用户名: 密码: 验证码:
基于SPH方法的冲击动力学若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光滑粒子流体动力学(SPH)方法是一种求解偏微分方程的数值方法,属于无网格法的一种。由于SPH方法彻底摆脱了计算网格的约束,采用任意分布的粒子来表示求解域,不会遇到网格变形过大或网格畸变的问题,所以特别适合求解冲击动力学中的大变形问题。同时由于SPH法是具有拉格朗日性质的动力学方法,所以可以方便的跟踪物质的运动轨迹,适合描述流体界面的大变形运动过程以及流体与固体之间的相互作用。SPH方法作为一种具有无网格、自适应、稳定以及拉格朗日性质的动力学求解算法,已经成为冲击动力学研究的一个热点问题,并在工程实践中有着广泛的应用前景。本文基于国家自然科学基金委员会和中国工程物理研究院共同设立的“NSAF联合基金”项目“舰艇复杂板壳结构在冲击载荷作用下的破坏机理研究”的研究背景,详细讨论了SPH法的基本理论及其数值特性,并对船体壳板的穿甲问题、剪切式吸能器的性能研究、充液容器的跌落碰撞、双层充液壳体结构的冲击安全性以及水力阻力器的水阻力特性等若干冲击动力学问题进行了研究。
     本文对SPH方法的基本理论进行了全面总结,介绍了SPH法的基本思想,重点对SPH法的两个重要步骤,即核函数近似过程和粒子近似过程,进行了详细说明,推导出任意函数及其导数的SPH近似公式,并讨论了光滑函数的常见形式和基本性质。随后采用SPH法对连续介质力学的基本控制方程组进行离散近似,推导出描述流体或固体运动的常用SPH公式,并对人工粘性、人工热流、状态方程、本构关系、积分方法等一系列相关数值问题进行了讨论。在此基础上,用FORTRAN语言编写相应的三维SPH计算程序,为进一步开展数值研究奠定基础。
     详细研究了SPH法的数值特性。通过用SPH法求解一般函数的数值算例,详细讨论了光滑函数的形式、光滑长度、粒子的分布对SPH法计算精度的影响,并指出传统的SPH算法本身存在着边界粒子计算精度低和张力不稳定的固有缺陷。随后对几种改进传统SPH法的数值方法,如改进边界粒子精度的SPH法、CSPH法和DSPH法,分别进行了理论分析和数值研究,说明这些算法可以一定程度上改善边界粒子的计算精度,并修正不连续处的计算误差。同时介绍了SPH方法中固定边界条件的一般处理方法,并通过求解三个典型数值算例,验证了自编SPH程序的可靠性,说明SPH法在冲击等问题上有广泛的应用前景。
     采用SPH法研究冲击碰撞时固体材料的断裂破坏机理。在船体壳板的穿甲问题中,采用SPH法模拟靶板材料在弹丸撞击下的断裂过程。在弹丸低速或亚弹速撞击靶板时,SPH法的计算结果和有限元法计算结果、靶板穿甲实验的试验结果都非常一致;在弹丸高速或超高速撞击靶板时,SPH法的计算结果和相关文献中的实验结果也基本吻合,说明了SPH方法在求解高速冲击中材料大变形问题上的优越性。在剪切式吸能器的性能研究中,首次引入SPH法模拟了吸能器的剪切碰撞过程,成功克服了有限元法模拟剪切式吸能器时需要单元数巨大、计算时间过长的困难。建立了剪切式吸能器的SPH数值模型,分析了其多次分解、逐次吸收冲击能量的吸能特性,讨论了碰撞速度、被剪切板厚度和材质等因素对吸能特性的影响,并将数值仿真结果和台车碰撞实验的试验结果进行了比较。研究表明,剪切式吸能器在碰撞速度小于40 km/h的情况下能发挥较好的吸能效果。
     提出了一种采用SPH法耦合FE法求解流固耦合问题的新方法,即采用SPH粒子模拟具有大变形的流体,FE单元模拟具有不规则形状的固体,通过SPH粒子和FE单元之间的耦合算法模拟流体和固体之间的相互作用。这种方法既利用了SPH法求解大变形问题的优势,又利用了FE法模拟复杂形状以及处理边界条件上的优势,为求解流固耦合问题提供了一条崭新的途径。
     采用SPH法耦合FE法,对充液容器跌落碰撞过程中的动力学响应进行了分析,并和ALE法的计算结果比较,说明SPH法模拟的自由液面大变形更加真实。同时将SPH法引入双层充液壳体结构冲击响应的研究,建立了双层充液壳体结构的简化SPH计算模型,通过模拟弹丸击穿充液箱体的过程,分析讨论了夹层流体对箱体中前后两层壁板变形、应力和应变水平的影响,说明流体的流固耦合作用是双层充液壳体结构安全性设计中不可忽视的因素。此外,还首次采用SPH法耦合FE法的方法,模拟了水力阻力器高速冲入水槽后的减速制动过程,研究了水力阻力器的阻力特性问题,讨论了冲击初速度和实际浸水深度对阻力器阻力大小的影响,并总结出水阻力的简单经验公式。研究表明,水力阻力器在流体流动充分发展之前,会出现局部的高水压和高应力,这是结构破坏的主要因素。
     最后,对本文的研究工作进行了总结,对未来的发展进行了展望。本文的研究工作为SPH数值算法的工程应用打下了基础,不但将SPH法成功应用于模拟固体材料的断裂破坏,而且提出了SPH法耦合FE法解决流固耦合问题的全新方法,为SPH法在冲击动力学中的应用开辟了一个新的领域。
Smoothed particle hydrodynamics (SPH) method is a new numerical method solving partial differential equations, which is one of meshless methods. The most attractive feature of SPH method is that the field variable approximation is performed at each time step based on a current local set of arbitrarily distributed particles, not on nodes of elements, therefore it can naturally handle problems with extremely large deformation. Since the SPH particle is connected to the moving material similar to the Lagrangian description, the entire time history of all the field variables at a material point can be naturally obtained and thus it is easy to trace material boundaries, free surfaces and moving fluid-structure interfaces of fluids. SPH method, as a meshless, adaptive, stable and Lagrangian solver for dynamic problems, has distinct advantages over the conventional grid-based numerical methods, so SPH method is one of most attractive and hopeful numerical method in impact dynamics. In this thesis, the theory of SPH method has been studied and applied to different complex engineering problems, such as penetration of ship hull plates, shearing action of energy absorber, dropping emulation of fluid-filled tank, penetration of submerged double shells and fluid-structure interaction of hydrodynamic damper, which were supported by fund project of national natural science foundation of China combined with china academy of engineering physics.
     The basic concept and the essential formulations of SPH method are introduced firstly. The SPH approximations are studied, which include the strategy of the SPH method, the continuous kernel approximation and the discrete particle approximation. The description and major properties of the smoothing functions are also discussed. The detailed SPH formulations is derived by discretizing the partial differential equations in continuity mechanics spatially, leading to a set of ordinary differential equations with respect to time. The numerical aspects in implementing the SPH formulations, including artificial viscosity, artificial heat, equation of state, constitutive relations and integration method, are also discussed. A three-dimensional SPH source code written by FORTRAN is provided to solve the problems, which is a base in the further research.
     The capability of the SPH method has been demonstrated through solving a number of example functions. It is noted that the calculation accuracy is influenced by smoothing function, smoothing length and initial distribution of particles, and boundary deficiency problem and tensile instability problem are inevitable in the traditional SPH method. Some derivative SPH methods, such as improved SPH, CSPH and DSPH, are discussed to improve the traditional SPH. Numerical studies show that the derivative SPH methods not only remedy the boundary deficiency problem but also well simulate the discontinuity of field variable functions. Some special boundary treatments are needed in the SPH method. Three classical physical problems are solved by my SPH codes and it can be seen that the SPH method is suitable for solving the impact problems.
     SPH method has been applied to simulate the fracture and failure of solid materials in the impact successfully. In simulation of ship hull plates penetrated by projectile with low velocity, the results of SPH method are consistent with results of finite element method or ballistic experiment. In simulation of ship hull plates penetrated by projectile with high velocity, the large deformation of ship hull plates and the debris cloud of materials same as experimental literatures are easily obtained with the SPH method, which is the most outstanding advantage over other grid-based methods. Subsequently, SPH method is applied to simulate the shearing actions of new type energy absorber, because the large number of elements and the large CPU time are unacceptable if using finite element method. By reason of structure design, energy absorber can switch the impact to thousands of shearing actions among thin ring plates inside the absorber and the impact energy will be decentralized and dissipated gradually. The results of SPH method show that the impact velocity, thickness and material of ring plates are important related factors of energy absorption ability and the energy absorber is effective for collision that impact velocity is lower than 40 km/h. The sled crash test is carried out to validate the result of simulations.
     SPH method has been applied to simulate the large deformation of fluid and the fluid-structure interaction successfully. A new idea of SPH method coupled FE method is proposed, which creates SPH particles in fluid domain, divides FE elements in solid domain and calculates the fluid-structure interaction through the contact force between SPH particles and FE elements. The coupled method makes full use of SPH method to solve large deformation problem and FE method to treat complex shapes or boundary conditions, which is an attractive and promising numerical algorithm in engineering.
     SPH method coupled with FE method is used to simulate the dropping of rectangular fluid-filled tank firstly. Compared with ALE method, the slosh of fluid and the deformation of tank simulated by SPH method are more close to the truth. Secondly, penetration of submerged double shells is simulated using SPH method coupled with FE method. When the projectile at high speed penetrates the fluid-filled tank, the water hammer effect will obviously change the deformation or stress level of the frontal and back walls along the impact direction, so the interaction between the water and the double shells can not be neglected in structural security analysis. Subsequently, the dynamic characteristics of hydrodynamic damper during the rush into the water channel with high velocity are successfully simulated by SPH method coupled with FE method. The water resistance, the pressure in the interface and the stress of structure are investigated, and the relationship among the peak of water resistance, initial velocity and actual draught is also discussed. The pressure or stress concentration is the main risk during the impact and an empirical formula is put forward to predict the water resistance of hydrodynamic damper in engineering.
     In this thesis, the fracture and failure of structures is simulated by SPH method and some fluid-structure coupling problems are successfully solved by SPH method coupled with FE method. It can be concluded that the SPH method is a kind of new potential numerical method and has a bright future in the research of impact dynamics.
引文
[1] Belytschko T., Krouganz Y., Organ D., et al. Meshless method: An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 3-47.
    [2] Perrone N., Kao R. A general finite difference method for arbitrary meshes [J]. Computers and Structures, 1975, 5(1): 45-47.
    [3] Lucy L.B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82(12): 1013-1024.
    [4] Monaghan J.J. Why particle methods work [J]. SIAM Journal on Scientific Computing, 1982, 3(4): 422-433.
    [5] Monaghan J.J. Shock simulation by the particle method SPH [J]. Journal of Computational Physics, 1983, 52(2): 374-389.
    [6] Monaghan J.J. An introduction to SPH [J]. Computer Physics Communications, 1988, 48(1): 89-96.
    [7] Monaghan J.J. Smooth particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
    [8] Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389.
    [9] Benz W. The numerical modeling of nonlinear stellar pulsations: problems and prospects [A]. Kluwer Academic Publishers, 1990. 269.
    [10] Benz W. In late stages of stellar evolution and computational methods in astrophysical hydrodynamics [A]. Spring-Verlag, 1991. 259.
    [11] Benz W. Applications of smoothed particle hydrodynamics (SPH) to astrophysical problems [J]. Computer Physics Communications, 1988, 48(1): 97-105.
    [12] Hultman J., Pharayn A. Hierarchical, dissipative formation of elliptical galaxies is thermal instability the sky mechanism hydrodynamic simulations including supernova feedback multi-phase gas and metal enrichment in cdm: structure and dynamics of elliptical galaxies [J]. Astronomy and Astrophysics, 1999, 347(1): 769-798.
    [13] Berczik P., Kolesnik I. G. Gas dynamical model of the triaxial protogalaxy collapse [J]. Astronomy and Astrophysical transactions, 1998, 16(3): 163-185.
    [14] Lee W. H. Newtonian hydrodynamics of the coalescence of black holes with neutron stars ii, tidally locked binaries with a soft equation of state [J]. Monthly Notices of the Royal Astronomical Society, 1998, 308(1): 780-794.
    [15] Senz D. G., Bravo E., Woosley S. E. Single and multiple detonations in white dwarfs [J]. Astronomy and Astrophysics, 1999(1), 349: 177-188.
    [16] Swegle J. W. Report at Sandia National laboratories [R]. 1992.
    [17] Walton W.C. Two-dimension PDF/SPH simulations of compressible turbulent flows [J]. Journal of Computational Physics, 1998, 139(2): 410-443.
    [18] Alexander V.P., Melany L.H., Charles S.C. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method [J]. Powder Technology, 2001, 116(2): 204-213.
    [19] Macro E., Martin K., Siegfried H. Viscoelastic flows studies by smoothed particle dynamics [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(1): 35-51.
    [20] Morris J. P. Analysis of smoothed particle hydrodynamics with applications [D]. 1996, Monash University.
    [21] Monaghan J. J., Kocharyan A. SPH simulation of multiphase flow [J]. Computer Physics Communication, 1995, 87(1): 225-235.
    [22] Monaghan J. J. Simulating free surface flow with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399-406.
    [23] Monaghan J. J. Simulating gravity currents with SPH lock gates [R]. Applied Mathematics Reports and Preprints, 1995, Monash University.
    [24] Zhu Y., Fox P. J., Morris J. P. A pore-scale numerical model for flow through porous media [J]. International Journal for Numerical and Analytical methods in Geomechanics, 1999, 23(9): 881-904.
    [25] Chen J. K., Beraun J. E., Carney T. C. A corrective smoothed particle method for boundary value problems in heat conduction [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 46(2): 231-252.
    [26] Cleary P. W. Modeling confined multi-material heat and mass flow using SPH [J]. Applied Mathematical Modeling, 1998, 22(12): 981-993.
    [27] Monaghan J. J. On the problem of penetration in particle methods [J]. Journal of Computational Physics, 1989, 82(1): 1-15.
    [28] Gutfraind R., Savage S.B. Smoothed particle hydrodynamics for simulation of broken-ice fields: Mohr-Colomb-type rheology and frictional boundary condition [J]. Journal of Computational Physics, 1997, 134(2): 203-215.
    [29] Gutfraind R., Savage S.B. Flow of fractured ice through wedge-shaped channel: Smoothed particle hydrodynamics and discrete-element simulations [J]. Mechanics of Materials, 1998, 29(1): 1-17.
    [30] Songdong Shao, Edmond Y.M.Lo. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787-800.
    [31] Libersky L.D., Petschek A.G.. Smoothed particle hydrodynamics with strength of materials [A]. Advances in the Free Lagrange Method, Lecture Note in Physics [C]. Orford: AWE Hunting Press, 1990. 395.
    [32] Libersky L.D., Petschek A.G.., Carney T.C. High strain Lagrangian Hydrodynamics: A three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67-75.
    [33] Libersky L.D., Randles P.W., Carney T.C., Dickinson D.L. Recent improvements in SPH Modeling of hypervelocity impact [J]. International Journal of Impact Engineering, 1997, 20(6): 525-532.
    [34] Zukas J. A. High velocity impact [M]. John Wiley and Sons, 1990, New York.
    [35] Johnson G.R., Stryk R.A., Beissel S.R. SPH for high velocity impact computations [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 347-373.
    [36] Johnson G. R., Stryk R. A., Beissel S. R. Interface effects for SPH computations [A]. Structure Under Shock and Impact IV [C]. 1996. 285-294.
    [37] Swegle J. W., Attaway S. W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [J]. Computational Mechanics, 1995, 17(3): 151-168.
    [38] Liu M. B., Liu G. R., Zong Z., Lam K.Y. Computer simulation of high explosive explosion usingsmoothed particle hydrodynamics methodology [J]. Computers and Fluids, 2003, 32(3): 305-322.
    [39] Liu M. B., Liu G. R., Zong Z., Lam K.Y. Numerical simulation of underwater explosion by SPH [A]. Proceedings of International conference on Computational Engineering and Sciences 2000 [C]. Los Angels, USA, 2000. 1475-1480.
    [40] Liu M. B., Liu G. R., Lam K.Y. Investigations into water mitigations using a meshless particle method [J]. Shock Waves, 2002, 12(3):181-195.
    [41] Liu M. B., Liu G. R., Zong Z., Lam K.Y. Smoothed particle hydrodynamics for numerical simulation of underwater explosions [J]. Computational Mechanics, 2003, 30(2):106-118.
    [42] Benz W., Asphaug E. Impact simulations with fracture-I-Methods and tests [J]. ICARUS, 1994, 107(1): 98-116.
    [43] Benz W., Asphaug E. Simulations of brittle solids using Smoothed Particle Hydrodynamics [J]. Computer Physics Communications, 1995, 87(1): 253-265.
    [44] Bonet J., Kulasegaram S. Correction and stabilization of smoothed particle hydrodynamics method with applications in metal forming simulations [J]. international Journal for Numerical Methods in Engineering, 2000, 47(6): 1189-1214.
    [45] Swegle J.W., Hicks D.L., Attaway S.W. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123-134.
    [46] Dyka C.T. Addressing tension instability in SPH methods [R]. Technical Report NRL/MR/6384, NRL, 1994.
    [47] Morris J. P. Analysis of smoothed particle hydrodynamics with applications [D]. Ph.D. thesis, Monash University, 1996.
    [48] Monaghan J. J. Particle methods for hydrodynamics [J]. Computer Physics Report, 1985, 3(2): 71-124.
    [49] Johnson G..R.,Beissel S.R. Normalized smoothing functions for SPH impact computations [J]. International Journal for Numerical Methods in Engineering, 1996, 39(16): 2725-2741.
    [50] Liu W. K., Chen Y. Wavelet and multiple-scale reproducing kernel methods [J]. International Journal of Numerical Methods in Fluids, 1995, 21(10): 901-931.
    [51] Liu W. K., Jun S., Zhang Y. F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8): 1081-1106.
    [52] Chen J. K., Beraun J. E., Carney T. C. A corrective smoothed particle method for boundary value problems in heat conduction [J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 231-252.
    [53] Chen J. K., Beraun J. E., Carney T. C. Improvement for tensile instability in smoothed particle hydrodynamics [J]. Computational Mechanics, 1999, 23(4): 279-287.
    [54] Chen J. K., Beraun J. E., Carney T. C. Completeness of corrective smoothed particle method for linear elastodynamics [J]. Computational Mechanics, 1999, 24(4): 273-285.
    [55] Dyka C. T., Ingel R. P. An approach for tension instability in smoothed particle hydrodynamics (SPH) [J]. Computers and Structures, 1995, 57(4): 573-580.
    [56] Vignjevic R., Campbell J., Libersky L. A treatment of zero-energy modes in the smoothed particle hydrodynamics method [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 184(1): 67-85.
    [57] Dilts G. A. Moving least square particle hydrodynamics i: consistency and stability [J]. International Journal for Numerical Methods in Engineering, 1999, 44(8): 1115-1155.
    [58] Bonet J., Kulasegaram S. Correction and stabilization of smoothed particle hydrodynamicsmethod with applications in metal forming simulations [J]. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1189-1214.
    [59] Belytschko T., Krongauz Y., Dolbow J., Gerlach C. On the completeness of the meshfree particle methods [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5):785-819.
    [60] Lancaster P., Salkauskas K. Surface generated by moving least-square methods [J]. Mathematics of Computation, 1981, 37(155): 141-158.
    [61] Nayroles B., Touzot G., Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Computational Mechanics, 1992, 10(5): 307-318.
    [62] Krongauz Y., Belytschko T. A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG [J]. Computational Mechanics, 1997, 19(5): 327-333.
    [63] Modaressi H., Aubert P. A diffuse element finite element technique for transient coupled analysis [J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3809-3838.
    [64] Belytschko T., Lu Y.Y., Gu L. Element free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37(1): 229-256.
    [65] Lu Y.Y., Belytschko T., et al. A new implementation of the element free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 113(3): 397-414.
    [66] Krongauz Y., Belytschko T. EFG approximation with discontinuous derivatives [J]. International Journal for Numerical Methods in Engineering, 1998, 41(7): 1215-1233.
    [67] Belytschko T., Krongnauz Y., Organ D., et al. Smoothing and accelerated computations in the element free Galerkin method [J]. Journal of Computational and Applied Mathematics, 1996, 74(1): 111-126.
    [68] Beissel S., Belytschko T. Nodal integration of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 49-74.
    [69] Organ D., Fleming M., Terry T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency [J]. Computational Mechanics, 1996, 18(3): 225-235.
    [70] Ponthot J.P., Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 19-46.
    [71] Belytschko T., Gu L., Lu Y.Y. Fracture and crack growth by element free Galerkin methods [J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3): 519-534.
    [72] Lu Y.Y., Belytschko T., Tabbara M. Element-free Galerkin methods for wave propagation and dynamic fracture [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 126(1): 131-153.
    [73] Belytschko T., Lu Y.Y., Gu L. Crack propagation by element-free Galerkin methods [J]. Engineering Fracture Mechanics, 1995, 51(2): 295-315.
    [74] Belytschko T., Tabbara M. Dynamic fracture using element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1998, 39(6): 923-938.
    [75] Fleming M., Belytschko T. Enriched Element-Free Galerkin Methods for Crack Tip Fields [J]. International Journal for Numerical Methods in Engineering, 1998, 40(8): 1483-1504.
    [76] Belytschko T., Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method [J]. Computers and Structures, 1999, 71(2): 173-195.
    [77] Krysl P., Belytschko T. The element free Galerkin methods for dynamic propagation of arbitrary 3-D cracks [J]. International Journal for Numerical Methods in Engineering, 1999, 44(6): 767-800.
    [78] Belytschko T., Organ D., Gerlach C. Element-free Galerkin methods for dynamic fracture inconcrete [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3): 385-399.
    [79] Krysl P., Belytschko T. Analysis of thin shells by element-free Galerkin method [J]. International Journal of Solids and Structures, 1996, 33(20): 3057-3080.
    [80] Belytschko T., Organ D., Krongauz Y. A coupled finite element-element free Galerkin method [J]. Computational Mechanics, 1995, 17(3): 186-195.
    [81] Krongauz Y., Belytschko T. Enforcement of essential boundary conditions in Meshless approximations using finite element [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 131(1): 133-145.
    [82] Hegen D. Element-free Galerkin methods in combination with finite element approaches [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 135(1): 143-166.
    [83] Belytschko T., Krongauz Y., Dolbow J., Gerlach C. On the completeness of meshfree particle methods [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5): 785-819.
    [84] Dolbow J., Belytschko T. Volumetric locking in the element free Galerkin method [J]. International Journal for Numerical Methods in Engineering, 1999, 46(6): 767-800.
    [85] Liu G.R., Gu Y.T. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation [J]. Computational Mechanics, 2000, 26(2): 166-173.
    [86] Gu Y.T., Liu G.R. A coupled element free Galerkin/boundary element methods for stress analysis of two-dimensional solids [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(34): 4405-4419.
    [87] Belytschko T., Ktysl P., Krongnauz Y. A Three-Dimensional Explicit Element-free Galerkin Method [J]. International Journal for Numerical Methods in Fluids, 1997, 24(12): 1253-1270.
    [88] Ponthot J.P., Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 19-46.
    [89] Du C. An element-free Galerkin method for simulation of stationary two-dimensional shallow water flows in rivers [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 182(1): 89-107.
    [90] Codes L.W., Moran B. Treatment of material discontinuity in the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 75-89.
    [91] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 49-74.
    [92] Smolinski P., Palmer T. Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems [J]. Computers and Structures, 2000, 77(2): 171-183.
    [93] Liu W.K., Jun S., Zhang Y.F. Reproducing Kernel Particle Methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8): 1081-1106.
    [94] Liu W.K., Chen Y., Jun S., et al. Overview and applications of the reproducing kernel particle methods [J]. Archives of Computational Methods in Engineering, State of the art review, 1996, 3(1): 3-80.
    [95] Liu W.K., Uras R.A., Chen Y. Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method [A]. Cory J.J.F., Gorden J.L. Current Topics in Computational Mechanics [C]. 1995. 305(ASME_PVP), 253-258.
    [96] Liu W.K., Chen Y., Uras R. A., et al. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 91-157.
    [97] Liu W.K., Chen Y. Wavelet and multiple scale reproducing kernel particle method [J]. International Journal for Numerical Methods in Fluids, 1995, 21(10): 901-931.
    [98] Liu W.K., Chen Y., Chang C.T., et al. Advances in multiple scale kernel particle methods [J]. Computational Mechanics, 1996, 18(2): 73-111.
    [99]赵松年,熊小芸.子波变换与子波分析[M].电子工业出版社, 1996, 12.
    [100]李世雄,刘家琦.小波变换和反演数学基础[M].地质出版社, 1994, 5.
    [101] Liu W.K., Uras R.A., Chen Y. Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method [J]. Journal of Applied Mechanics, 1997, 64(4): 861-870.
    [102] Gunther F.C., Liu W.K. Implementation of boundary conditions for Meshless methods [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1): 205-230.
    [103] Liu W.K., Li S., Belytschko T. Moving least-square reproducing kernel method. Part I: Methodology and convergence [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 143(4): 422-433.
    [104] Liu W.K., Li S. Moving least-square reproducing kernel method. Part II: Fourier analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(2): 159-193.
    [105] Liu W.K., Jun S., Li S.F., et al. Reproducing kernel particle methods for structure dynamics [J]. International Journal for Numerical Methods in Engineering, 1995, 38(10): 1655-1679.
    [106] Liu W.K., Jun S., Sihling D. T., et al. Multiresolution reproducing kernel particle method for computational fluid dynamics [J]. International Journal for Numerical Methods in Fluids, 1999, 24(12): 1391-1415.
    [107] Gunther F.C., Liu W.K, Diachin D., el at. Multi-scale meshfree parallel computations for viscous, compressible flows [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(3): 279-303.
    [108] Wagner G.J., Liu W.K. Turbulence simulation and multiple scale subgrid models [J]. Computational Mechanics, 2000, 25(2): 117-136.
    [109] Liu W.K., Hao S., Belytschko T., et al. Multiple scale meshfree methods for damage fracture and localization [J]. Computational materials science, 1999, 16(1): 197-205.
    [110] Jun S., Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation [J]. Computational Mechanics, 2000, 25(2): 257-266.
    [111] Lee S.H., Kim H.J., Jun S. Two scale meshfree method for the adaptivity of 3-D stress concentration problems [J]. Computational Mechanics, 2000, 26(4): 376-387.
    [112] Donning B.M., Liu W.K. Meshless methods for shear-deformable beams and plates [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 47-71.
    [113] Aluru N.R. A reproducing kernel particle method for meshless analysis of microelectromechanical systems [J]. Computational Mechanics, 1999, 23(4): 324-338.
    [114] Chen J.S, Yoon S, Wang H., et al. An improved reproducing kernel particle method for nearly incompressible finite elasticity [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1): 117-145.
    [115] Chen J.S., Wang H.P., Yoon S., et al. Some recent improvement in meshfree methods for incompressible finite elasticity boundary value problems with contact [J]. Computational Mechanics, 2000, 25(2): 137-156.
    [116] Li S., Hao W., Liu W.K. Numerical simulations of large deformation of thin shell structures using meshfree methods [J]. Computational Mechanics, 2000, 25(2): 102-116.
    [117] Chen J.S., Pan C., Roque C., et al. A lagrangian reproducing kernel particle method for metal forming analysis [J]. Computational Mechanics, 1998, 22(3): 289-307.
    [118] Chen J.S., Roque C.M.O.L., Pan C., et al. Analysis of metal forming process based on Meshlessmethod [J]. Journal of Materials Processing Technology, 1998, 80-81: 642-646.
    [119] Chen J.S., Pan C., Wu C.T., et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 195-227.
    [120] Ohs R.R., Aluru N.R. Meshless analysis of piezoelectric devices [J]. Computational Mechanics, 2001, 27(1): 23-36.
    [121] Duarte C.A., Oden J.T. Hp clouds: a Meshless method to solve boundary-value problems [R]. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics. University of Texas at Austin, 1995.
    [122] Duarte C.A., Oden J.T. An adaptive h-p method using clouds [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 237-262.
    [123] Duarte C.A., Oden J.T. Hp clouds: a h-p Meshless method [J]. Numerical Methods for Partial Differential Equations, 1996, 12(6): 673-705.
    [124] Mendoncca P.T.R., Barcellos C.S., Duarte A. Investigations on the hp-cloud method by solving Timoshenko beam problems [J]. Computational Mechanics, 2000, 25(2): 286-295.
    [125] Garcia O., Fancello E.A., et al. Hp-clouds in Mindlin’s thick plate model [J]. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1381-400.
    [126]刘欣,朱德懋,陆明万,等.平面裂纹问题的h, p, hp型自适应无网格方法的研究[J].力学学报, 2000, 32(3): 308-318.
    [127] Oden J.T., Duarte C.A., Zienkiewicz O.C. A new cloud-based hp finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 153(1): 117-126.
    [128] Liszka T.J., Duarte C.A., Tworzydlo W.W. Hp-meshless cloud method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 263-288.
    [129] Melenk J.M., Babuska I. The partition of unity finite element methods: Basic theory and application [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 263-288.
    [130] Babuska I., Melenk J.M. The partition of unity methods [J]. International Journal for Numerical Methods in Engineering, 1997, 40(4): 727-758.
    [131] Liu X., Lu M.W., Zhang X. Numerical analysis of singular problems using the partition of unity method [A]. European Conference on Computational Mechanics (ECCM’99) [C]. Munchen, Germany, 1999.
    [132] Strouboulis T., Babuska I., Copps K. The design and analysis of the generalized finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1): 43-69.
    [133] Duarte C.A., Babuska I., Oden J.T. Generalized finite element methods for three-dimensional structural mechanics problems [J]. Computers and Structures, 2000, 77(2): 215-232.
    [134] Duarte C.A., Hamzeh O.N., Liszka T. J., et al. A generalized finite element method for simulation of three-dimensional dynamic crack propagation [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(15): 2227-2262.
    [135] Dolbow J., Moes N., Belytschko T. Discontinuous enrichment in finite element with a partition of unity method [J]. Finite Element in Analysis and Design, 2000, 36(3): 235-260.
    [136] Onate E., Tdelsohn S., Zienkiewicz O.C., et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow [J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3839-3866.
    [137] Onate E., Tdelsohn S., Zienkiewicz O.C., et al. A stabilized finite point method for analysis offluid mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 315-346.
    [138] Onate E., Tdelsohm S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems [J]. Computational Mechanics, 1998, 21(4): 283-292.
    [139] Song K.Z., Zhang X., Lu W.M. Meshless method based on collocation for elasto-plastic analysis [A]. Proceedings of Internal Conference on Computational Engineering and Science [C]. Los Angels, USA, Augest 20-25, 2000.
    [140] Zhu T., Zhang J., Atluri S.N. A local boundary integral equation (LBIE) method in computational mechanics, and a Meshless discretization approach [J]. Computational Mechanics, 1998, 21(3): 223-235.
    [141] Zhu T., Zhang J., Atluri S.N. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems [J]. Computational Mechanics, 1998, 22(2): 174-186.
    [142] Atluri S.N., Sladek J., et al. The local boundary integral equation (LBIE) and its Meshless implementation for linear elasticity [J]. Computational Mechanics, 2000, 25(2): 180-198.
    [143] Atluri S.N., Zhu T. A new Meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics, 1998, 22(2): 117-127.
    [144] Atluri S.N., Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics [J]. Computational Mechanics, 2000, 25(2): 169-179.
    [145] Atluri S.N., Cho J.Y., Kim H.G. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations [J]. Computational Mechanics, 1999, 24(5): 334-347.
    [146] Atluri S.N., Kim H.G., Cho J. Y. A critical assessment of the truly Meshless Local Petrov- Galerkin (MLPG) and local Boundary Integral Equation (LBIE) method [J]. Computational Mechanics, 1999, 24(5): 348-372.
    [147] Zhu T., Atluri S.N. Modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method [J]. Computational Mechanics, 1998, 21(3): 211-222.
    [148] Liu G.R., Gu Y.T. Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary elelment approaches [J]. Computational Mechanics, 2000, 26(6): 536-546.
    [149] Amaratunga K., Williams J.R. Wavelet-Galerkin Solutions for One-dimensional Partial Differential Equation [J]. International journal for numerical methods in engineering, 1994, 37(16): 2703-2716.
    [150] Kurdila A.J., Sun T., Grama P. Affine fractal interpolation functions and wavelet-based finite elements [J]. Computational Mechanics, 1995, 17(3): 169-185.
    [151] Juan M.R., Gary K. Wavelet-Galerkin discretization of hyperbolic equations [J]. Journal of Computational Physics, 1995, 122(1): 118-128.
    [152] Sonia M., Elsa C. Convergence estimates for the wavelet Galerkin method [J]. SIAM Journal on Numerical Analysis,, 1996, 33(1): 149-161.
    [153] Ko J., Kurdila A.J. On the conditioning of numerical boundary measures in wavelet Galerkin methods [J]. Communication In Numerical Methods In Engineering, 1996, 12(5): 281-294.
    [154] Oleg V., Samuel P., Mihir S. A multilevel wavelet collocation method for solving partial differential equation in finite domain [J]. Journal of Computational Physics, 1995, 120(1): 33-47.
    [155]刘洋,陈勇,陆明万.塑性变形局部化的小波模拟[J].计算力学学报, 1997, 14(增刊): 745-748.
    [156] Oleg V., Samuel P. A Dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain [J]. Journal of Computational Physics, 1996, 125(2): 498-512.
    [157] Venini P., Morana P. An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model: 1D problem [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(42): 5619-5638.
    [158] Yagawa G., Yamada T. Free mesh method: a new meshless finite element method [J]. Computational Mechanics, 1996, 18(5): 383-386.
    [159] Mukherjee Y.X., Mukherjee S. On the boundary conditions in the element-free Galerkin method [J]. Computational Mechanics, 1997, 19(4): 264-270.
    [160] Mukherjee Y.X., Mukherjee S. The boundary node methods for potential problems [J]. International Journal for Numerical Methods in Engineering, 1997, 40(6): 797-815.
    [161] Sukuma N., Moran B., Belytschko T. The natural element method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839-887.
    [162] Braum J., Sambridge M. A numerical method for solving particle differential equations on highly irregular evolving grids [J]. Nature, 1995, 376(6542): 655-660.
    [163]周维垣,寇晓东.无单元法及其工程应用[J].力学学报, 1998, 30(2): 193-202.
    [164]寇晓东,周维垣,沈大利,等.无单元法在小湾拱坝开裂计算中的应用[J].云南水力发电, 2000, 16(1): 71-76.
    [165]寇晓东,周维垣.应用无单元法追踪裂纹扩展[J].岩土力学与工程学报, 2000, 19(1): 18-23.
    [166]寇晓东,周维垣.应用无单元法近似计算拱坝开裂[J].水利学报, 2000, (10): 28-35.
    [167] Buhmann M.D. Multivariable interpolation using radial basis functions [D]. University of Cambridge, 1989.
    [168] Powell M.D.J. The Theory of Radial Basis Function Approximation in 1990 [M]. Advances in Numerical Analysis, Clarendon Press, Oxford, 1992. 2: 105-210.
    [169]吴宗敏.函数的径向基表示[J].数学进展, 1988, 27(3): 202-208.
    [170] Wu Z.M. Compactly supported positive definite radial functions [J]. Advances in Computational Mathematics, 1995, 4(1): 283-292.
    [171] Dual M.R. Construction of three-dimensional black-hole initial data via multiquadric [J]. Physics Review D, 1992, 45(4): 1178-1187.
    [172] Sun X. Conditional positive definite functions and their application to multivariate interpolations [J]. Journal of Approximation Theory, 1993, 74(2): 159-180.
    [173] Wu Z., Schaback R. Local error estimates for radial basis function interpolation of scattered data [J]. SIAM Journal of Numerical Analysis, 1993, 13(1): 13-27.
    [174] Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degrees [J]. Advances in Computational Mathematics, 1995, 4(1): 389-396.
    [175] Buhmann M.D. Radial functions on compact support [A]. Proceedings of the Edinburgh Mathematical Society [C]. 1998, 41: 3-46.
    [176] Song K.Z., Zhang X., Lu M.W. Collocation with Modified Compactly Supported Radial Basis Functions [A]. Proceedings of International Conference on Computational Engineering and Sciences [C]. Puerto Vallarta, 2001. 19-25.
    [177]宋康祖,张雄,陆明万.紧支距离函数配点法[J].强度与环境, 2000, 1(增刊): 52-57.
    [178]张雄,宋康祖,陆明万.紧支试函数加权残量法[J].强度与环境, 2000, 1(增刊): 58-63.
    [179] Zhang X., Liu X.H., Song K.Z., et al. Least-square collocation meshless method [J]. InternationalJournal for Numerical Methods in Engineering, 2001, 51(9): 1089-1100.
    [180]张雄,胡炜,潘小飞,等.加权最小二乘无网格法[A].中国计算力学大会2001论文集[C].广州: 2001. 333-338.
    [181] Zhang X., Song K.Z., Lu M.W., Liu X. Meshless methods based on collocation with radial basis functions [J]. Computational Mechanics, 2000, 26(4): 333-343.
    [182] Zhang X., Song K.Z., Lu M.W. Hermite type collocation with radial basis functions [A]. Proceedings of International Conference on Computational Engineering and Sciences [C]. Los Angels, USA, August, 2000. 20-25.
    [183] Hon Y.C., Lu M.W., Xue W.M., et al. Multiquadric method for the numerical solution of a biphasic mode [J]. Applied Mathematics and Computation, 1997, 88(2): 153-175.
    [184] Zhang X., Liu X., Lu M.W., Chen Y. Imposition of essential boundary conditions by displacement constraint equations in meshless methods [J]. Communications in Numerical Methods in Engineering, 2001, 17(3): 165-178.
    [185]宋康祖.紧支函数无网格方法研究[D].北京:清华大学, 2000.
    [186] Zhang X., Lu M.W., Wegner J.L. A 2-D Meshless model for jointed rock structures [J]. International Journal for Numerical Methods in Engineering, 2000, 47(10): 1649-1661.
    [187]庞作会,葛修润,郑宏,等.一种新的数值方法-无网格伽辽金法(EFGM) [J].计算力学学报, 1999, 16(3): 320-329.
    [188]庞作会,葛修润,王水林.无网格伽辽金法(EFGM)在边坡开挖问题中的应用[J].岩土力学, 1999, 20(1): 61-64.
    [189]庞作会,葛修润,王水林,等.对无网格伽辽金法(EFGM)的两点补充[J].岩土力学与工程学报, 1999, 16(3): 320-329.
    [190]张建辉,邓安福.无单元法在筏板基础计算中的应用[J].岩土工程学报, 1999, 21(6): 691-695.
    [191]张建辉,邓安福.无单元法在弹性地基板计算中的应用[J].重庆建筑大学学报, 1999, 21(2): 84-88.
    [192]陈建,吴林志,杜善义.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J].工程力学, 2000, 17(5): 139-144.
    [193]张伟星,庞辉.弹性地基板计算的无单元法[J].工程力学, 2000, 17(3): 138-144.
    [194]张伟星,庞辉.无单元法分析弹性地基板[J].力学与实践, 2000, 22(3): 38-41.
    [195]李卧东,王元汉,陈晓波.模拟裂纹传播的新方法-无网格伽辽金法[J].岩土力学, 2001, 22(4): 33-36.
    [196]方电新,李卧东,王元汉.用无网格法计算平板弯曲问题[J].岩土力学, 2001, 22(3): 347-349.
    [197]李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用[J].固体力学学报, 2001, 22(4): 361-366.
    [198] Wang Y.H., Li W.D. Parametric study for an efficient meshless method in vibration analysis [J]. Journal of Sound and Vibration, 2002, 255(2): 261-279.
    [199]骆少明,蔡永昌,张湘伟.面向对象的无网格伽辽金法[J].机械工程学报, 2000, 36(10): 23-26.
    [200]田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究[D].大连:大连理工大学, 2000.
    [201]何沛祥,李子然,吴长春.无网格法与有限元的耦合及其对功能梯度材料断裂计算的应用[J].中国科学技术大学学报, 2001, 31(6): 673-680.
    [202]袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学, 2002, 19(1): 25-28.
    [203]张湘伟,蔡永昌.一种改进的无单元法[J].计算力学学报, 2002, 19(1): 26-30.
    [204]周忠瑞,周小平,缪冰.具有自适应影响半径的无单元法[J].工程力学, 2001, 18(6): 94-99.
    [205]龙述尧,许敬晓.弹性力学问题的局部边界积分方程方法[J].力学学报, 2000, 32(5): 566-578.
    [206]龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报, 2001, 33(4): 508-517.
    [207]龙述尧.用无网格局部Petrov-Galerkin法分析弹性地基上的梁[J].湖南大学学报(自然科学版), 2001, 28(5): 11-15.
    [208]龙述尧.用无网格局部Petrov-Galerkin法分析非线性地基梁[J].力学季刊, 2002, 23(4): 547-551.
    [209]刘欣.无网格数值方法研究[D].南京:南京航空航天大学, 1998.
    [210]刘欣,朱德懋,陆明万,等.基于流形覆盖思想的无网格方法的研究[J].计算力学学报, 2001, 18(1): 21-27.
    [211] Zhang J. M., Yao Z. H. A new regular meshless hybrid boundary method [A]. Proceedings of the first MIT Conference on Computational Fluid and Solid Mechanics [C]. Elsevier, 2001.
    [212]张见明,姚振汉.一种新型无网格法-杂交边界法[A].中国计算力学大会2001会议论文集[C].广州: 2001. 339-343.
    [213]秦荣.样条无网格法[A].中国计算力学大会2001会议论文集[C].广州: 2001. 327-332.
    [214]张锁春.光滑质点流体动力学(SPH)方法综述[J].计算物理, 1996, 13(4): 385-397.
    [215]贝新源,岳宗武.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理, 1997, 14(2): 155-166.
    [216]徐志宏,汤文辉,罗永. SPH算法在高速侵彻问题中的应用[J].国防科技大学学报, 2005, 27(4): 41-44.
    [217]崔伟峰,曾新吾. SPH算法在超高速碰撞数值模拟中的应用[J].国防科技大学学报, 2007, 29(2): 40-46.
    [218]蔡清裕,崔伟峰,向东,等.模拟刚性动能弹丸侵彻混凝土的FE-SPH方法[J].国防科技大学学报, 2003, 25(6): 87-90.
    [219]毛益明,武文远,陈广林,等.高速碰撞问题的SPH方法模拟[J].解放军理工大学学报(自然科学版), 2003, 4(5): 84-88.
    [220]宋顺才,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击, 2003, 23(1): 56-60.
    [221]宋顺成,李国斌,才鸿年,等.战斗部对混凝土先侵彻后爆轰的数值模拟[J].兵工学报, 2006, 27(2): 230-234.
    [222]王肖钧,张刚明,刘文韬,周钟.弹塑性波计算中的光滑粒子法[J].爆炸与冲击, 2002, 22(2): 97-103.
    [223]张刚明,王肖钧,王元博,等.高速碰撞数值计算中的光滑粒子法[J].计算物理, 2003, 20(5): 447-454.
    [224]贾光辉,黄海,胡震东.超高速撞击数值仿真结果分析[J].爆炸与冲击, 2005, 25(1): 47-53.
    [225]闫晓军,张玉珠,聂景旭.空间碎片超高速碰撞数值模拟的SPH方法[J].北京航空航天大学学报, 2005, 31(3): 351-354.
    [226]季顺迎,岳前进.辽东湾区域性漂移海冰的SPH数值模拟[J].水利水运工程学报, 2001, 4: 8-16.
    [227]宗智,邹丽,刘谋斌,王喜军.模拟二维水下爆炸问题的光滑粒子(SPH)方法[J].水动力学研究与进展(A辑), 2007, 22(1): 61-67.
    [228]韩旭,杨刚,龙述尧. SPH方法在两相流动问题中的典型应用[J].湖南大学学报(自然科学版), 2007, 34(1): 28-32.
    [229]杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸[J].工程力学, 2008, 25(4): 204-208.
    [230]徐立,孙锦山.一维激波管问题的SPH模拟[J].计算物理, 2003, 20(2): 153-156.
    [231]汤文辉,毛益明. SPH数值模拟中固壁边界的一种处理方法[J].国防科技大学学报, 2001, 23(6): 54-57.
    [232]宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展, 2000, 30(1): 55-65.
    [233]张雄,宋康祖,陆明万.无网格法的研究进展及其应用[A].中国计算力学大会2001论文集[C].广州: 2001. 112-121.
    [234]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报, 2003, 20(6): 730-742.
    [235]曹国金,姜弘道.无单元法研究和应用现状及动态[J].力学进展, 2002, 32(4): 526-534.
    [236]孟闻远,卓家寿.无网格的崛起与进展-一种新兴的数值方法评述[J].河海大学学报, 1999, 27(力学专辑): 51-58.
    [237]贾高顺,王晓光,梁利华,马修彦.无网格方法的应用前景[J].科技通报, 2003, 19(5): 360-364.
    [238] Dyka C. T., Randles P.W., Ingel R.P. Stress points for tension instability in smoothed particle hydrodynamics [J]. International Journal of Numerical Methods in Engineering, 1997, 40(13): 2325-2341.
    [239] Randles P. W., Libersky L. D. Normalized SPH with stress points [J]. International Journal of Numerical Methods in Engineering, 2000, 48(10): 1445-1462.
    [240] Guenther C., Hicks D. L., Swegle J. W. Conservative smoothing verse artificial viscosity [R]. Sandia National Lab., ALB. NM 87485, 1994.
    [241] Swegle J. W., Attaway S. W., Heinstein M. W., etc. An analysis of smoothed particle hydrodynamics [R]. Sandia National Lab., ALB. NM 87185, 1994.
    [242] Randles P. W., Libersky L. D. Normalized SPH with stress points [J]. International Journal of Numerical Methods in Engineering, 2000, 48(10): 1445-1462
    [243] Chen J. K., Beraun J. E. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1): 225-239.
    [244] Liu M. B., Liu G. R., Lam K. Y. A one dimension meshfree particle formulation for simulating shock wave [J]. Shock Waves, 2003, 13(3): 201-211.
    [245] Liu M. B., Liu G. R., Lam K. Y. Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength [J]. Shock Waves, 2006, 15(1): 21-29.
    [246] Backman M. E., Goldsmith W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1-108.
    [247] Lacerda D, Lacome Jean-Luc. Simulations of hypervelocity impacts with smoothed particle hydrodynamics [R]. DYNALIS Report, Paris, France, 2003.
    [248]殷玉树,周海亭,王世福,等.新型汽车碰撞能量吸收器[J].汽车工程, 2006, 28(7): 656-658.
    [249] Geers T. L. Doubly asymptotic approximations for transient motion of submerged structure [J]. Journal of the Acoustical Society of America, 1978, 64(5): 1500-1508.
    [250]弓三伟,任丽芸,刘火星,等.汽轮机末级转子叶片流固耦合计算[J].热力透平, 2007, 36(13), 153-157.
    [251] Zhao S Z, Xu X Y, Collins M W. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 2: development of coupled fluid-solid algorithms [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998, 212(4): 241-252.
    [252] Abramson H. The dynamic behavior of liquid in moving containers [R]. NASA SP-106, 1966.
    [253] Housner G. M. Dynamic pressure on accelerated fluid containers [J]. Bulletin of the Seismological Society of America, 1957, 47(1): 15-35.
    [254] Housner G. M. The dynamic behavior of water tanks [J]. Bulletin of the Seismological Society of America, 1963, 53(2): 381-387.
    [255]汤晓昀,包光伟.柔性贮箱内液体晃动的分析模型[J].上海交通大学学报, 2004, 38(8): 1412-1416.
    [256] Veletsos Anestis S. Seismic effects in flexible liquid storage tanks [A]. Proceedings 5th World Conference on Earthquake Engineering. Rome, Italy, 1974, 1: 630-639.
    [257] Haroun M. A. Dynamic characteristic of liquid storage tanks [J]. Journal of the Engineering Mechanics Division ASCE, 1982, 108(5): 783-800.
    [258] Nash W. A. Response of liquid storage tanks to seismic motion [A]. Keiter W. T., et al. Theory o f shells, North Holland Publishing Company, 1980, 393-403.
    [259] Liu W. K. Finite element procedure for fluid-structure interactions and application to liquid storage tanks [J]. Nuclear Engineering and Design, 1981, 65(2): 211-238.
    [260] Donea J. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems [J]. Tans. SMIRT-4, Paper B1/2, USA, 1977, 15-19.
    [261]陈夫荛.分层流体和大晃动流固耦合问题的动力分析[D].清华大学工程力学系, 1995.
    [262]王建军.块堆主容器流固耦合问题的数值分析[D].清华大学工程力学系, 1998.
    [263]岳宝增,王照林.非线性晃动的ALE边界元方法[J].宇航学报, 1998, 19(1): 1-7.
    [264]李政,金先龙,陈向东.柔性储液容器跌落碰撞仿真方法的研究[J].振动与冲击, 2007, 26(8): 72-75.
    [265] Babu S.S., Bhattacharya S.K. Finite element analysis of fluid-structure interaction effect on liquid retaining structure due to soloshing [J]. Computers and Structures, 1996, 59(6): 1165-1171.
    [266] Meywerk M., Decker F., Cordes J. Fluid-structure interaction in crash simulation [J]. Journal of Automobile Engineering, 2000, 214(7): 669-673.
    [267] Anghileri M., Castelletti L., Maurizio T. Fluid-structure interaction of water filled tank during the impact with the ground [J]. International Journal of Impact Engineering, 2005, 31(3): 235-254.
    [268] Yoshikawa S., Williams E., Washburn K. B. Vibration of two concentric submerged cylindrical shells coupled by the entrained fluid [J]. Journal of the Acoustical Society of America, 1994, 95(6): 3273-3286.
    [269]吴文伟,吴崇健,沈顺根.双层加肋圆柱壳振动和声辐射研究[J].船舶力学, 2002, 6(1): 44-51.
    [270]金广文,姜荣俊,陈美霞,等.基于速度场重构的双层加肋圆柱壳体模态分析[J].武汉理工大学学报, 2006, 30(2): 269-271.
    [271]陈越澎,骆东平,陈晓宁,等.流场中双层壳体结构振动特性研究[J].华中理工大学学报, 1999, 27(1): 72-73.
    [272] H. Zheng, G. R. Liu, J. S. Tao, et al. FEM/BEM analysis of diesel piston-slap induced ship hull vibration and underwater noise [J]. Applied Acoustics, 2001, 62(4): 341-358.
    [273] Everstine G. C., Henderson F. M. Coupled finite element / boundary element approach forfluid-structure interaction [J]. Journal of the Acoustical Society of America, 1990, 87(5): 1938-1947.
    [274]徐张明,汪玉,华宏星,等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船, 2002, 43(4): 39-44.
    [275] Lundstrom E. A. Structural response of flat panels to hydraulic ram pressure loading [R]. AD-A200410, 1988.
    [276] Santini P. D., Marchetti M. Numerical simulation of fluid-structure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration [R]. ICAS-98-4, 3, 1, 1998.
    [277]李亚智,陈钢.充液箱体受弹丸撞击下动态响应的数值模拟[J].机械强度, 2007, 29(1): 143-147.
    [278]孙荣,吴晓光,姜治芳,等.带自由面船体绕流场数值模拟[J].中国舰船研究, 2008, 3(2): 1-3.
    [279] C. Ciortan, J. Wanderley, C. G. Soares. Turbulent free-surface flow around a wigley hull using the slightly compressible flow formulation [J]. Ocean Engineering, 2007, 34(10): 1383-1392.
    [280] M. J. Ketabdari, M. R. H. Nobari, M. M. Larmaei. Simulation of wave group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment [J]. Applied Ocean Research, 2008, 30(2): 130-143.
    [281]洪方文.自由面附近运动物体流场的数值与实验研究[D].中国船舶科学研究中心, 2001.
    [282] Soulaimani A., Saad. Y. An arbitrary Lagrangian-Eulerian finite element method for solving three-dimension free surface flows [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 162(1): 79-106.
    [283] Braess H., Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis of the free surface flow [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1): 95-109.
    [284] Zhao M., Cheng L., A. H. Hongwei. A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed [J]. Journal of hydrodynamics, Ser. B, 2006, 18(3): 139-145.
    [285]温坤,李书.返回舱入水冲击数值建模与响应分析[J].飞机设计, 2007, 27(6): 19-23.
    [286]罗宁.三维结构撞水的流固耦合动力响应分析[D].华中科技大学, 2005.
    [287] L. D. Sigalotti, J. Klapp, E. Sira, et al. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers [J]. Journal of Computational Physics, 2003, 191(2): 622-638.
    [288]毛益明,汤文辉.自由表面流动问题的SPH方法数值模拟[J].解放军理工大学学报, 2001, 2(5): 92-94.
    [289]杜小弢,吴卫,龚凯,等.二维滑坡涌浪的SPH方法数值模拟[J].水动力学研究与进展, Ser. A, 2006, 21(5): 579-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700