用户名: 密码: 验证码:
厌氧条件下纳米铁还原水中六价铀的反应动力学和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类对铀矿的开采和提炼,以及铀在核武器和核能源方面的广泛应用,造成了环境中大规模的铀污染,这使得了解铀在环境介质中的迁移转化过程十分必要。在自然环境中,铀可以以多种价态存在,包括零价、三价、四价、五价和六价。其中六价铀易溶于水,易于在水环境中传输并且容易被生物吸收;而四价铀难溶于水,通常以二氧化铀固体的形式存在,因此其在水环境中的活动性有限。由于水环境中铀的活动性在很大程度上取决于其化学价态,因此以还原六价铀为基础的修复技术被提出来治理地下水中的铀污染。近几年来,纳米铁作为新一代环境修复材料,已广泛应用于环境中有机污染物(如三氯乙烯和多氯联苯)的修复研究中;然而有关纳米铁还原固定水中铀的研究很少见报道。在本论文中,笔者详细研究了厌氧条件下纳米铁还原水中铀的反应动力学特征和反应机理。
     本研究采用理论模拟和实验监测相结合的研究思路,利用批式实验和光谱分析的方法,系统研究了纳米铁去除和还原水中铀的主要影响因素,探讨了二价铁和三价铁在反应体系中的作用,研究了温度对反应的影响,利用X射线光电子能谱法鉴定了反应产物并研究了其可氧化性,最后比较了实验合成纳米铁和两种商业纳米铁的应用效果。通过对不同水化学条件下反应动力学数据的模拟和反应热力学参数的理论计算,对纳米铁还原固定水中的六价铀的反应机理进行了探讨。
     本论文共分六章:
     第一章简要介绍了问题的来源,研究的目的和意义,研究任务,以及论文的组织结构。
     第二章共分三节:第一节介绍了铀的水环境地球化学特征,包括铀在水中存在的化学形态,水中铀的吸附,以及铀的化学还原和生物还原;第二节总结了纳米铁的特征和性质,然后回顾了其在环境修复中的应用,包括修复有机污染物和有毒重金属及放射性核素两个方面;第三节介绍了零价铁和铀反应的研究现状。
     第三章详细研究了不同水化学条件下实验合成纳米铁去除和还原水中铀的反应动力学特征和反应机理。实验结果表明纳米铁能够快速去除水中的铀,水中铀的去除由吸附和还原所引起。研究证实铀的去除和还原速率随着pH值的升高而降低,水中的碳酸根和钙离子对纳米铁去除和还原水中铀具有明显的抑制作用,因为它们能与六价铀形成非常稳定的络合物。和其它还原剂(如普通铁粉、硫化氢、硫化铁和还原细菌)相比,纳米铁去除和还原水中铀的效果最好,并且水中碳酸根和钙离子的抑制作用相对较小。利用Scientist软件进行的反应动力学模拟结果表明,纳米铁还原水中铀分两步完成,即水中铀首先吸附到纳米铁的表面,随后六价铀被还原为四价。其反应过程如下:
     第一步:(?)(吸附和解吸反应)
     第二步(?)(还原反应)此外,X射线光电子能谱的实验结果(见第五章)也证实铀被还原为四价。
     第四章采用螯合法研究了二价铁和三价铁在反应体系中的作用。两种铁的络合剂即1,10-邻菲罗琳(1,10-phenanthroline)和三乙醇胺(triethanolamine)分别用来络合反应体系中的二价铁和三价铁,实验表明当体系中的二价铁和三价铁被络合时,纳米铁还原水中的铀的反应速率明显降低,这表明反应体系中的二价铁和三价铁对还原水中的铀具有促进作用。此外,实验还证实吸附在纳米铁表面的二价铁能够快速还原水中的铀。根据实验的监测结果和固体-水界面化学理论,二价铁和三价铁在反应体系中的作用可以用下面的反应式表示:≡UO22++Fe→UO2+Fe2+ (3)≡UO22++2≡Fe2+→UO2+2Fe3+ (4) Fe3++Fe→2≡Fe2+ (5)首先吸附在纳米铁表面的铀将零价纳米铁氧化成二价铁(反应3),纳米铁表面的二价铁随后和铀反应生成三价铁(反应4),生成的三价铁和零价纳米铁反应生成二价铁(反应5),生成的二价铁再和铀反应生成三价铁(反应4),最后形成一个循环的氧化还原反应过程。
     第五章研究了铀的还原产物及其可氧化性,监测了温度对反应的影响,还比较了实验合成和两种商业纳米铁的应用效果。X射线光电子能谱的实验结果表明六价铀已经被还原为四价,而零价纳米铁则被氧化为复杂的含二价和三价铁的(含水)氧化物,空气氧化实验表明厌氧条件下被纳米铁还原的铀可以被空气中的氧所氧化,但氧化速率要明显低于其还原速率;实验结果证实铀的去除和还原速率随着温度的升高而加快,并且水中碳酸根离子的存在,能加大温度对反应的影响,通过阿雷利乌斯公式和艾琳公式所计算出的反应的活化能(activation energy)、活化焓(enthalpy of activation)和活化熵(entropy of activation)的结果表明整个过程受表面反应控制而不是受扩散控制;三种纳米铁的对比实验研究表明,实验合成和经过表面钝化处理的纳米铁均能很好的去除和还原水中的铀,而镀碳的纳米铁的去除和还原铀的效果则相对较差。
     第六章总结了前面的研究结果,并对今后进一步的研究方向进行了展望。
     通过本论文的研究,主要获得了以下几个方面的成果:
     1、纳米铁在厌氧条件下能够很快去除水中的铀,水中铀的去除由吸附和还原所引起,其反应过程是水中铀先吸附到纳米铁表面,随后被还原为四价铀;
     2、水中的铀的去除和还原速率随着pH值的升高,碳酸根和钙离子浓度的增加而减慢,但与其它还原剂相比,这些抑制作用相对较弱;
     3、二价和三价铁在纳米铁还原六价铀的过程中扮演着重要的角色,它们与零价铁一起形成一个氧化还原反应循环使得铀从六价还原为四价;
     4、水温的升高能够加快纳米铁去除和还原水中的铀,并且水中碳酸根离子的存在加大了温度对反应的影响,相关的热力学参数表明整个过程受表面反应控制;
     5、表面钝化技术既能保证纳米铁的环境稳定性,又不影响其使用效果;而表面镀碳技术则明显影响纳米铁的应用效果。
     这些成果均表明纳米铁具有修复地下水中铀污染的潜力,但由于目前的研究尚处于实验室探索阶段,如需将其应用于野外修复实践中,还需进一步多角度多手段来研究纳米铁和铀的反应过程。
The extraction and processing of uranium for use in the nuclear weapons and in commercial nuclear energy production have led to extensive uranium contamination in the environment. This makes it imperative to understand the processes that affect the environmental mobility of uranium. The hexavalent oxidation state of uranium is mobile, and thus mostly susceptible to environmental transport and biological uptake. On the other hand, the reduced state uranium as U(IV) is sparely soluble, and hence its mobility, is limited. Since the mobility of uranium is largely determined by its valence, reduction-based technologies have been proposed to remediate the uranium contamination in the subsurface. Recently, nanoscale zerovalent iron (nano Fe0) particles have been proposed as a new generation of materials for environmental remediation. The material has been widely studied for the cleanup of organic contaminants such as TCE and PCBs. However, the potential application of nano Fe0 for uranium immobilization in the aquatic environment has not been well studied. The research described in this dissertation seeks to examine the kinetics and mechanism of the reactions between U(Ⅵ) and nano Fe0 in the subsurface setting.
     The aqueous environmental geochemistry of uranium and the application of nano Fe0 for site remediation are briefly reviewed in Chapter 2.The research presented in Chapters 3 through 5 monitors the reaction kinetics between U(Ⅵ) and nano Fe0, investigates the roles of Fe(Ⅱ) and Fe(Ⅲ) in the U(Ⅵ) reduction reactions, examines the temperature effect, identifies the reaction products, evaluates the extent of U(Ⅳ) reoxidation, proposes the reaction scheme, and compares the efficiencies of three types of nano Fe0 on U(Ⅵ) removal and reduction. The research presented in this thesis collectively used several approaches including batch reactions, kinetics modeling and spectroscopic technique to investigate the interaction between nano Fe0 and uranium contaminant under anoxic conditions in order to identify the controlling factors and reaction pathways in the contaminated subsurface.
     The results of this research reveal that bicarbonate and Ca have notable impacts on uranium removal and reduction through formation of binary uranyl-carbonato complexes and ternary uranyl-calcium-carbonato complexes, which stabilized U(VI) in aqueous phase and decreased both the rates of U(VI) removal and reduction. The observed variability of reaction rate constants in the presence of Fe(II)/Fe(III) complexing agents also indicate the roles of Fe(II) and Fe(III) in U(VI) reduction. Fe0, Fe(Ⅱ) and Fe(Ⅲ) can mediate electron cycling and thus catalyze the redox process. The XPS analysis confirms U(Ⅵ) is reduced to U(Ⅳ) by nano Fe0 under anoxic conditions, while the reduced U(Ⅳ) can be reoxidized by air. In addition, the temperature and iron types also affect the rates of U(Ⅵ) removal and reduction by nano Fe0 under anoxic conditions. This research clearly demonstrates that the reductive immobilization of U(Ⅵ) by nano Fe0 in the groundwater is closely linked to geochemical conditions controlling uranium speciation as well as the anaerobic/aerobic conditions and iron types.
     In summary, the research presented in this dissertation evaluated and quantified the impacts of major controlling factors such as solution chemical components, temperature and iron types on uranium immobilization by nano Fe0. The study advanced our knowledge to use nano Fe0 for the remediation of uranium contamination in the complex subsurface environment.
引文
[1]Riley, R G; Zachara, J M; Wobber, F J.Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research DOE/ER-0547T.DOE Office of Energy Research Report,1992;
    [2]Giammar, D. Geochemistry of uranium at mineral-water interfaces:rates of sorption-desorption and dissolution-precipitation reactions. Ph. D Dissertation, Pasadena:California Insititute of Technology,2001.
    [3]EPA, U S, Final Rule for (Non-Radon) Radionuclides in Drinking Water. In United States Environmental Protection Agency, Office of Ground Water and Drinking Water:2000; pp 1-6.
    [4]Wall, J D; Krumholz, L R.Uranium Reduction. Annual Review of Microbiology,2006,60(1):149-166;
    [5]Stewart, B D. The dominating influence of calcium on the biogeochemical fate of uranium. Ph. D Dissertation, Palo Alto:Stanford University,2008.
    [6]Li, X. Remediation of uranium mining-related contamination.Beijing, China: China Environmental Science Press,1996.
    [7]Wong, C T O, Howard S.; Milea, Alexis M.; Perera, S. Kusum; Baumann, Frank J.Isotopic Uranium Activity Ratios in California Groundwater.Journal American Water Works Association,1999,91(4):171-185;
    [8]Duff, M C; Amrhein, C.Uranium(Ⅵ) Adsorption on Goethite and Soil in Carbonate Solutions. Soil Science Society of America Journal,1996,60(5):1393-1400;
    [9]Langmuir, D. Aqueous environmental geochemistry.Upper Saddle River, New Jersey:Prentice Hall,1997.495-508;
    [10]Choppin, G.Actinide speciation in the environment. Journal of Radioanalytical and Nuclear Chemistry,2007,273(3):695-703;
    [11]Clark, D L; Hobart, D E; Neu, M P.Actinide Carbonte Complexes and Their Importance in Actinide Environmental Chemistry. Chemical Reviews,1995, 95(1):25-48;
    [12]Cantrell, K J; Kaplan, D I; Wietsma, T W.Zero-valent iron for the in situ remediation of selected metals in groundwater.Journal of Hazardous Materials,1995,42(2):201-212;
    [13]Zhang, W.Nanoscale Iron Particles for Environmental Remediation:An Overview.Journal of Nanoparticle Research,2003,5(3):323-332;
    [14]Wilkin, R T; Puls, R W; Sewell, G W.Long-Term Performance of Permeable Reactive Barriers Using Zero-Valent Iron:Geochemical and Microbiological Effects.Ground Water,2003,41(4):493-503;
    [15]Wu, W-M; Carley, J; Fienen, M, et al.Pilot-Scale in Situ Bioremediation of Uranium in a Highly Contaminated Aquifer.1. Conditioning of a Treatment Zone. Environmental Science & Technology,2006,40(12):3978-3985;
    [16]Wu, W; Carley, J; Gentry, T, et al.Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer.2. Reduction of U (Ⅵ) and Geochemical Control of U (Ⅵ) Bioavailability.Environmental Science & Technology,2006,40(12):3986-3995;
    [17]Christian Kunze, F G, Andre Gerth, Gunter Kiessig, Annett Kuchler, Long-term Stability and Resilience of Passive Mine Water Treatment Facilities: A Joint Experimental and Simulation Approach In Uranium in the aquatic environment, International Conference of Uranium Mining and Hydrogeology Ⅲ and the International Mining Water Association Symposium, Broder J. Merkel, B P-F, Christian Wolkersdorfer, Ed. Springer-Verlag:Freiburg, Germany,2002; pp 601-608.
    [18]Lovley, D R; Phillips, E J P; Gorby, Y A, et al.Microbial reduction of uranium.Nature,1991,350(6317):413-416;
    [19]Gorby, Y A; Lovley, D R.Enzymic uranium precipitation. Environmental Science & Technology,1992,26(1):205-207;
    [20]Lovley, D R; Phillips, E J P.Bioremediation of uranium contamination with enzymatic uranium reduction.Environmental Science & Technology,1992, 26(11):2228-2234;
    [21]Gu, B; Liang, L; Dickey, M J, et al.Reductive precipitation of uranium (Ⅵ) by zero-valent iron.Environmental Science & Technology,1998,32(21):3366-3373;
    [22]Fiedor, J N; Bostick, W D; Jarabek, R J, et al.Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy.Environmental Science & Technology,1998,32 (10): 1466-1473;
    [23]Liger, E; Charlet, L; Van Cappellen, P.Surface catalysis of uranium(Ⅵ) reduction by iron(II).Geochimica et Cosmochimica Acta,1999,63(19-20):2939-2955;
    [24]O'Loughlin, E J; Kelly, S D; Cook, R E, et al.Reduction of Uranium (Ⅵ) by Mixed Iron (Ⅱ)/Iron (Ⅲ) Hydroxide (Green Rust):Formation of UO2 Nanoparticles. Environmental Science & Technology,2003,37(4):721-727;
    [25]Hua, B; Xu, H; Terry, J, et al.Kinetics of Uranium(Ⅵ) Reduction by Hydrogen Sulfide in Anoxic Aqueous Systems. Environmental Science & Technology,2006,40(15):4666-4671;
    [26]Hua, B; Deng, B.Reductive Immobilization of Uranium(Ⅵ) by Amorphous Iron Sulfide. Environmental Science & Technology,2008,42(23):8703-8708;
    [27]Riba,O; Scott, T B; Vala Ragnarsdottir, K, et al.Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles.Geochimica et Cosmochimica Acta,2008,72(16):4047-4057;
    [28]Missana, T; Maffiotte, C; Garcia-Gutierrez, M.Surface reactions kinetics between nanocrystalline magnetite and uranyl.Journal of Colloid and Interface Science,2003,261(1):154-160;
    [29]Nevin, K P; Lovley, D R.Potential for nonenzymatic reduction of Fe (Ⅲ) via electron shuttling in subsurface sediments.Environmental Science & Technology,2000,34(12):2472-2478;
    [30]Istok, J D; Senko, J M; Krumholz, L R, et al.In Situ Bioreduction of Technetium and Uranium in a Nitrate-Contaminated Aquifer.Environmental Science & Technology,2004,38(2):468-475;
    [31]Gascoyne, M. Geochemistry of the actinides and their daughters.In:Uranium-series Disequilibrium:Applications to earth, marine and environmental science (e.d. M. Ivanovich and R. S. Harmon).Claredon Press,1992.34-61;
    [32]Guillaumount, R; Fanghanet, T; Neck, V, et al. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium.Amsterdam:Elsevier B.V., Amsterdam, The Netherlands,2003.
    [33]NIST. Critically Selected Stability Constants of Metal Complexes Database, Version 6.0 for Windows.US Department of Commerce, Gaithersburg, MD 20899,2001.
    [34]Bernhard, G; Geipel, G; Brendler, V, et al.Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy(TRLFS). Radiochimica Acta,1996,74:87-91;
    [35]Bernhard, G; Geipel, G; Reich, T, et al.Uranyl(Ⅵ) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq) species. Radiochimica Acta,2001,89: 511-518;
    [36]Kalmykov, S N; Choppin, G R.Mixed Ca2+/UO22+/CO32- complex formation at different ionic strengths. Radiochimica Acta,2000,88:603-606;
    [37]Dong, W; Ball, W P; Liu, C, et al.Influence of Calcite and Dissolved Calcium on U(Ⅵ) Sorption to a Hanford Subsurface Sediment. Environmental Science & Technology,2005,39:7949-7955;
    [38]McKinley, J P; Zachara, J M; Smith, S C, et al.The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(Ⅵ) to montmorillonite. Clays and Clay Minerals,1995,43(5):586-598;
    [39]Pabalan, R T; Turner, D R.Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study. Aquatic Geochemistry, 1997,2:203-226;
    [40]Turner, G D; Zachara, J M; McKinley, J P, et al.Surface-charge properties and UO22+ adsorption of a subsurface smectite. Geochim Cosmochim Acta,1996,60 (18):3399-3414;
    [41]Bargar, J R; Reimeyer, R; Davis, J A.Spectroscopic confirmation of uranium(Ⅵ)-carbonato adsorption complexes on hematite. Environmental Science & Technology,1999,33:2481-2484;
    [42]Villalobos, M; Trotz, M A; Leckie, J O.Surface Complexation Modeling of Carbonate Effects on the Adsorption of Cr(Ⅳ), Pb(Ⅱ), and U(Ⅵ) on Goethite. Environmental Science & Technology,2001,35:3849-3856;
    [43]Payne, T E; Lumpkin, G R; Waite, T D.Uranium(Ⅵ) adsorption on model minerals:controlling factors and surface complexation modeling.In:Jenne, E A.Adsorption of Metals by Geomedia:Variables, Mechanisms and Model Applications.San Diego, CA:Academic Press,1998.75-97;
    [44]Wazne, M; Korfiatis, G; Meng, X.Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environmental Science & Technology, 2003,37:3619-3624;
    [45]Greathouse, J A; O'Brien, R J; Demis, G, et al.Molecular dynamics study of aqueous uranyl interactions with quartz (010). Journal of Physical Chemistry B, 2002,106:1646-1655;
    [46]Prikryl, J D; Jain, A; Turner, D R, et al.Uranium(Ⅵ) sorption behavior on silicate mineral mixtures. Journal of Contaminant Hydrology,2001,47:241-253;
    [47]Chang, H-S; Korshin, G V; Wang, Z, et al.Adsorption of uranyl on gibbsite:A time-resolved laser-induced fluorescence spectroscopy study. Environmental Science & Technology,2006,40:1244-1249;
    [48]Carroll, S A; Bruno, J; Petit, J, et al.Interactions of U(Ⅵ), Nd, and Th(Ⅳ) at the calcite-solution interface. Radiochimica Acta,1992,58/59:245-252;
    [49]Reeder, R J; Nugent, M; Lamble, G M, et al.Uranyl incorporation into calcite and aragonite. Environmental Science & Technology,2000,34:638-644;
    [50]Reeder, R J; Nugent, M; Tait, C D, et al.Coprecipitation of uranium(Ⅵ) with calcite:XAFS, micro-XAS, and luminescence characterization. Geochimica et Cosmochimica Acta,2001,65:3491-3503;
    [51]Savenko, A V.Sorption of UO22+ on calcium carbonate.Radiochemistry,2001, 43:174-177;
    [52]Rihs, S; Sturchio, N C; Orlandini, K, et al.Interaction of uranyl with calcite in the presence of EDTA. Environmental Science & Technology,2004,38: 5078-5086;
    [53]Elzinga, E J; Tait, C D; Reeder, R J, et al.Spectroscopic investigation of U(Ⅵ) sorption at the calcite-water interface. Geochimica et Cosmochimica Acta, 2004,68:2437-2448;
    [54]Korzeb, S L; Foord, E E; Lichte, F E.The Chemical Evolution and Paragenesis of Uranium Minerals from the Ruggles and Palermo Granitic Pegmatites, New Hampshire.The Canadian Mineralogist,1997,35:135-144;
    [55]Finch, R J; Ewing, R C.The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials,1992,190:133-156;
    [56]Finch, R; Murakami, T.Systematics and Paragenesis of Uranium Minerals. In:Burns, P C; Finch, R.Uranium:Mineralogy, Geochemistry, and the Environment 1999.91-179;
    [57]Buck, E C; Brown, N R; Dietz, N L.Contaminant uranium phases and leaching at the Fernald site in Ohio. Environmental Science & Technology, 1996,30(1):81-88;
    [58]Morris, D E; Allen, P G; Berg, J M, et al.Speciation of Uranium in Fernald Soils by Molecular Spectroscopic Methods:Characterization of Untreated Soils. Environmental Science & Technology,1996,30(7):2322-2331;
    [59]McKinley, J P; Zachara, J M; Liu, C, et al.Microscale Controls on the Fate of Contaminant Uranium in the Vadose Zone, Hanford Site, Washington. Geochimica et Cosmochimica Acta,2006,70:1873-1887;
    [60]Murphy, W M; Shock, E L.Environmental aqueous geochemistry of actinides.Reviews in Mineralogy and Geochemistry,1999,38(1):221-253;
    [61]Hua, B; Deng, B.Reductive Immobilization of Uranium(Ⅵ) by Amorphous Iron Sulfide.Environmental Science & Technology,2008,42(23):8703-8708;
    [62]Wersin, P; Hochella, M F; Persson, P, et al.Interaction between aqueous uranium (Ⅵ) and sulfide minerals:Spectroscopic evidence for sorption and reduction.Geochimica et Cosmochimica Acta,1994,58:2829-2829;
    [63]Charlet, L; Silvester, E; Liger, E.N-compound reduction and actinide immobilisation in surficial fluids by Fe(Ⅱ):the surface Fe(Ⅲ)OFe(Ⅱ)OH degrees species, as major reductant.Chemical Geology,1998,151(1-4):85-93;
    [64]Jeon, B H; Dempsey, B A; Burgos, W D, et al.Chemical reduction of U(Ⅵ) by Fe(Ⅱ) at the solid-water interface using natural and synthetic Fe(Ⅲ) oxides. Environmental Science & Technology,2005,39(15):5642-5649;
    [65]Lovley, D; Roden, E; Phillips, E, et al.Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology,1993,113(1-2):41-53;
    [66]Reeder, R J; Schoonen, M A A; Lanzirotti, A.Metal Speciation and Its Role in Bioaccessibility and Bioavailability. Reviews in Mineralogy and Geochemistry, 2006,64(1):59-113;
    [67]Templeton, D; Ariese, F; Cornelis, R, et al.Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure and Applied Chemistry,2000,72(8):1453-1470;
    [68]Todorov, P; Ilieva, E. Contamination with uranium from natural and antropological sources. Romanian Journal of Physics,2004,51:27-34;
    [69]Choppin, G.Actinide speciation in the environment. Journal of Radioanalytical and Nuclear Chemistry,2007,273(3):695-703;
    [70]Wang, Z; Zachara, J M; Yantansee, W, et al.Cryogenic laser induced fluorescence characterization of U (Ⅵ) in Hanford vadose zone pore waters. Environmental Science & Technology,2004,38:5591-5597;
    [71]De Jong, W A; Apra, E; Windus, T L, et al.Complexation of the carbonate, nitrate, and acetate anions with the uranyl dication:Density functional studies with relativistic effective core potentials.Journal of Physical Chemistry A,2005,109(50):11568-11577;
    [72]Dong, W; Brooks, S C.Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environmental Science & Technology,2006,40 (15):4689-4695;
    [73]Kelly, S D; Kemner, K M; Brooks, S C.X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations. Geochimica et Cosmochimica Acta,2007,71(4):821-834;
    [74]Moyes, L N; Parkman, R H; Charnock, J M, et al.Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite:An X-ray absorption spectroscopy study.Environmental Science & Technology,2000,34(6):1062-1068;
    [75]Walter, M; Arnold, T; Reich, T, et al.Sorption of uranium(Ⅵ) onto ferric oxides in sulfate-rich acid waters.Environmental Science & Technology, 2003,37(13): 2898-2904;
    [76]Jang, J H; Dempsey, B A; Burgos, W D.A model-based evaluation of sorptive reactivities of hydrous ferric oxide and hematite for U(Ⅵ).Environmental Science & Technology,2007,41(12):4305-4310;
    [77]Lesher, E K; Ranville, J F; Honeyman, B D.Analysis of pH Dependent Uranium(Ⅵ) Sorption to Nanoparticulate Hematite by Flow Field-Flow Fractionation-Inductively Coupled Plasma Mass Spectrometry.Environmental Science & Technology,2009,43(14):5403-5409;
    [78]Katsoyiannis, I A; Althoff, H W; Bartel, H, et al.The effect of groundwater composition on uranium(Ⅵ) sorption onto bacteriogenic iron oxides.Water Research,2006,40(19):3646-3652;
    [79]Katsoyiannis, I A.Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides:Kinetic and equilibrium studies.Journal of Hazardous Materials,2007,139(1):31-37;
    [80]Reich, T; Moll, H; Arnold, T, et al.An EXAFS study of uranium(Ⅵ) sorption onto silica gel and ferrihydrite.Journal of Electron Spectroscopy and Related Phenomena,1998,96(1-3):237-243;
    [81]Wazne, M; Korfiatis, G P; Meng, X G.Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environmental Science & Technology,2003, 37(16):3619-3624;
    [82]Rossberg, A; Ulrich, K U; Weiss, S, et al.Identification of Uranyl Surface Complexes on Ferrihydrite:Advanced EXAFS Data Analysis and CD-MUSIC Modeling.Environmental Science & Technology,2009,43(5):1400-1406;
    [83]Morrison, S J; Spangler, R R; Tripathi, V S.Adsorption of uranium (Ⅵ) on amorphous ferric oxyhydroxide at high concentrations of dissolved carbon (Ⅳ) and sulfur (Ⅵ).Journal of Contaminant Hydrology,1995,17(4):333-346;
    [84]Yusan, S; Akyil, S.Sorption of uranium(Ⅵ) from aqueous solutions by akaganeite.Journal of Hazardous Materials,2008,160(2-3):388-395;
    [85]Cheng, T; Barnett, M O; Roden, E E, et al.Effects of phosphate on uranium(Ⅵ) adsorption to goethite-coated sand.Environmental Science & Technology,2004, 38(22):6059-6065;
    [86]Baik, M; Cho, W; Hahn, P.Sorption of U(Ⅵ) onto granite surfaces:A kinetic approach.Journal of Radioanalytical and Nuclear Chemistry,2004,260(3):495-502;
    [87]Arai, Y; McBeath, M; Bargar, J R, et al.Uranyl adsorption and surface speciation at the imogolite-water interface:Self-consistent spectroscopic and surface complexation models. Geochimica et Cosmochimica Acta,2006,70(10): 2492-2509;
    [88]Sylwester, E R; Hudson, E A; Allen, P G.The structure of uranium (Ⅵ) sorption complexes on silica, alumina, and montmorillonite.Geochimica et Cosmochimica Acta,2000,64(14):2431-2438;
    [89]Arnold, T; Zorn, T; Bernhard, G, et al.Sorption of uranium(Ⅵ) onto phyllite.Chemical Geology,1998,151(1-4):129-141;
    [90]Wazne, M; Meng, X; Korfiatis, G, et al.Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide.Journal of Hazardous Materials,2006,136(1):47-52;
    [91]Webb, S; Fuller, C; Tebo, B, et al.Determination of Uranyl Incorporation into Biogenic Manganese Oxides Using X-ray Absorption Spectroscopy and Scattering.Environmental Science & Technology,2006,40(3):771-777;
    [92]Fuller, C; Bargar, J; Davis, J, et al.Mechanisms of uranium interactions with hydroxyapatite:Implications for groundwater remediation. Environmental Science & Technology,2002,36(2):158-165;
    [93]Barnett, M O; Jardine, P M; Brooks, S C.U(Ⅵ) adsorption to heterogeneous subsurface media:Application of a surface complexation model.Environmental Science & Technology,2002,36(5):937-942;
    [94]Fuller, C; Bargar, J; Davis, J.Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environmental Science & Technology,2003,37(20):4642-4649;
    [95]Cornell, R; Schwertmann, U. The iron oxides:structure, properties, reactions, occurrence and uses.Second-Edition.VCH Weinheim,2003.1-659;
    [96]Sposito, G. The chemistry of soils.Second-edition.New York:Oxford University Press, USA,2008.
    [97]Bargar, J R; Reitmeyer, R; Lenhart, J J, et al.Characterization of U(VI)-carbonato ternary complexes on hematite:EXAFS and electrophoretic mobility measurements. Geochimica et Cosmochimica Acta,2000,64(16):2737-2749;
    [98]Hsi, C; Langmuir, D.Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model.Geochimica et Cosmochimica Acta,1985,49:1931-1941;
    [99]Ho, C; Miller, N.Adsorption of uranyl species from bicarbonate solution onto hematite particles.Journal of Colloid and Interface Science,1986,110(1):165-171;
    [100]Van Geen, A; Robertson, A; Leckie, J.Complexation of carbonate species at the goethite surface:Implications for adsorption of metal ions in natural waters.Geochimica et Cosmochimica Acta,1994,58(9):2073-2086;
    [101]Waite, T; Davis, J; Payne, T, et al.Uranium (Ⅵ) adsorption to ferrihydrite: Application of a surface complexation model.Geochimica et Cosmochimica Acta,1994,58:5465-5478;
    [102]Ulrich, K-U; Rossberg, A; Foerstendorf, H, et al.Molecular characterization of uranium(VI) sorption complexes on iron(Ⅲ)-rich acid mine water colloids.Geochimica et Cosmochimica Acta,2006,70(22):5469-5487;
    [103]Dodge, C; Francis, A; Gillow, J, et al. Association of uranium with iron oxides typically formed on corroding steel surfaces. Environmental Science & Technology,2002,36(16):3504-3511;
    [104]Murakami, T; Sato, T; Ohnuki, T, et al.Field evidence for uranium nanocrystallization and its implications for uranium transport. Chemical Geology,2005,221(1-2):117-126;
    [105]Read, D; Lawless, T; Sims, R, et al.Uranium migration through intact sandstone cores.Journal of Contaminant Hydrology,1993,13(1-4):277-289;
    [106]Ames, L; McGarrah, J; Walker, B.Sorption of uranium and radium by biotite, muscovite, and phlogopite. Clays and Clay Minerals,1983,31:343-351;
    [107]Payne, T; Davis, J; Lumpkin, G, et al. Surface complexation model of uranyl sorption on Georgia kaolinite.Applied Clay Science,2004,26(1-4):151-162;
    [108]Kilislioglu, A; Bilgin, B.Adsorption of uranium on halloysite.Radiochimica Acta,2002,90(3):155-160;
    [109]Greathouse, J; Cygan, R.Water Structure and Aqueous Uranyl (Ⅵ) Adsorption Equilibria onto External Surfaces of Beidellite, Montmorillonite, and Pyrophyllite:Results from Molecular Simulations.Environmental Science & Technology,2006,40(12):3865-3871;
    [110]Krepelova, A; Sachs, S; Bernhard, G.Uranium (Ⅵ) sorption onto kaolinite in the presence and absence of humic acid.Radiochimica Acta,2006,94(12):825-833;
    [111]Krepelova, A; Brendler, V; Sachs, S, et al. U (Ⅵ)-kaolinite surface complexation in absence and presence of humic acid studied by TRLFS. Environmental Science & Technology,2007,41(17):6142-6147;
    [112]Catalano, J; Brown, G.Uranyl adsorption onto montmorillonite:Evaluation of binding sites and carbonate complexation.Geochimica et Cosmochimica Acta,2005,69(12):2995-3005;
    [113]Kowal-Fouchard, A; Drot, R; Simoni, E, et al.Use of spectroscopic techniques for uranium (Ⅵ)/montmorillonite interaction modeling.Environmental Science & Technology,2004,38(5):1399-1407;
    [114]Arnold, T; Utsunomiya, S; Geipel, G, et al.Adsorbed U (Ⅵ) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environmental Science & Technology,2006,40(15):4646-4652;
    [115]Missana, T; Maffiotte, C; Garcia-Gutierrez, M.Surface reactions kinetics between nanocrystalline magnetite and uranyl. Journal of Colloid And Interface Science,2003,261(1):154-160;
    [116]Scott, T B; Allen, G C; Heard, P J, et al.Reduction of U(Ⅵ) to U(Ⅳ) on the surface of magnetite.Geochimica et Cosmochimica Acta,2005,69(24):5639-5646;
    [117]Finch, R; Murakami, T.Systematics and paragenesis of uranium minerals. Reviews in Mineralogy and Geochemistry,1999,38(1):91-179;
    [118]Langmuir, D; Chatham, J.Groundwater prospecting for sandstone-type uranium deposits:a preliminary comparison of the merits of mineral-solution equilibria, and single-element tracer methods.Journal of Geochemical Exploration,1980, 13(2-3):201-219;
    [119]Kochenov, A; Korolev, K; Dubinchuk, V, et al.Experimental data on the conditions of precipitation of uranium from aqueous solutions. Geochemistry International,1978,14:82-87;
    [120]Klinkhammer, G; Palmer, M.Uranium in the oceans:where it goes and why.Geochimica et Cosmochimica Acta,1991,55:1799-1806;
    [121]Anderson, R; Fleisher, M; Lehuray, A. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochimica et Cosmochimica Acta,1989,53(9):2215-2224;
    [122]Charlet, L; Liger, E; Gerasimo, P.Decontamination of TCE-and U-rich waters by granular iron:Role of sorbed Fe(Ⅱ).Journal of Environmental Engineering-ASCE,1998,124(1):25-30;
    [123]Naftz, D; Morrison, S; Fuller, C, et al. Handbook of groundwater remediation using permeable reactive barriers:applications to radionuclides, trace metals, and nutrients.Academic Press,2002.
    [124]Qiu, S R; Lai, H F; Roberson, M J, et al.Removal of Contaminants from Aqueous Solution by Reaction with Iron Surfaces.Langmuir,2000,16(5):2230-2236;
    [125]Noubactep, C; Schoer, A; Meinrath, G.Mechanism of uranium removal from the aqueous solution by elemental iron.Journal of Hazardous Materials,2006, 132 (2-3):202-212;
    [126]Farrell, J; Bostick, W D; Jarabek, R J, et al.Uranium Removal from Ground Water Using Zero Valent Iron Media.Ground Water,1999,37(4):618-624;
    [127]Woolfolk, C; Whiteley, H.Reduction Of Inorganic Compounds With Molecular Hydrogen By Micrococcus Lactilyticus I.:Stoichiometry with Compounds of Arsenic, Selenium, Tellurium, Transition and Other Elements Journal of Bacteriology,1962,84(4):647-658;
    [128]Abdelouas, A; Lutze, W; Nuttall, H E.Uranium contamination in the subsurface; characterization and remediation.Reviews in Mineralogy and Geochemistry, 1999,38(1):433-473;
    [129]Lovley,D R.Dissimilatory Metal Reduction.Annual Review of Microbiology, 1993,47:263-290;
    [130]Lovley, D R; Anderson, R T.Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface.Hydrogeology Journal, 2000,8(1):77-88;
    [131]Payne, R B. Energy metabolism and uranium (Ⅵ) reduction by Desulfovibrio. Ph. D Dissertation, Columbia:University of Missouri-Columbia, 2005.
    [132]Lovley, D; Phillips, E. Reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology,1992,58(3):850-856;
    [133]Fredrickson, J K; Zachara, J M; Kennedy, D W, et al.Reduction of U (Ⅵ) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica et Cosmochimica Acta,2000,64(18):3085-3098;
    [134]Brooks, S C; Fredrickson, J K; Carroll, S L, et al.Inhibition of Bacterial U (VI) Reduction by Calcium.Environmental Science & Technology,2003,37(9):1850-1858;
    [135]Ganesh, R; Robinson, K; Reed, G, et al.Reduction of hexavalent uranium from organic complexes by sulfate-and iron-reducing bacteria.Applied and Environmental Microbiology,1997,63(11):4385-4391;
    [136]Langmuir, D.Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits.Geochimica et Cosmochimica Acta, 1978,42(6, Part 1):547-569;
    [137]Abdelouas, A.Uranium Mill Tailings:Geochemistry, Mineralogy, and Environmental Impact.Elements,2006,2(6):335-341;
    [138]Gorby, Y A; Lovley, D R.Enzymic uranium precipitation.Environmental Science & Technology,1992,26(1):205-207;
    [139]Zhang, W-X; Cao, J; Elliott, D. Iron Nanoparticles for Site Remediation.In: Nanotechnology and the Environment American Chemical Society,2004.248-255;
    [140]Wang, C B; Zhang, W X.Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science & Technology,1997,31:2154-2156;
    [141]Nurmi, J T; Tratnyek, P G; Sarathy, V, et al.Characterization and Properties of Metallic Iron Nanoparticles:Spectroscopy, Electrochemistry, and Kinetics. Environmental Science & Technology,2004,39(5):1221-1230;
    [142]Cundy, A B; Hopkinson, L; Whitby, R L D.Use of iron-based technologies in contaminated land and groundwater remediation:A review. Science of The Total Environment,2008,400(1-3):42-51;
    [143]Zhang, W; Wang, C; Lien, H.Treatment of chlorinated organic contaminants with nanoscale bimetallic particles.Catalysis Today,1998,40(4):387-395;
    [144]Varanasi, P; Fullana, A; Sidhu, S.Remediation of PCB contaminated soils using iron nano-particles.Chemosphere,2007,66(6):1031-1038;
    [145]Quinn, J; Geiger, C; Clausen, C, et al.Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology,2005,39(5):1309-1318;
    [146]Elliott, D W; Zhang, W X.Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment.Environmental Science & Technology,2001,35(24): 4922-4926;
    [147]Naja, G; Halasz, A; Thiboutot, S, et al.Degradation of Hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) Using Zerovalent Iron Nanoparticles. Environmental Science & Technology,2008,42(12):4364-4370;
    [148]US EPA. Environmental Protection Agency Nanotechnology White Paper. Science Policy Council, US Environmental Protection Agency,2007.
    [149]Yantasee, W; Warner, C L; Sangvanich, T, et al.Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Environmental Science & Technology,2007,41(14):5114-5119;
    [150]O'Hara, S; Krug, T; Quinn, J, et al.Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation Journal,2006,16(2):35-56;
    [151]Gavaskar, A; Tatar, L; Condit, W. Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation.Storming Media,2005.
    [152]Mallouk, T E; Darab, J G; Ponder, S M Removal of technetium, carbon tetrachloride, and metals from DOE properties.1998 annual progress report; EMSP-60017--98, Pennsylvania State Univ., University Park, PA (US):1998.
    [153]Ponder, S M; Darab, J G; Mallouk, T E.Remediation of Cr (Ⅵ) and Pb (Ⅱ) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology,2000,34:2564-2569;
    [154]Kanel, S; Manning, B; Charlet, L, et al.Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology,2005,39(5):1291-1298;
    [155]Kanel, S R; Greneche, J; Choi, H.Arsenic (Ⅴ) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material.Environmental Science & Technology,2006,40(6):2045-2050;
    [156]Manning, B A; Kiser, J R; Kwon, H, et al.Spectroscopic investigation of Cr (Ⅲ)-and Cr (Ⅵ)-treated nanoscale zerovalent iron.Environmental Science & Technology,2007,41(2):586-592;
    [157]Xu, Y; Zhao, D.Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.Water Research,2007,41(10):2101-2108;
    [158]Liu, R; Zhao, D.In situ immobilization of Cu (Ⅱ) in soils using a new class of iron phosphate nanoparticles.Chemosphere,2007,68(10):1867-1876;
    [159]Tratnyek, P G; Johnson, R L.Nanotechnologies for environmental cleanup.Nano Today,2006,1(2):44-48;
    [160]Nowack, B; Bucheli, T D.Occurrence, behavior and effects of nanoparticles in the environment.Environmental Pollution,2007,150(1):5-22;
    [161]Kolthoff, I M; Lingane, J J.The Volumetric Determination of Uranium with Potassium Dichromate as Reagent and the Application of the Method to the Indirect Titration of Minute Quantities of Sodium.Journal of the American Chemical Society,1933,55(5):1871-1876;
    [162]Betts, R.Kinetics of the oxidation of uranium (Ⅳ) by iron (Ⅲ) in aqueous solutions of perchloric acid.Canadian Journal of Chemistry,1955,33(12):1780-1791;
    [163]Baes, C F.The reduction of Uranium(VI) by Iron(Ⅱ) in the phosphoric acid solution.Journal of Physical Chemistry,1956,60(6):805-806;
    [164]Davies, W; Gray, W.A Rapid And Specific Titrimetric Method For The Precise Determination Of Uranium Using Iron(Ⅱ) Sulphate As Reductant. Talanta 1964,Vol:11(8):1203-1211;
    [165]Sani, R; Peyton, B; Dohnalkova, A, et al.Reoxidation of reduced uranium with iron (Ⅲ)(hydr) oxides under sulfate-reducing conditions. Environmental Science & Technology,2005,39(7):2059-2066;
    [166]Senko, J M; Mohamed, Y; Dewers, T A, et al.Role for Fe(Ⅲ) minerals in nitrate-dependent microbial U(Ⅳ) oxidation.Environmental Science & Technology,2005,39(8):2529-2536;
    [167]Ilton, E S; Heald, S M; Smith, S C, et al.Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions.Environmental Science & Technology,2006,40(16):5003-5009;
    [168]Ginder-Vogel, M; Criddle, C S; Fendorf, S.Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(Ⅲ) (hydr) oxides.Environmental Science & Technology,2006,40(11):3544-3550;
    [169]Jang, J-H; Dempsey, B A; Burgos, W D.Reduction of U(Ⅵ) by Fe(Ⅱ) in the presence of hydrous ferric oxide and hematite:Effects of solid transformation, surface coverage, and humic acid.Water Research,2008,42(8-9):2269-2277;
    [170]Ginder-Vogel, M; Stewart, B; Fendorf, S.Kinetic and Mechanistic Constraints on the Oxidation of Biogenic Uraninite by Ferrihydrite.Environmental Science & Technology,2010,44(1):163-169;
    [171]Regenspurg, S; Schild, D; Schafer, T, et al.Removal of uranium(Ⅵ) from the aqueous phase by iron(Ⅱ) minerals in presence of bicarbonate.Applied Geochemistry,2009,24(9):1617-1625;
    [172]Sani, R K; Peyton, B M; Amonette, J E, et al.Reduction of uranium (Ⅵ) under sulfate-reducing conditions in the presence of Fe (Ⅲ)-(hydr) oxides.Geochimica et Cosmochimica Acta,2004,68(12):2639-2648;
    [173]Liger, E; Charlet, L; Van Cappellen, P.Surface catalysis of uranium(Ⅵ) reduction by iron(Ⅱ). Geochimica et Cosmochimica Acta,1999,63(19-20):2939-2955;
    [174]Hua, B; Deng, B.Reductive immobilization of uranium(Ⅵ) by amorphous iron sulfide. Environmental Science & Technology,2008,42(23):8703-8708;
    [175]Liu, C; Zachara, J M; Qafoku, N P, et al.Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resources Research, 2008,44(8):W08413;
    [176]Teixeira, L S G; Costa, A C S; Ferreira, S L C, et al.Spectrophotometric determination of uranium using 2-(2-Thiazolylazo)-p-Cresol (TAC) in the presence of surfactants.Journal of the Brazilian Chemical Society,1999,10: 519-522;
    [177]Liu, C; Gorby, Y A; Zachara, J M, et al.Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ), Cr(Ⅵ), and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering,2002,80(6):637-649;
    [178]Liu, C; Gorby, Y A; Zachara, J M, et al.Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ), Cr(Ⅵ), and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering,2002,80(6):637-649;
    [179]Laidler, K J. Chemical Kinetics.3nd. New York:Harper & Row,1987.531;
    [180]Sun, Y-P; Li, X-Q; Zhang, W-X, et al.A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf., A,2007,308(1-3):60-66;
    [181]Abdelouas, A; Lutze, W; Nuttall, E.Chemical reactions of uranium in ground water at a mill tailings site.Journal of Contaminant Hydrology,1998,34(4):343-361;
    [182]Bradford, G R; Bakhtar, D; Westcot, D.Uranium, Vanadium, and Molybdenum in Saline Waters of California. Journal of Environmental Quality,1990,19(1): 105-108;
    [183]Wan, J; Tokunaga, T K; Kim, Y, et al.Effects of Organic Carbon Supply Rates on Uranium Mobility in a Previously Bioreduced Contaminated Sediment.Environmental Science & Technology,2008,42(20):7573-7579;
    [184]Bernhard, G; Gerhard, G; Reich, T, et al.Uranyl(Ⅵ) carbonate complex formation:Validation of the Ca2UO2(CO3)3(aq.) species. Radiochimica Acta,2006,89:511-518;
    [185]Suzuki, Y; Kelly, S D; Kemner, K M, et al.Radionuclide contamination: Nanometre-size products of uranium bioreduction.Nature,2002,419(6903):134-134;
    [186]Stumm, W; Sulzberger, B.The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes.Geochimica et Cosmochimica Acta,1992,56(8):3233-3257;
    [187]Abdelouas, A; Lutze, W; Nuttall, E, et al.Remediation of U(Ⅵ)-contaminated water using zero-valent iron.Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes,1999,328(5):315-319;
    [188]Allen, G C; Scott, T B; Lee, D F, et al.The extraction of uranium from groundwaters on iron surfaces.Philosophical Magazine Letters,2004,84(11):691-696;
    [189]Noubactep, C; Meinrath, G; Dietrich, P, et al.Mitigating Uranium in Groundwater:Prospects and Limitations.Environmental Science & Technology, 2003,37(18):4304-4308;
    [190]Rangsivek, R; Jekel, M R.Removal of dissolved metals by zero-valent iron (ZVI):Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research,2005,39(17):4153-4163;
    [191]Wehrli, B; Sulzberger, B; Stumm, W.Redox processes catalyzed by hydrous oxide surfaces.Chemical Geology,1989,78(3-4):167-179;
    [192]Stumm, W; Sigg, L; Sulzberger, B. Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems.Wiley New York,1992.
    [193]S(?)rensen, J; Thorling, L.Stimulation by lepidocrocite (γ-FeOOH) of Fe(Ⅱ)-dependent nitrite reduction. Geochimica et Cosmochimica Acta,1991, 55(5): 289-1294;
    [194]Cui, D; Eriksen, T E.Reduction of Pertechnetate by Ferrous Iron in Solution: Influence of Sorbed and Precipitated Fe(Ⅱ). Environmental Science & Technology,1996,30(7):2259-2262;
    [195]Buerge, I J; Hug, S J.Influence of Mineral Surfaces on Chromium(VI) Reduction by Iron(Ⅱ). Environmental Science & Technology,1999,33(23):4285-4291;
    [196]Zhou, H; He, Y; Lan, Y, et al.Influence of complex reagents on removal of chromium(VI) by zero-valent iron.Chemosphere,2008,72(6):870-874;
    [197]Matheson, L J; Tratnyek, P G.Reductive Dehalogenation of Chlorinated Methanes by Iron Metal.Environmental Science & Technology,1994, 28(12):2045-2053;
    [198]Chuang, F W; Larson, R A; Wessman, M S.Zero-Valent Iron-Promoted Dechlorination of Polychlorinated Biphenyls.Environmental Science & Technology,1995,29(9):2460-2463;
    [199]Deng, B; Burris, D R; Campbell, T J.Reduction of Vinyl Chloride in Metallic Iron-water Systems.Environmental Science & Technology,1999,33(15):2651-2656;
    [200]Liu, Y; Majetich, S A; Tilton, R D, et al.TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environmental Science & Technology,2005,39(5):1338-1345;
    [201]Wan, J; Tokunaga, T K; Brodie, E, et al.Reoxidation of Bioreduced Uranium under Reducing Conditions.Environmental Science & Technology,2005,39(16): 6162-6169;
    [202]Rao, G G; Sagi, S R.A new reductimetric reagent:ironⅡ in a strong phosphoric acid medium:Titration of uraniumⅥ with ironⅡ at room temperature. Talanta,1962,9(8):715-722;
    [203]Benner, S; Blowes, D; Ptacek, C, et al.Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier.Applied Geochemistry, 2002,17(3):301-320;
    [204]Zheng, T; Zhan, J; He, J, et al.Reactivity Characteristics of Nanoscale Zerovalent Iron-Silica Composites for Trichloroethylene Remediation.Enviro-nmental Science & Technology,2008,42(12):4494-4499;
    [205]Wang, Q; Snyder, S; Kim, J, et al.Aqueous Ethanol modified Nanoscale Zerovalent Iron in Bromate Reduction:Synthesis, Characterization, and Reactivity.Environmental Science & Technology,2009,43(9):3292-3299;
    [206]Kim, H-S; Ahn, J-Y; Hwang, K-Y, et al.Atmospherically Stable Nanoscale Zero-Valent Iron Particles Formed under Controlled Air Contact: Characteristics and Reactivity.Environmental Science & Technology,2010,44 (5):1760-1766;
    [207]Stumm, W. Aquatic chemical kinetics:reaction rates of processes in natural waters New York:Wiley & Sons,1990.1-545;
    [208]Stumm, W; Sigg, L; Sulzberger, B. Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems.New York:Wiley-Interscience,1992.1-428;
    [209]Lasaga, A C.Rate laws of chemical reactions.Reviews in Mineralogy and Geochemistry,1981,8(1):1-66;
    [210]Winzor, D J; Jackson, C M.Interpretation of the temperature dependence of equilibrium and rate constants.Journal of Molecular Recognition,2006,19(5):389-407;
    [211]Gu, B H; Yan, H; Zhou, P, et al.Natural humics impact uranium bioreduction and oxidation.Environmental Science & Technology,2005,39(14):5268-5275;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700