out in anisotropic media[J]. Geophysics,1994,59:1290-1304
    [74]马昭军,唐建明. P-SV波反射系统计算方法综述[J].勘探地球物理进展, 2007,30(6):433-439
    [75] Ostrander W J . Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[J]. Geophysics,1984,49(10):1637-1648
    [76] Jilek P. Modeling and inversion of converted-wave reflection coefficients in anisotropic media: A tool for quantitative AVO analysis[D]. Ph.D. Thesis, CWP, Colorado School of mines
    [77] Gaiser J E. Compensating OBC data for variations in geophone coupling[C]. SEG Expanded Abstracts, 1998 Annual Meeting, 1998, 1429-1432
    [78] Gaiser J E. Applications for vector coordinate systems of 3-D converted-wave data[J]. The Leading Edge. 1999, 18(11): 1290-1300
    [79] Borcherdt R D. Energy an plane wave in linear viscoelastic media[J]. Geoph., Res., 1973,78:2442-2453
    [80] Mattner, Joerg Fractured reservoir characterization from collecting data to dynamic modeling[Z]: Course, GeoTech Consulting, slide (as part of presentation), 2002
    [81] James E. Gaiser. PS-wave azimuthal anisotropy: Benefits for fractured reservoir[R]. Search and Discovery Article #40120, 2004
    [82] Brown, R., and J. Korringa. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics. 1975, 40: 608–616.
    [83] Guest S, Kolk C,Potters H. The effect of fracture filling fluids on shear-wave propagation. SEG, Expanded Abstracts, 68th Annual Meeting, 1998, 948-951
    [84] Klimentos, T. and C. McCann. Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones[J]. Geophysics, 1990, 55: 998-1014.
    [85] Klimentos, T.. Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water[J]. Geophysics, 1995, 60: 447-458.
    [86] Robert Garotta, Pierre Yves Granger. Acquisition and processing of 3C×3-D data using converted waves[J]. SEG,Expanded Abstracts, 1998,17: 995-997
    [87] Robert Garotta. Sear Waves from Acquisition to Interpretation[M]. SEG, Distinguished Instructor Short Course No.3, 2000
    [88] Robert R.Stewart, James E Gaiserz, R.James Brown. Converted-wave seismic exploration: Methods[J]. Geophysics, 2002,67(5): 1348-1363
    [89] R. Garotta, P. Y. Granger. Some requirements for PS-mode acquisition[J]. The Leading Edge, 2003, 22(2): 106-112
    [90] Gijs J. O. Vermeer. Converted waves: Properties and 3D survey design[J]. SEG, Expanded Abstracts, 1999,18: 645-648
    [91] Jürgen Hoffmann. Illumination, resolution, and image quality of PP- and PS-waves for survey planning[J]. The Leading Edge, 2001, 20: 1008-1012
    [92] J. Criss, D. Cunningham, D. Epili. Near-surface issues for 3D survey design[C]. SEG, Expanded Abstracts, 2002,21: 34-36
    [93] Malcolm Lansley, Mike Laurin, and Shuki Ronen. Land 3D: Groups or single sensors? Cables or radio? Geophysical and operational considerations[C]. SEG, Expanded Abstracts, 2007, 26: 6-10
    [94]彭苏萍,霍全明,勾精为等.基于模型的3D3C采集设计与评价[J].煤田地质与勘探, 2002, 30(5): 51-54
    [95]王磊,程增庆.块状式三维三分量观测系统及其在PSD勘探区的应用[J].国土资源科技管理, 2003, 02: 59-61
    [96]刘洋,王长春.三维三分量地震勘探观测系统设计方法[J].石油地球物理勘探, 2002, 37(6): 550-555
    [97]霍全明,程增庆,彭苏萍等.一种经济高效的三维三分量观测系统设计方法[J].石油地球物理勘探, 2004, 39(5): 501-504
    [98]唐建明马昭军.宽方位三维三分量地震资料采集观测系统设计-以新场气田三维三分量勘探为例[J].石油物探, 2007, 46(3): 310-318
    [99]芦俊,王赟,孟召平等.优化P—P、P—SV波联合采集观测系统设计方法[J].地球勘探学进展, 2003, 18(4): 715-723
    [100]徐总打,孙波,唐宗璜. P-SV转换波反射系数与野外采集观测系统设计[J].石油物探, 1996, 35(1): 1-12
    [101]王磊,程增庆.块状式三维三分量观测系统及其在PSD勘探区的应用[J].国土资源科技管理, 2003, 02: 59-61
    [102] Chiou-Fen Shieh, Robert B. Herrmann. Ground roll: Rejection using polarization filters[J]. Geophysics, 1990, 55(9): 1216-1222
    [103] R. B. Herrmann, D. R. Russell. Ground roll: Rejection using adaptive phase-matched filters[J]. Geophysics, 1990, 55(6): 776-781
    [104]张建军,李占强.用极化分析法提取有效瑞雷波信号[J].矿业科学技术, 1999, (3-4): 8-13
    [105] P.Y.Galibert, L.Duval, R.Dupont. Practical aspects of 3D coherent noise filtering using (F-Kx-Ky) or Wavelet transform filters[C]. SEG, Expanded Abstracts, 2002, 21: 2241-2244
    [106] Gijs J.O. Vermeer. Processing orthogonal geometry– what is missing?[C]. SEG, Expanded Abstracts, 2005, 24: 2201-2205
    [107] Berryman J G. Long-wave elastic anisotropy in transversely isotropic media[J]. Geophysics,1979,44:896-917
    [108] Roberttson,J.D. and Levin, F.K.. Instantaneous velocities and reflection times for transversely isotropic solid[J]. Geophysics,1982,47,316-322
    [109] Byun B.S. Seismic parameters for media with elliptical velocity dependencies[J]. Geophysics,1982, 47(12): 1621-1626
    [110] Hake H, Helbig K, Mesdag C S. Three-term Taylor series for curves over layered transversely isotropic ground[J].Geophysical prospecting,1984,32:828-850
    [111] Taner M T, Koehler F. Velocity spectra digital computer derivation and applications of velocity function[J].Geophysics,1969,34(6):859-881
    [112] [42]Byun,B.S, Corrigan.D., and Gaiser,J.B. Anisotropic velocity analysis for lithology discrimination[J].Geophysics,1989,54,1564-1574
    [113] Richard.J. Castle. A theory of normal moveout[J].Geophysics,1994,59(6):983-999
    [114] Tasvankin. Normal moveout from dipping reflectors in anisotropic media[J]. Geophysics , 1995,60:268-284
    [115] Tasvankin and Thomsen. Inversion of reflection traveltimes for transverse anisotropic[J]. Geophysics,1995,60:1095-1107
    [116] Alkhalifah and Tasvankin. Velocity analysis for transversely isotropic media[J].Geophysics, 1995,60:1550-1566
    [117] Alkhalifah. Velocity analysis using nonhyperbolic moveout in transversely isotropic media[J]. Geophysics,1997,62:1839-1854
    [118] Tasvankin. P-wave signatures and notation for transversely isotropic media: an overview[J]. Geophysics,1996,61:467-483
    [119]徐常练.速度随炮检距变化分析[J].石油地球物理勘探,1998,33(6):731-741
    [120]刘洋.反射波分式展开式时距方程及其精度分析[J].石油物探,2003,42(4): 441-447
    [121]刘洋,魏修成.几种反射波时距方程比较[J].地球物理学进展,2005,20(3): 645-653
    [122]尤建军,常旭等. VTI介质长偏移距非双曲动校正公式优化[J].地球物理学报,2006,49(6):1770-1778
    [123]李录明,罗省贤.P-SV转换波速度分析及解释方法[J].石油地球物理勘探,1995,30(1):66-74
    [124]李录明,罗省贤.多波多分量地震勘探原理及数据处理方法[M].成都:成都科技大学出版社,1997
    [125]罗省贤,李录明,陈春继. VTI介质多波速度与各向异性系数求取及应用[J].物探与化探计算技术, 2005, 27(8): 214-218
    [126] Li,X-Y, Yuan,J-X. Converted-wave moveout and parameter estimation for transverse isotropy[J].61st EAGE Conference, Expanded Abstract, 1999, 4-35
    [127] Jerry Yuan, Xiang-Yang Li. Converted-wave moveout analysis in layered anisotropic media: a case study[J].EAGE 63rd Conference & Technical Exhibition, 2001,11-15
    [128] Xiang-Yang Li and JianXin Yuan. Converted-wave traveltime equations in layered anisotropic media: An overview[J].EAGE 65th Conference & Exhibition , 2003,2-5
    [129] Xiang-Yang Li, Jianxin Yuan. Converted-wave moveout and conversion-point equations in layered VTI media:theory and application[J].Journal of Applied Geophysics, 2003,54:297-318
    [130] Hengchang Dai, Xiang-Yang Li. Accuracy of a simplified moveout formula for PS converted-waves in multi-layered media[C]. SEG, Expanded Abstracts, SEG/Houston 2005 Annual Meeting, 2005, 1010-1014
    [131] Tasvankin I., Grechka V. Dip moveout of converted wave and parameter estimation in transversely isotropic media[J]. Geophysics prospect, 2000, 48: 257-292
    [132] Thomsen L. Converted-wave reflection seismology over inhomogeneous anisotropic media[J]. Geophysics,1994,64(3): 678-690
    [133] ZhangYaohui.Non-hyperbolic converted wave velocity analysis and normal moverout[J]. Expanded Abstracts,1996,1555-1558
    [134] Xiang-Yang Li, Hengchang Dai. Converted-wave imaging in anisotropic media: An overview[C] SEG, Expanded Abstracts, SEG/Denver 2004 Annual Meeting, 2004, 881-884
    [135] Jerry Yuan and Xiang-Yang. Anisotropic parameter estimation from conversion point offsets[J]. Expanded Abstract, 64th EAGE Conference, 2002,253-257
    [136] Hengchang Dai, XiangYang Li. A practical approach to update the migration velocity model for PS converted waves[J]. SEG Int’1 Exposition and 72th Annual Meeting,2002,2297~2300.
    [137] Hengchang Dai,XiangYang Li. Migration velocity analysis of C-wave using INMO-CIP gather of PKTM:A case study from the Gulf of Mexico[J]. Computers and Geosciences,2003,31(7):891~899
    [138] Fabio Macini, Xiang-Yang Li, Hengchang Dai. Imaging Lomond Field using C-wave anisotropic PSTM[J]. The Leading Edge. 2005, 24(6): 614-620
    [139] Hengchang Dai, Xiang-Yang Li. The effects of migration velocity errors on traveltime accuracy in prestack Kirchhoff time migration and the image of PS converted waves[J]. Geophysics, 2006,71(2): S73-S83
    [140] Hengchang Dai, Xiang-Yang Li. Effect of errors in the migration velocity model of PS-converted waves on traveltime accuracy in prestack Kirchhoff time migration in weak anisotropic media[J]. Geophysics, 2008,73(5): S195-S205
    [141] Hengchang Dai, Xiang-Yang Li. A practical approach to compensate for diodic effects of PS converted waves[C]. SEG, Expanded Abstracts, SEG/Las Vegas 2008 Annual Meeting, 2008, 3053-3057
    [142] Li X Y, Bancroft J C. Converted wave migration and common conversion point binning by equivalent offset[J]. 67th SEG Annual Meeting 1997,Expand Abstract,1587-1590
    [143] Bancroft J C, Geiger H D, Margrave G F. The equivalent offset method of prestack time migration[J], Geophysics,1998,63(6):2042-2053
    [144] Shaowu Wang,Bancroft J C,Lawton DC. Converted-wave prestack migration and migration velocity analysis[J],67th SEG Annual Meeting 1997,Expanded Abstracts,1575-1578
    [145] Li X Y, Dai H C.Converted wave imaging in inhomogeneous, anisotropic media:PartⅡprestack migration[J]. Expanded Abstracts of EAGE 63rd Annual Conference,2001,11~15
    [146] Chuanwen Sun, Ruben D.Martinez. 3D Kirchhoff PS-wave prestack time migration for V(z) and VTI media[J].SEG International Exposition and Seventy-Third Annual Meeting,2003,957~960.
    [147] AbdulFattah Al-Dajani and llya Tsvankin. Nonhyperbolic reflection moveout for horizontal transverse isotropy[J]. Geophysics,1998,63(5):1738-1753
    [148] Vladimir Grechka and llya Tsvankin. Feasibility of nonhyperbolic moveout inversion in transversely isotropic media[J]. Geophysics,1998,63(3):957-969
    [149] Jianxin Jerry Yuan, Genmeng Chen, Alex Calvert, et al. Estimating effective gamma from C-wave conversion point offsets[C]. SEG Expanded Abstracts, SEG/San Antonio 2007 Annual Meeting, 2007, 1054-1058
    [150]邓继新,王尚旭等.砂岩储层地震属性参数对孑L隙流体的敏感性评价[J].石油学报, 2006,, 27(6):55-59
    [151]陈建江,印兴耀,张广智.层状介质AVO叠前反演[J].石油地球物理勘探,2006,41(6)656~662
    [152]马劲风,许升辉,王桂水,高乐.地震道反演面临的问题与进展[J].石油与天然气地质,2002,23(4):321~325
    [153]黄中玉,赵金州.纵波和转换波AVO联合反演技术[J].石油物探,2004,43(4):319~322
    [154] ]陈天胜,刘洋,魏修成.纵波和转换波联合AVO反演方法研究[J].中国石油大学学报(自然科学版),2006,30(1):33~37
    [155]王明春,李录明,罗省贤. TI介质多波AVA联合反演岩性参数方法及应用[J].天然气工业,2007,27(4):49~52
    [156]李录明,罗省贤.多波资料处理及解释方法的研究进展[J].石油地球物理勘探,2006,41(6):663~671
    [157]苑书金,叠前地震反演技术的进展及其在岩性油气藏勘探中的应用[J].地球物理学进展,2007,22(3):879~884
    [158]李正文,许多.油气储集层AVO非线性反演方法及应用研究[J].石油物探,2002,41(1):23~25
    [159]马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报,2003,46(1)118~127
    [160]甘利灯,赵邦六,杜文辉,李凌高.弹性阻抗在岩性与流体预测中的潜力分析[J].石油物探,2005,44(5):504~508
    [161] Jan L Fatti, George C. Smith, et all. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geohpysics, 1994,59(9):1362-1376
    [162] Aki, K., and Richards P G. Quantitative seismology[M] : W. H. Freeman and Co. , 1980
    [163] Smith G C., Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987,35:993-1014
    [164] J A. Larsen, Gary F. et all. AVO analysis by simultaneous P-P and P-S weighted stacking applied to 3C-3D seismic data[C]. SEG, Expanded Abstracts, 1999 Annual Meeting, 1999,
    [165] P M. Gidlow, G C. Smith, et all. AVO analysis in gold exploration: A South African case study[C]. SEG, Expanded Abstracts, 1992 Annual Meeting, 1992, 856-859
    [166] Faranak Mahmoudian, Gary F. et all. Three parameter AVO inversion with PP and PS data using offset binning[C]. SEG, Expanded Abstracts, Denver, Colorado, 74th Annual Meeting, 2004, 240-243
    [167] Bill Goodway, Taiwen Chen, et all. Improved AVO fluid detection and lithology discrimination using Lamépetrophysical parameters; "λρ","μρ"&“λ/μfluid stack", from P and S inversions[C]. SEG, Expanded Abstracts, Annual Meeting, 1997, 183-186
    [168] Connolly P.Elastic impedance[J].The Leading Edge,1999,18(4):438~45
    [169] David N. Whitcombe. Elastic impedance normalization[J]. Geophysics, 2002, 67(1):60-62
    [170] David N. Whitcombe, Patrick A. Connolly. Extended elastic impedance for fluid and lithology prediction[J]. Geophysics, 2002, 67(1):63-67
    [171]彭真明,李亚林等.叠前弹性阻抗在储层气水识别中的应用[J].天然气工业,2007,27(4):P43~45
    [172] Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal Royal Astronaut Society, 1981,64 : 133-150
    [173] Hudson J A. A higher-order approximation to wave propagation constans for a cracked solid[J]. Geophysical Journal Royal Astronaut Society,1986,87:265-274
    [174] Hudson, J.A., Liu, E. and Crampin, S. The mechanical properties of materials with interconnected cracks and pores[J]. Geophysical Journal International, 1996, 124: 105-112.
    [175] Pointer, T., Liu, E. and Hudson, J.A. Seismic wave propagation in cracked porous media[J]. Geophysical Journal International, 2000, 142:199-231
    [176] Hudson, J.A. and Crampin, S. Comment on:‘The 3D shear experiment over the Natih field in Oman: The effect of fracture-filling fluids on shear propagation by C.M. van der Kolk, W.S. Guest and J.H.H.M. Potters.[J] Geophysical prospecting, .2003, 51: 365-368
    [177] Thomsen, L. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophysical prospecting, 43, 805-829
    [178] Mark Chapman. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy[J]. Geophysics, 2009, 76(6):D97-D103
    [179] Norman L. Haskell, Mike S. Bahorich, et all. 3-D seismic coherency and the imaging of sedimentological features[C]. SEG, Expanded Abstracts, 1995 Annual Meeting, 1995, 1532-1534
    [180]唐建明. P波方位各向异性裂缝检测技术及应用[硕士学位论文].成都,成都理工大学,2004
    [181] Gray, F.D. Roberts, G., Head, K.J., Recent advances in determination of fracture strike and crack density from P-wave seismic data[J].The Leading Edge,2002,21(3),280-285.
    [182] Gray, F.D., Head, K.J., Chamberlain, C.K., Olson, G., Sinclair, J. and Besler, C., Using 3D Seismic to Identify Spatially Variant Fracture Orientation in the Manderson Field, SPE Paper 55636; 1999 Canadian SEG meeting abstracts, 59-63; AAPG Explorer, 20, 9.
    [183] Gray, F.D., Head, K.J., Fracture detection in Manderson Field: A 3-D AVAZ case history[J]. The Leading Edge,2000,19(11),1214-1221.
    [184] Xiang-Yang Li. Fracture detection using P-P and P-S waves in multicomponent sea-floor data[C]. SEG, Expanded Abstracts, 1998 Annual Meeting, 1998, 2056-2059
    [185] Xiang-Yang Li and Stuart Crampin. Linear-transform techniques for processing shear-wave anisotropy in four-component seismic data[J]. Geophysics, 1993, 58(2):240-256
    [186] Tang Jianming, John Tinnin, James Hallin. Application of converted-wave 3D/3C data for fracture detection in a deep tight-gas reservoir[J]. The Leading Edge, 2009, 28(7), 826~837.
    [187] Tang Jianming, Xu Xiangrong, Li Xiangui. 3D3C Application in Prediction of Fractures of Deep-seated Tight Reservoir:An Example of Gas Exploration in Member 2 of Upper Triassic Xujiahe Formation, Xinchang Gas Field[C]. CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1244
    [188] George Mitrofanov, Zhan Zhitian and Cai Jiaming. Using of the Proni Transform in Processing of Chinese Seismic Data[C]. SEG, Expanded Abstracts, 1998 Annual Meeting, 1998, 1157-1160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700