用户名: 密码: 验证码:
塔里木盆地中央隆起带隆坳格局变迁及其构造控制机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然目前对塔里木盆地中央隆起带断裂系统和隆起构造都有很多卓有成果的研究,但系统的针对断裂在隆起形成、演化过程中的作用,以及断裂系统的活动对盆地隆坳格局变迁的影响研究比较少,并且对断裂系统的分期配套也存在很大的争议,因此,本文从塔里木盆地中央隆起带断裂系统分析入手,在精细地震剖面地质构造解释的基础上,综合运用剥蚀量恢复、构造演化剖面、沉降史分析和隆坳格局制图等方法,研究断裂系统在中央隆起带的形成演化、盆地的隆坳格局变迁及塔里木海相克拉通盆地演化过程中的作用,取得了以下主要研究进展和认识成果:
     1.提出了塔里木盆地构造变形样式分类体系。
     在地震剖面的精细解释的基础上,对塔里木盆地中央隆起带主要断裂及相关褶皱的几何学特征进行了详细的描述和分析。研究区发育了丰富的、以逆断层为主的构造变形样式:从变形层次上来看,基底卷入型和盖层滑脱型构造均有发育,后者主要发育在具有膏泥岩层发育的部位,而在基底抬升较高的部位,基底卷入型的变形构造普遍发育;从变形机制来看,伸展、走滑和挤压构造变形均有发育,但是以挤压构造的发育为主;从演化过程来看,早期的伸展或挤压构造在后期的变形中可以发生正反转或负反转,形成不同类型的反转构造;基于上述因素的综合分析,提出了塔里木盆地中央隆起带构造变形样式分类体系,将研究区的断裂构造样式分为:挤压构造样式、伸展构造样式、走滑构造样式、反转构造样式等四大类,进一步又分出20小类,各种构造样式互相叠加复合改造可形成复杂的组合类型。
     2.系统开展了中央隆起带断裂体系的分期配套研究,确定了主要断裂的发育期次和形成世代。
     通过详细的地震剖面解释,以及各个断层之间、断层与不整合界面及生长地层之间的相互关系等的综合分析,将塔里木盆地中央隆起带主要断裂体系划分为中加里东Ⅰ幕(早奥陶世末)、Ⅱ幕(晚奥陶世末)和喜山中晚期(中新世末以来)三期大规模的断裂系统。
     (1)中加里东Ⅰ幕断裂系统:主要分布于塔中隆起区,由塔中Ⅰ号、22号、2号、10号和吐木休克-巴东断裂带深部断裂组成。总体呈北西西向,平面上向东收敛,向西撒开而形成“帚状断裂体系”。其中塔中Ⅰ号断裂带为主干断裂,也是塔中隆起的北部边界断裂,在西段与其南侧的塔中22号背冲形成“冲起构造”,东段断层产状平缓,反冲构造不发育,在其上盘发育断弯褶皱,使得塔中隆起构造样式具有显著的东西分异的特点。
     (2)中加里东Ⅱ幕断裂系统:主要分布于塔中隆起南缘、塘古巴斯坳陷及塔东隆起区南部边界部位;车尔臣深部断裂该时期形成,以逆冲推覆为主,兼有一定的走滑性质,形成了一套近北东走向的断裂系统。与此同时,塔中隆起上中加里东Ⅰ幕发育的北西向断裂系统发生继承性压扭活动,隆起遭受改造而进一步隆升;在塔中隆起南缘及塘古巴斯坳陷,形成了一系列北东-北北东向断裂系,如玛东-塘北断裂带、塔中8井断裂、中3井断裂带、塔中5号断裂、塘古巴斯1号断裂带以及塘古巴斯叠瓦状冲断系等,组成的向北北西凸出的弧形断裂构造带。其中塘古巴斯1号断裂带、中3井断裂和塔中5号断裂带共同构造了塘古巴斯冲断系的锋缘断裂,延伸到塔中隆起区并叠加到早期断裂系统之上。早期断裂系统构造变形的东西差异直接导致了该套断裂系统对其叠加作用方式在不同构造部位具有明显的不同。西段,在锋缘断裂(塘古巴斯1号、中3井断裂)之前发育了一套反向逆冲断裂,如塘北断裂带,塔中8井断裂等,并与锋缘断裂对冲形成“逆冲三角构造”样式;东段锋缘断裂(塔中5号断裂)则沿着早期塔中Ⅰ号断裂带上盘断弯褶皱后翼冲断并叠加其上。形成单向逆冲断裂。塔东地区断裂发育规模较小,主要表现为其南侧的车尔臣断裂带强烈活动。
     (3)喜山中晚期断裂系统:主要分布于中央隆起带西段的巴楚隆起区。走向由巴楚隆起东段近北西西向向西转为北西向,产状一般较陡,具压扭性质,直接控制着巴楚断块隆起及其内部构造单元的形成。在巴楚隆起南缘,发育一条大规模的沿古近纪滑脱的逆冲推覆断裂带色力布亚-玛扎塔格断裂带,该断裂往南可追踪至塔西南坳陷南部西昆仑山前冲断带(冲断带主要由双重逆冲构造或叠瓦状逆冲构造组成),往西延延伸可能与喀什断层相连,两者共同构成了现今塔西南前陆冲断系的锋缘断裂。
     在此基础上,根据断裂组合样式,将中央隆起带锋缘断裂系统划分为三种构造样式类型:①背冲式-由两侧逆冲断层背冲组成;②对冲式-由锋缘断裂反冲断裂组成。主要发育于塔中隆起南缘,由塘古巴斯冲断系锋缘断裂带(塘古巴斯1号、中3井断裂)与塔中南缘反冲断裂带(玛东-塘北断裂带、塔中8井断裂带)对冲组成,二者之间发育逆冲三角构造带。在巴楚隆起南缘局部也发育该类型构造组合,色力布亚-玛扎塔格浅层断裂带与继承性活动的康塔库木、色力布亚断裂构造反冲构造组合;③单冲式-由单条逆冲断裂及其断层传播褶皱组合。主要发育塔中隆起东段(塔中5号断裂带)和巴楚隆起南缘(色力布亚-玛扎塔格浅层断裂)。
     3.分析了中央隆起带构造演化过程,突出了隆起的发育演化过程中断裂的重要控制作用,建立了中央隆起带发育的断裂控制模式。
     在采用地质外推法对主要不整合界面进行剥蚀量恢复的基础上,编制了6条跨各隆起构造单元的构造演化剖面,来分析中央隆起带构造演化过程,结果表明,中央隆起带是一个由结构样式和构造演化皆不相同的隆起构造组成的结构复杂的复合式隆起。每个隆起单元都经历了复杂的演化过程。其中巴楚隆起经历了加里东中晚期周缘前陆盆地隆后斜坡、海西-燕山期前陆隆起、喜山中晚期最终定型为挤压断隆的演化阶段;塔中隆起形成于中加里东Ⅰ幕构造运动,至中加里东Ⅱ幕构造运动定型;塔东隆起形成于加里东Ⅱ幕构造运动并基本定型。
     结合断裂系统的构造演化分析表明,断裂系统的形成演化对隆起的形成、改造和定型具有十分重要的控制作用,主要表现在以下几个方面:
     (1)断裂活动控制了隆起的构造样式。中央隆起带断裂系统组合类型丰富,也导致其所形成的隆起类型多样。本文从断裂组合样式及其对隆起形成的控制角度,将中央隆起带隆起构造分为背冲式、断弯褶皱型和欺压式古隆起:①背冲式古隆起是由两侧逆冲断层背冲形成,隆起以断块的形式隆升,巴楚隆起和塔中隆起西段都属于这个类型;②断弯褶皱式古隆起是由产状较缓的坡坪式逆冲断层在其上盘发育断弯褶皱而形成的古隆起。该类型古隆起主要发育于塔中隆起东段,由塔中Ⅰ号断裂带形成,后经塔中5号断裂带冲断改造;③欺压式古隆起是本文新定义的一种古隆起的类型,它是由逆冲断层侧向挤压形成的背斜控制的古隆起,不过与前面两种类型不同的是,该类型古隆起位于主控逆断层的下盘。塔东隆起可能属于这种类型。
     (2)断裂系统的活动对古隆起的改造作用。塔里木盆地中央隆起带大部分隆起构造都经历了复杂构造改造作用才最终定型。除了早期断裂一定程度的复活外,中央隆起带各断裂系统之间还发育了其它多种叠加改造方式。本文根据断裂活动对古隆起的改造方式,将改造类型分为复式背冲型、褶皱型和叠加冲断型三种类型:①复式背冲型改造主要是指早期背冲型隆起内部发育次一级的背冲构造,是隆起内部进一步冲起抬升,巴楚隆起中西部常发育此种类型。早期断裂背冲控制了隆起的形成演化和构造形态,如色力布亚-玛扎塔格断裂与吐木休克断裂等;后期次一级断裂背冲控制了隆起内部构造单元的形成;②褶皱型改造是指早期控制隆起形成的断裂后期活动性弱,隆起整体以褶皱的形式发生隆升改造。该类型主要发育在塔中隆起西段。早奥陶世末,塔中Ⅰ号、22号断裂活动控制了塔中断块隆起的形成;晚奥陶世末,隆起南部逆冲断裂强烈活动,塘古巴斯断裂系锋缘断裂逆冲至塔中隆起南缘,并形成对冲构造样式。在强烈的挤压应力作用下,塔中隆起早期断裂活动性并不明显,而是整体以褶皱变形的方式隆升,地震剖面上志留纪地层由两侧向隆起区上超尖灭,隆起顶部发育削顶特征;③叠加冲断式改造作用常发生于早期隆起形态比较宽缓,后期逆冲断层沿着隆起的缓翼冲断叠加与早期隆起之上。本地区主要发育在塔东隆起东段,早奥陶世末塔中Ⅰ号断裂活动,在其上盘发育断弯褶皱式隆起;晚奥陶世末,塔中5号断裂带沿着该褶皱后翼冲断,上盘发育断展褶皱,叠加于早期断弯褶皱之上,形成具有双重褶皱样式的古隆起。在巴楚隆起南缘,色力布亚-玛扎塔格浅层断裂带对巴楚隆起的改造也属于此类型。
     (3)断裂活动控制了隆起构造属性的演化。
     现今塔里木盆地发育的隆起基本上都是由断裂控制的断块隆起,但在隆起的构造演化过程中,隆起的形成与断裂的活动并非等时的。本文以巴楚隆起为例,结合盆地构造-沉积关系分析,提出挤压背景下隆起构造的发育经历了前陆隆起阶段和断隆阶段的演化变迁。①前陆隆起阶段:隆起以挠曲变形为主,不发育逆冲断层活动,隆起幅度较小,顶端遭受一定程度的剥蚀,其与造山带褶皱冲断系统之间为挠曲沉降控制的前渊,前渊内地层向前隆层层上超。②断隆阶段:随着造山带前锋不断向克拉通内的推进,前陆盆地系统的前渊和前隆逐渐被卷入强烈的侧向挤压变形,前渊区经历挤压进一步沉陷,凹陷的性质由早期的前渊转变为向斜式沉陷,而前隆区经历挤压而成断块式上升,因此遭受强烈的剥蚀。逆冲断层的发育是划分一个隆起区从前隆到断隆的转变的最显著的地质构造标志。
     4.详细分析了塔里木盆地隆坳格局变迁过程,系统地阐述了塔里木盆地隆坳格局变迁的规律及其断裂控制作用。
     在沉降史恢复的基础上,编制了各主要隆坳构造单元在不同演化阶段的沉降-隆升过程对比图,和主要演化阶段的隆坳格局平面图,结合区域构造演化剖面的分析表明,早奥陶世末、晚奥陶世末和喜山中晚期是塔里木盆地隆坳格局主要构造变革期:
     早奥陶世末中加里东Ⅰ幕构造运动,塔中Ⅰ号、22号等断裂带的开始活动,导致塔中隆起开始形成;塔西南山前古隆起形成,塔北古隆起可能也开始活动,塘古巴斯地区成为深坳陷;阿瓦提地区形成了相对低洼区并与发育深海槽沉积的满加尔坳陷相连,将塔中-塔西南古隆起与塔北古隆起分开,而塔中-塔西南古隆起又将阿瓦提坳陷与塘古巴斯坳陷分割开来。在东部塘古巴斯坳陷与满加尔坳陷相连。塔里木盆地隆坳相间构造格局形成;晚奥陶纪末中加里东Ⅱ幕构造运动塔里木盆地东南部断裂开始大规模活动,塔中隆起进一步隆升,塘古巴斯坳陷被抬升破坏成为隆起区,塔东隆起开始形成,塔西南古隆起持续隆升,塔北地区遭受挤压隆升;满加尔坳陷因两侧挤压开始萎缩,沉降中心向北迁移,并与阿瓦提坳陷相接形成一个近东西走向的坳陷区。整体上显示出南北向两隆夹一坳的构造格局。之后塔里木盆地东部的隆坳格局基本定型,虽遭后期多期沉降作用改造,构造格局面貌基本保持不变;喜山中晚期逆冲断裂的强烈活动,巴楚断块隆起的快速隆升,两侧的塔西南坳陷和阿瓦提坳陷快速沉降,隆坳构造格局更加显著并最终定型。综合以上分析表明,塔里木盆地中央隆起带三套断裂系的形成演化是塔里木盆地隆坳格局变迁的重要控制因素。
     5.通过分析塔里木海相克拉通盆地形成、解体和消亡过程,提出出塔里木盆地东部和西部两种海相克拉通盆地的发育演化模式并指出中央隆起带在解体过程中的作用。
     以中央隆起带断裂系统的形成演化及其对隆坳格局的变迁控制关系研究为切入点,综合大量前人对关于塔里木盆地沉积古地理的成果,将塔里木古生代海相克拉通盆地的演化过程为海相克拉通盆地的形成、解体和消亡(即陆内前陆和挤压坳陷形成)三个演化阶段。分析表明,中加里东Ⅰ幕断裂系统的发育揭开了海相盆地解体的进程,它直接控制了塔中隆起的形成,并将早期具有统一沉降背景的克拉通边缘坳陷盆地和克拉通内坳陷盆地分割为三个性质不同的坳陷盆地;加里东Ⅱ幕断裂系统的发育除了导致东部大规模隆起之外,还使得北部满加尔地区海相盆地急剧萎缩,之后虽然经历过海水入侵,但整体上东部处于隆起部位,海相盆地向西退缩,进入了消亡演化过程。西部解体过程整体表现为基本不受断裂控制塔西南古隆起和巴楚前陆隆起的形成,但由于整体处于东部抬升而导致的坳陷背景之下,发育海相沉积,对海相盆地解体的作用不显著。因此中加里东两期断裂系统的形成是塔里木海相克拉通解体的重要原因。
     6.探讨中央隆起带断裂系统形成机制,明确了中央隆起带各断裂系统动力学属性,划分了断裂系统的动力学分区
     综合大量前人研究成果表明,塔里木盆地箭寒武纪基底由南北塔木地体在新元古时期拼贴而成,拼贴过程中塔里木盆地中央隆起区存在一条近南北向展布的陆内造山带以及塔里木南部近北东向的岛弧碰撞造山带(中央造山带)。由于板块拼贴造成的基底薄弱区可能是中央隆起多期次大规模断裂系统发育的重要因素之一
     同时,在综合分析盆地内部断裂系统的几何学、运动学以及动力学特征的基础上,结合前人塔里木盆地周缘板块运动的研究,通过将周缘造山带的重大运动学重组事件与塔里木盆地内部不同时期发育的断裂系统相对比表明:中加里东Ⅰ幕断裂系统与早奥陶世末-中晚奥陶世早期古昆仑洋消减加剧并发生初始碰撞有关;中加里东Ⅱ幕断裂系统与古阿尔金洋东北支自早-中奥陶世开始俯冲消减,至晚奥陶世末大洋闭合并以北西向与塔里木板块发生碰撞相关;而喜山中晚期断裂系统则是中新世晚期,印、欧板块俯冲加剧,西昆仑山造山带加剧冲断和推覆在盆内的响应。这三套断裂系统的形成演化与北部的南天山造山带的演化关系不明显。因此将中央隆起带三套断裂系统进一步归属为与西昆仑造山带相关的断裂系统和与阿尔金造山带相关的断裂系统两个重要的断裂系统的动力学分区,初步建立了盆地周缘造山带演化与盆地内断裂系统发育的动力学关系。
This work was started with the detailed analysis of the faults systems of Central Uplift Belt in the Tarim Basin. Based on the accurate geological structure interpretation of the seismic profiles, with comprehensive application the recovering of denudation thickness, making tectonic evolution profiles, subdidence history analysis and uplift-depression tectonic framework analysis, and so on, this paper has determined the controlling actions of the fault systems in the evolution of the Central Uplift Belt, the transition of uplift-depression tectonic framework, and the evolution of Tarim marine craton basin. The main achievements of this paper are followes:
     1. Determined the classification system of the structure deforming styles in the Central Uplift Belt of Tarim Basin
     The geometry characters of the main fault belts and the related folds were detailed described and analyzed by the accurate interpretation of the seismic data. There are abundant different deforming styles, among of these the compressional structure style is the most significant one. Accoding to the degree of basement involved, the compressional structures can ben classified to basement-involved type and cover-decollement type. The latter style mainlydeveloped at the palce where gypsum mudstone existed; while the basement-involved structures widely developed in the higher position of the basement uplift.
     According to deforming mechanism, the extensional structures, strike-slip structures and compressional structures developed in the study area, but the compression structure type is the main one. Considered the tectonic evolution of these structures zone, the earlier extensional and compressional structures reversed and formed different structure styles at the later deforming periods. Based on the above integrated analysis, the classification system of the structure deforming styles in the Central Uplift Belt of Tarim Basin has been determined and the faults structure styles can be divided into four major types which are the compressional structure, the extensional structure, strike-slip structure and the inverse structure. Then these four structure styles can be divided into 20 complex sub-types. Superimposed reformation of different styles structures can formed more complex structural combination types.
     2. Based on the periodization and system matching analysis of faults in Central Uplift Belt, this paper determined the active stages and forming epochs.
     The Central Uplift Belt developed several stages of fault system during its long evolutionary process, Through the detailed seismic profile interpretation and multidisciplinary analysis the interrelationship of faults、unconformity interface and growth strata, we classified the fault system of the Central Uplift Belt to three large phase fault syetems:middle Caledonian OrogenyⅠepisode(end of Early Ordovician) fault-syetem, middle Caledonian OrogenyⅡepisode(end of Late Ordovician) fault-syetem, and middle-late Himalayan (since late Miocene) fault-syetem.
     (1) The middle Caledonian OrogenyⅠepisode fault-syetem chiefly distributes in the Tazhong Uplift, which be consisted by Tazhong 1 Faut, Tazhong 22 Faut, Tazhong 2 Faut, Tazhong 10 Faut and TuMxk-BaDong deep Fault.These faults strike NW, constringe eastward, disperse westwad, and form a "brush structure" shape in plane.The Tazhong 1 Faut, which is the northern boundary fault of Tazhong uplift, is the most important fault. In the western it back thrusted with the southern Tazhong 22 fault, which formed a "pop up structure". The fault's palne became gentler in the eastern segment of TazhongⅠFault, and a fault-bend fold was developed in its hanging wall, insteading of a "pop up structure".
     (2) The middle Caledonian OrogenyⅠepisode fault-syetem chiefly distributes in the south Tazhong uplift,TangGubasi depression and southern TaDong uplift, forming a series of northeast strike fault system. CheErcheng fault started thrusting intensely and showed appeared some slip character in this period. The middle Caledonian OrogenyⅠepisode fault-syetem in the Tazhong uplift inherited acting and caused the further uplift. The MaDong-Tabei fault, Tazhong 8 well fault, Zhong 3 well fault, Tazhong 5 fault, TangGubasi 1 fault and TangGubasi imbricate faults started thrusting intensely, forming a arcuate zone protrudes to the northwest. And the TangGubasi 1 fault, Zhong 3 well fault, and Tazhong 5 fault acted as the front faults and overlayed on the previous fault system. The previous different structure styles cased the later superimposed reformation action heterogeneity in different tectonic areas. In the west, the front faults (TangGubasi 1 fault, Zhong 3 well fault) facing thrust with a series of ramp faults, such as Tabei fault,Tazhong 8 well fault, forming a "thrust-triangle-zone". In the east, the front faults (Tazhong 5 fault),acting as a single thrust fault, overlaying above the hanging wall of Tazhong 1 fault that formed previously. The scale of reverse faults developing in TaDong uplift was limited, mainly behaving as the CheErcheng fault started thrusting.
     (3) The middle-late Himalayan (since late Miocene) fault-syetem mainly distributed in the Bachu uplift which lies in the western section of the central uplift. Fault strike changing from NWW to NW in the western section of Bachu uplift. The attitudes of faults which controlled the formation of the Bachu fault-uplift are generally steep dip and display compresso-shearing character. The thrust Selikbuya-Mazhatage fault system which slip along the Paleogene decollement horizon developed in the southern edge of Bachu uplift. The fault system can be tracked to the southwest Kunlun Mountains Preshoot belt, and could be connected to Kasa faults belt in the westward, and act as front fault belt of current Ta Southwest foreland thrust system.
     Base on the above analysis, according to faults combination style, the front belt of the fault system in the central uplift belt can be divided into three kind:①Back-thrust style which composed by the faults thrust to opposite direction;②Facing-thrust style which composed by the front belt and its ramp faults. This kind of faults combination is mainly developed in the southern margin of Tazhong uplift, which is make up of TangGubasi thrust front fault zone (TangGubasi 1 fault, Zhong 3 well fault) and its ramp fault zone (MaDong-TangBei fault,Tazhong 8 wells fault), and a "thrust-triangle-zone" was developed. This type of combination also be found in the southern edge of Bachu uplift. SeLibuya-Mazhatage shallow fault zone and inherited active KangTakumu fault zone, SeLibuya faults combined as recoil structure;③Single thrust-type which is quite simple, and is make up of a single thrust fault and its fault-propagation fold. This type of fault system is mainly developed in the east part of Tazhong uplift (Tazhong 5 faults) and the southern margin of the Bachu uplift (SeLibuya-Mazhatage shallow fault).
     3. The evolution process of the central uplift belt was analyzed, and the controlment of faults was prominent in the development process of the uplift. This paper built a development model of central uplift belt controlled by fault.
     Based on the recovery of denudation thickness of main unconformities by geological extrapolation method, we compiled 6 tectonic evolution sections across the uplifts tectonic units, analyzing the tectonic evolution process. The result shows that the central uplift belt was actually a composite uplift, comprised of many uplifts, each of which had different structural styles and experienced complex tectonic evolution processes. Bachu uplift experienced back-bulge ramp in the mid-late of Caledonian period、forebulge in the Hercynian-Yanshanian period and the latest compressional fault uplift in the mid-late of Himalayan period; Tazhong uplift started at the first episode of Caledonian period and formed at the second episode of Caledonian period; Tadong uplift started and formed at the second episode of Caledonian period.
     Combined with the tectonic evolution analysis of the fault systems, it showed that the development and evolution of the fault systems significantly controlled the formation、reconstruction and setting of the uplift. The controlment appeared as follows:
     (1)The activity of the faults controlled the structural style of the uplift. The combination types of the fault system in the central uplift belt were abundance, which resulted in the diversity of uplift types. This paper divided the bulge structures styles of the central uplift belt into back thrust、fault-bend fold and extrusion:①back thrust typed ancient uplift is formed by the back thrust of thrust faults on both sides and the uplift upheaves in the form of fault blocks. The Bachu uplift and the Tazhong uplift all belong to this type;②fault-bend fold ancient uplift goes with the hanging wall of low angular ramp-flat thrust faults and is controlled by the fault-bend anticline fold. This type developed in the Eastern of Tazhong uplift, formed by the fault belt I and thrusted by the fault belt 5;③extrusion ancient uplift is defined newly in this paper. It is controlled by the anticline formed by the side extrusion. The difference from the former two types is that it lied on the footwall of the main fault. So is the Tadong uplift.
     (2)The activity of fault system reconstructed the uplift. Almost all of the bulges in the Tazhong uplift experienced the reconstruction. Besides some extent reactivation of the former faults, the central uplift belt experienced many other types of reconstruction. This paper divided the types of reconstruction into composite back thrust type、folded type and superposing thrust type:①the composite back thrust type is mainly developed within the former back thrust bulge and raised more insice the uplift. Bachu uplift belongs to this type. Generally speaking, the back thrust of the former faults control the formation and configuration of the uplift, for example, the Serikbuya-Mazartag fault and Tumuxiuke fault; later the sub-level faults thrusting control the formation of the tectonic units within the uplift;②the folded type is referred to that uplift was raised by the form of fold when the fault which controlled the formation of the uplift weaken. This type mainly developed in the western of Tazhong uplift. At the end of Early Ordovician, the Tazhong fault I and 22 controlled the formation of fault block; At the end of Late Ordovician, the thrust faults activated intensely in the south of uplift and the ramp tectonic formed. By the intense impression stress, the Tazhong uplift was raised on the form of fold deformation. In the seismic profile, the strata were onlap and thin out and truncation at the top of the uplift.③superposing thrust type usually developed in the uplift which was broad and wide in the early stage and superposed by the thrust faults along the gentle limb. In the studying area, this type was mainly developed at the east segment of Tadong uplift. At the end of Early Ordovician, the Tazhong fault I began to activiate and the fault-bend fold ancient uplift developed on the hanging wall; At the end of Late Ordovician, the Tazhong fault 5 thrust along the wing of the fold and the fault propagation fold developed on the hanging wall, which superposed on the former fault bend fold. So the dual-style fold uplift formed. At the south margin of Bachu uplift, Serikbuya-Mazartag shallow fault belt which reconstructed the uplift belongs to this type.
     (3) Fault activity controlled the tectonic attributions evolvement of uplifts
     Development of the current uplift of the Tarim Basin are basically controlled by the fault block uplift, However, during the uplift of the tectonic evolution, uplift of the formation and rupture when the development does not isochronal. This paper took Bachu uplift as anexample, combining with basin tectono-Sedimentary Analysis, proposed that all the uplifts in the Central Uplif Belt of Tarim Basin have experienced from the Foreland uplift to Faulting uplift.①Foreland uplift phases:uplift based on deformation of flex, non-developmental thrust fault and elevated to a lesser extent, the top subject to a certain degree of erosion. Foredeep is controled by deflection sedimentation,which is located between uplift and orogenic belt fold thrust zone then formation onlap fill toward forebulge in the foredeep.②faulted uplift phases:With the front of orogenic belt pushed to intracraton incessantly, Foreland basin system's foredeep and forebulge gradually be drawn into strong lateral extrusion. Foredeep area through extrusion further subsidence, the property of depression by the early foredeep translate syncline-type subsidence, and the forebulge go through compression which behaved fault block move upward, so it suffer the strong erosion. The development of thrust fault is a significant geological signs which divided into uplift zone from forebulge to faulted uplift.
     4. Systematic analyze the change of the uplift-depression framework and the faults controlling action in the Tarim Basin
     Based on the subsidence history rebuilt, we completed the compared process figures and the evolution maps of the main uplift-depression units about the different deformation periods. Combined the regional tectonic evolution profiles, the end of the early Ordovician, the end of the late Ordovician and the middle and the end of the Sishan Movement are the main deforming periods of the uplift-depression framework of the Tarim Basin.
     During the episodeⅠof the middle Caledonian Orogeny at the end of the early Ordovician, the TazhongⅠand 22 fault belts started to acting, and caused the origin of the Tazhong uplift and the ancient uplift at the front of the Taxinan Mountain, also probably the ancient Tabei uplift, and involved the deeply subsidence of the Tagubasi. Meanwhile, the Awati district became the relative shallow bottomland and connect the Manjiaer depression, formed the deep trench sediments. They separated the Tabei uplift and the Tazhong-Taxinan uplift which also separated the Awati and Tanggubasi depression. At the east, the Manjiaer depression related the Tanggubasi depression. Therefore, the uplift-depression interphase framework formed in the Tarim basin. During the episodeⅡof the middle Caledonian Orogeny at the end of the late Ordovician, the faults at the southeastern Tarim basin began to act intensively. The Tazhong and the Taxinan uplift continued to rise, the Tabei district began to rise and the Tadong uplift start to form, and the Tanggubasi depression was destroyed and became the uplift. The area of the Manjiaer depression became smaller because of the compression from both sides. The subsidence center migrated north and connected the Awati depression as a huge striking EW depression. Therefore, the tectonic framework of the Tarim basin appeared that the two striking NS uplift located one depression between them. Then, the uplift-depression framework of the eastern Tarim basin was finalized. Though the basin was reformed during many different tectonic periods, the tectonic framework was stable. At the middle and end of the Himalayan Movement, the thrust faults acted strongly, the Bachu block uplift raise rapidly and the Taxinan and Awati depression at the both sides subsided rapidly. Finally, the uplift-depression framework was more obviously and stable. Combined the above analysis, the deforming evolution of the three faults systems of Central Uplift Belt in the Tarim basin was the important control factor to the transation of the uplift-depression framework in the Tarim basin.
     5. Based on analyzing the process of the formation, disintegration and extinction of Tarim marine cratonic basin, this paper puts forward two kinds of marine cratonic basin evolution model about eastern and western Tarim Basin,and points out the role of central uplift belt in the process of basin evolution.
     Take the analysis of fault system formation and evolution in the central uplift belt and its impact on the pattern of uplift-and-depression framework changes as an cut-in point, integrated sedimentary paleogeography of the Tarim Basin which predecessors researched, divided evolution of marine cratonic basin into three periods which are formation, disintegration and extinction.Analysis showed that the fault system of Caledonian I screen opened the development process of the disintegration of the marine basin, which directly controls the formation of Tazhong uplift, and divides the unified extentional cratonic marginal depression basins and intracratonic depression basin into three different characteristic depression basin; The fault system of CaledonianⅡscreen not only causes a large-scale uplift in eastern part,but also makes a sharp contraction of the north of Manjaer depression, and from then on although experienced sea intrusion, but the whole eastern is in the uplift condition, entereing to the extinction evolution period. The Western disintegration process was beginning with the formation of Southwest palaeohigh and Buchu foreland uplift which wasn't effected by fault controlling, and was in the depression background and developed marine deposit because of the uplift of eastern,it has no significant effect in the disintegration of the marine basin. Therefore the formation of the two periods of Caledonian fault system is the most important reason of disintegration of the Tarim craton marine Basin.
     6. Discussed the formation mechanism of the fault system in the central uplift belt, ascertained the dynamics properties of every fault system, and divided the dynamical districts of the fault system.
     Integrated a large number of previous research results indicate that the Precambrian basement was formed by the collage of the southern and northern Tarim plate during the Neoproterozoic era. During the process of the collage, there was a nearly striking NS intracontinental orogeny belts at the central uplift area in the Tarim Basin. Meanwhile, the island-arc collision orogenic belt (the central orogenic belt) existed at the south of the Tarim basin, which extended NE. The weak basement caused by the plates'collage was one of the important factors to control the multi-phase development of the large-scale fault system in the central uplift area.
     Meanwhile, based on the comprehensive analysis of the geometry, kinematics and dynamics characteristics of the basin fault system, we compared the most significant kinematical events of the surrounding orogenic belts with the deformation of the fault systems in the Talimu basin at different stages, combined the previous research of the movement of the palates surrounded the Talimu basin. The results indicated three important events. First, the formation of the fault systems during the episodeⅠof the middle Caledon movement was related with the initial collision and the intensive subduction of the ancient Kunlun Ocean during the end of the early Ordovician to the beginning of the middle and late Ordovician. Second, the formation of the fault systems during the episodeⅡof the middle Caledon movement was related with the onset of the subduction of the northeastern branch of the ancient Altun ocean at the early and middle Ordovician and the close and the collided northwestward with the Talimu plate. Third, the fault systems'formation during the middle and late Himalayan movement was the tectonic response to the intensive subducation between the Indian-Eroasia plate and the thrust of the western Kunlun Mountain. These three tectonic events is not close to the evolution of the southern Tianshan. Therefore, the three faults systems can be considered as two important dynamical districts which are related to the western Kunlun orogenic belt, and the Altun orogenic belt. This mean that the primary dynamical relationship was built between the evolution of the basin marginal orogen and the formation of the intrabasin fault systems.
引文
[1]Dickinson W R, Anderson R N, Biddle K T, et al. The dynamics of sedimentary basins. Panel of the Geodynamics of Sedimentary Basins, U.S.Geodynamics Committee, Board on Earth Sciences and Resources, Commission on Geosciences, Environment, and Resources, National Research Council[M]. Washington:National Academy Press,1997, 43.
    [2]Mark G., Rowan, Roberto Linares. Fold-Evolution Matrices and Axial-Surface Analysis of Fault-Bend Folds:application to the Medina Anticline, Easter Cordillera, Colombia[J]. AAPG Bulletin,2000,84:741-764.
    [3]Andrea Cerrina Ferrina, Marco Bonini, Patrizia Martinelli, et al. Lithological control on thrust-related deformation in the Sassa-Guardistallo Basin(Northern Apennines hinterland, Italy)[J]. Basin Research,2006,18:301-321.
    [4]K.A.Leever, L.Matenco, G.Bertotti, et al. Late acrogenic vertical movements in the Carpathian Bend Zone-seismic constraints on the transition zone from orogen to foredeep[J]. Basin Research,2006,18:521-545.
    [5]Nicolas Espurt, Stephane, Patrice Baby, et al. Paleozoic structural controls on shortening transfer in the Subandean foreland thrust system, Ene and southern Ucayali basins, Peru[J]. Tectonics,2008,27:1-21.
    [6]Paolo Ballato, Norbert R. Nowaczyk, Angela Landgraf et al. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran[J]. Tectonics,2008,27:1-20.
    [7]Laura Giambiagi, Florencia Bechis, Victor Garcia et al. Temporal and spatial ralationships of thick- and thin-skinned deformation; A case study from the Malargue fold-and-thrust belt, southern Central Andes[J]. Tectonophysics,2008,459(1-4): 123-139.
    [8]Nuria Carrera, Josep Anton Munoz. Thrusting evolution in the southern Cordillera Oriental (northern Argentine Andes):Constraints from growth strata [J]. Tectonophysics, 2008,459(1-4):107-122.
    [9]Rich J L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky and Tennessee[J]. American Association of Petroleum Geologists Bulletin,1934,18:1584-1596.
    [10]Suppe J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983,283:684-721.
    [11]Suppe J. Principles of structural geology[M]. Englewood Cliffs, N.J.:Prentice-Hall Inc., 1985,537.
    [12]Suppe J, Medwedeff D. Geometry and kinematics of fault-propagation folding [J]. Eclogue Geological Helvetia,1990,83:409-454.
    [13]Hardy S, Ford M. Numerical modeling of trishear fault propagation folding[J]. Tectonics, 1997,16:841-854.
    [14]Berg R. Deformation of Mesozoic shales at Hamilton dome, Bighorn basin, Wyoming: American Association of Petroleum Geologists Bulletin,1976,60:25-1433.
    [15]Stone S. Geological interpretation of seismic profiles, Big Horn Basin, Wyoming, Part 1:East Flank, in Gries, R., and Dyer, R, eds., Seismic exploration of the Rocky Mountain region: Rocky Mountain Association of Geologists and Denver Geophysical Society, 1985, p.165-174.
    [16]Cook G. Balancing basement-cored folds of the Rocky Mountain foreland, in Schmidt, C.J., and Perry, W.J., Jr., eds., Interaction of the Rocky Mountain foreland and the Cordilleran thrust belt[J]. logical Society of America Memoir 1988,171:53-64.
    [17]Brown G. Deformation style of Laramide uplifts in the Wyoming foreland, in Schmidt, C.J., and Perry, W.J., Jr., eds., Interaction of the Rocky Mountain foreland and the Cordilleran thrust belt:Geological Society of America Memoir,1988,171:53-64.
    [18]Rogers J L. Structural geometry and basement kinematics of the Forellen Peak fault, northern Teton Range, Wyoming [M.S. thesis]:Fort Collins, Colorado State University, 1989,151.
    [19]Erslev E A. Trishear fault-propagation folding[J]. Geology,1991,19:617-620.
    [20]Poblet J, McClay K. Geometry and kinematics of single-layer detachment folds[J]. American Association of Petroleum Geologists Bulletin,1996,80(7):1085-1109.
    [21]Roveri M., Ricci Lucchi F., Lucente C.C., et al. Stratigraphy, Facies and Basin Fill History of the Marnoso-Arenacea formation, in 64th EAGE Conference and Exhibition, Florence, Italy,2002, Ⅲ-1-Ⅲ-15.
    [22]Federico M., Da'vilaa, Ricardo A. Astinia, Teresa E. Jordan, et al. Early Miocene andesite conglomerates in the Sierra de Famatina, broken foreland region of western Argentina, and documentation of magmatic broadening in the south Central Andes[J]. Journal of Sedimentary Research,2004,17:89-101.
    [23]Federico Martina, Federico M.Da'vila, Ricardo A. Astini. Mio-Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes:A case of volcanic controls on sedimentation in broken foreland basins[J]. Sedimentary Geology,2006,186:51-65.
    [24]Federico M., Davila, Ricardo A., Astini. Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt):Implications for Central Andean foreland development[J]. Geological Society of America,2007,119:609-622.
    [25]M.keller, H.Bahlburg, C.D. Reuther, et al. Flexural to broken foreland basin evolution as a result of Variscan collisional events in northwestern Spain[J], Geological Society of America,2007,200:1-22.
    [26]Estelle Mortimer, Barbara Carrapa, Isabelle Coutand, et al. Fragmentation of a foreland basin in response to out-of-sequence basement uplifts and structural reactivation: El Cajon-Campo del Arenal basin, NW Argentina [J]. GSA Bulletin,2007,119:637-653.
    [27]H. Mansurbeg, M.A. Caja, R. Marfil, et al. Dlagenetic evolution and prosity destruction of turbiditic hybrid arenites and siliciclastic sandstones of foreland basins:evidence from the Eocene hecho group, Pyrenees, Spain [J]. Journal of Sedimentary Research,2009,79: 711-735.
    [28]金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展-以塔里木盆地为例[J].中国科学D辑,2004,34(增刊Ⅰ):1-12.
    [29]林畅松,刘景彦,张燕梅等.库车坳陷第三系构造层序的构成特征及其对前陆构造的响应[J].中国科学D辑,2002,32(3):177-183.
    [30]林畅松,王清华,肖建新等.库车坳陷白垩纪沉积层序构成及充填响应模式[J].中国科学D辑,2004,34(增刊Ⅰ):74-82.
    [31]林畅松.沉积盆地的构造地层分析-以中国构造活动盆地研究为例[J].现代地质.2006,20(2):185-194.
    [32]于炳松,陈建强,林畅松.塔里木地台北部寒武纪-奥陶纪层序地层及其与扬子地台和华北地台的对比[J].中国科学D辑,2001,31(1):17-26.
    [33]于炳松,陈建强等.塔里木盆地北部奥陶系中部台地-盆地相序列中的高分辨率旋回特征[J].现代地质,2001,15(3):255-260.
    [34]王毅.塔里木盆地震旦系-中泥盆统层序地层分析[J].沉积学报,1999,17(3):414-421.
    [35]顾家裕,朱筱敏,贾进华等.塔里木盆地沉积与储层.北京:地质出版社,2003.
    [36]何登发,贾承造,李德生等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):64-77.
    [37]陈建强,于炳松,林畅松等.塔里木地台北部寒武系层序地层研究进展[J].现代地质-中国地质大学研究生院学报,2001,15(3):254.
    [38]许效松,刘宝珺,牟传龙等.中国西部三大海相克拉通含油气盆地沉积-构造转换与生储岩,地质通报,2004,23(11):1066-1073.
    [39]林畅松,杨海军,刘景彦等.塔里木盆地古生代中央隆起带古构造地貌及其对沉积相发育分布的制约[J].中国科学D辑:地球科学,2009,39(3):306-316.
    [40]金之钧,张一伟,陈书平.塔里木盆地构造-沉积波动过程[J].中国科学D辑:地球科学,2005,35(6):530-539.
    [41]赵俊猛,刘国栋,卢造勋等.天山造山带与准噶尔盆地壳幔过渡带及其动力学含义[J].中国科学D辑,2001,29(4):338-343.
    [42]王清晨,李忠.盆山耦合与沉积盆地[J].沉积学报,2003,21(3):24-30.
    [43]汤良杰,贾承造,皮学军等.库车前陆褶皱带盐相关构造样式[J].中国科学D辑:地球科学,2003,33(1):38-46.
    [44]刘景彦,林畅松,彭丽等.构造不整合的分布样式及其对地层圈闭的制约-以塔里木盆地中泥盆世末为例[J].石油与天然气地质,2008,29(2):268-275.
    [45]邬光辉,李启明,肖中尧等.塔里木盆地古隆起演化特征及油气勘探[J].大地构造与成矿,2009,33(1):124-130.
    [46]贾承造,魏国齐,姚慧君等.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995.
    [47]何登发,李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.
    [48]汤良杰.略论塔里木盆地主要构造运动[J].石油实验地质,1997,19(2):108-114.
    [49]黄汲清.中国及邻区特提斯海的演化[M].北京:地质出版社,1987.
    [50]贾承造,魏国齐,王良杰等.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [51]贾承造,魏国齐,李本亮等.中国中西部两期前陆盆地的形成及其控气作用[J].石油学报,2003,24(2):13-17.
    [52]刘生国,胡望水,刘泽锋等.塔里木盆地前震旦-石炭纪构造与地层组合特征[J].西安科技学院学报,2001,21(2):136-139.
    [53]肖序常,汤耀庆,冯益民等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992.
    [54]马瑞士,王赐银,叶尚夫等.东天山构造格架及地壳演化[M].南京:南京大学出版社,1993.
    [55]郑家凤,穆曙光.塔里木盆地震旦纪-奥陶纪岩相古地理[J].石油地质勘探,1995,17(4):1-5.
    [56]张致民.新疆奥陶纪古地理[J].新疆地质,2000,18(4):9-14.
    [57]施振生,杨威,郭长敏等.塔里木盆地志留纪沉积层序构成及充填响应特征[J].沉积学报,2007,25(3):410-408.
    [58]何登发,赵文智.中国西北地区沉积盆地动力学演化与含油气系统旋回.北京:石油工业出版社,1999,1-181.
    [59]贾东,卢华复等.库车褶皱-冲断带中的走滑构造与拜城拉分盆地.南京大学学报(自然科学版),1996,32(5):17-22.
    [60]何登发,贾承造,李德生等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):64-77.
    [61]贾承造,魏国齐.塔里木盆地构造特征与含油气性[J].科学通报,2002,47(增刊):1-8.
    [62]贾承造,魏国齐,李本亮等.中国中西部两期前陆盆地的形成及其控气作用[J].石油学报,2003,24(2):13-17.
    [63]Miguel Lo'pez-Blanco. Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain)[J]. Sedimentary Geology,2002,146: 133-154.
    [64]Silvain Rafini, Eric Mercier. Forward modelling of foreland basins progressive unconformities[J]. Sedimentary Geology,2002,146:75-89.
    [65]丁文龙,林畅松,漆立新等.塔里木盆地巴楚隆起构造格架及形成演化[J].地学前缘,2008,15(2):242-252.
    [66]朱德丰,刘和甫,吴根耀.塔里木盆地西部吐木休克断裂带的主要特征和构造演化.地质科学,2008,43(2):209-277.
    [67]金之钧.中国典型叠合盆地及其油气成藏研究新进展(之一)-叠合盆地划分与研究方法[J].石油与天然气地质,2005,26(5):553-562.
    [68]金之钧.中国典型叠合盆地油气成藏研究新进展(之二)-以塔里木盆地为例[J].石油与天然气地质,2006,27(3):281-288.
    [69]Wittlinger G, Vergne J, Tapponnier P et al. Teleseimic imaging of subdueting lithosphere and Moho offsets beneath Western Tibet. Earth and Planetary Science Letters,2004, 221(1-4):117-130.
    [70]张振生,李明杰,刘社平.塔中低凸起的形成与演化[J].石油勘探与开发,2002,29(1):28-31.
    [71]温声明,丁长辉,刘兴晓等.塔里木盆地塔东南地区构造特征[J].石油地球物理勘探,2005,40(S0):19-24.
    [72]卢华复,王胜利,罗俊成等.塔里木盆地东部断裂系统及其构造演化[J].石油与天然气地质,2006,27(4):433441.
    [73]王步清,王清华,韩利军等.塔里木盆地东南部车尔臣断裂的分段特征及动力学机制[Jl.石油与天然气地质,2007,28(6):755-761.
    [74]韩长伟,马培领,朱斗星等.塔里木盆地东部地区构造特征及其演化[J].大地构造与成矿学,2009,33(1):131-135.
    [75]朱志澄.逆冲推覆构造[M].武汉:中国地质大学出版社,1989.
    [76]DeCelles, P.G.& Giles, K.A. Foreland basin systems. Basin Research,1996,8, p. 105-123
    [77]徐鸣洁,王良书,钟锴等.塔里木盆地重磁场特征与基底结构分析.高校地质学报,2005,11(4):585-592.
    [78]Hu A Q, Rogers G. Discovery of 3.3 Ga Archean roeks in north Tarlm Blok of Xinjiang, western China[J]. Chinese Seienee Bulletin,1992,37(18):1546-1549.
    [79]董富荣,李篙龄,毛松林.对“托格拉克布拉克杂岩”的认识[J].新疆地质,1998,16(1):31-35.
    [80]Hu A Q, Jahn B M, Zhang G X, et, al. Cmstal evolution and Phanerozoic cmstal growth in northern Xinjiang; Nd isotopic evidence, Part Ⅰ, Isotopic characterization of basement rocks[J]. Tectonophysics,2000,328(1-2):15-51.
    [81]郭召杰,张志诚.塔里木基底构造格架与演化[J].地学前缘,1999,6(3):94.
    [82]郭召杰,马瑞士,郭令智等.新疆东部三条蛇绿混杂岩带的比较研究.地质论评,1993,39(3):236-247.
    [83]胡霭琴,郝杰,张国新等.新疆东昆仑地区新元古代蛇绿岩Sm-Nd全岩-矿物等时线定年及其地质意义.岩石学报,2004,20(3):457-462.
    [84]张志诚,郭召杰,刘树文,郑海飞.新疆库鲁克塔格阔克苏地区斜长角闪岩Nd同位素特征及其地质意义[J].科学通报,1998,43(19):2092-2095.
    [85]王超,刘良,车自成等.阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J].高校地质学报,2006,12(1):74-82.
    [86]邬光辉,张宝收,郭春利等.塔里木盆地北部志留系碎屑锆石测年及其地质意义[J].大地构造与成矿学,2009,33(3):418-426.
    [87]李曰俊,孙龙德,胡世玲等.塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究[J].岩石学报,2003,19(3):530-536.
    [88]吴根耀,李曰俊,王国林等.新疆西部巴楚地区晋宁期的洋岛火山岩[J].现代地质,2006,20(3):361-369.
    [89]李日俊,胡世玲.塔里木盆地瓦基里塔格辉长岩^40Ar-^39Ar年龄及其意义[J].岩石学报,1999,15(4):594-599.
    [90]黄汲清.中国及邻区特提斯海的演化[M].北京:地质出版社,1987.
    [91]周辉,储著银,李继亮等.西昆仑库地韧性剪切带的40Ar/39Ar年龄[J].地质科学,2000,35(2):233-239.
    [92]汪玉珍.西昆仑依莎克群的时代及其构造意义[J].新疆地质,1983,1:1-8.
    [93]肖序常,王军,苏犁等.再论西昆仑库地蛇绿岩及其构造意义[J].地质通报,2003,22(10):745-750.
    [94]王元龙,李向东.西昆仑加里东期花岗岩带的地质特征[J].矿物学报,1995,15(4):457-461
    [95]许荣华,Vidal, P.西昆仑山北部早古生代构造-岩浆带的发现[J].地质科学,1994,29(4):313-328.
    [96]崔建堂,王炬川,边小卫.西昆仑康西瓦一带早古生代石英闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J].地质通报,2006,25(12):1450-1457.
    [97]郭坤一,张传林,赵宇.塔里木南缘煌斑岩的时代及其地质意义[J].地质科学,2003,38(4):532-534,518.
    [98]韩芳林,崔建堂,计文化等.西昆仑其曼于特蛇绿混杂岩的发现及其地质意义[J].地质通报,2002,21(8):575-578.
    [99]王元龙,张旗,成守德等.新藏公路128公里岩体地球化学特征及其地质意义[J].新疆地质,2003,21(4):387-392.
    [100]计文化,周辉,李亚民.西昆仑新藏公路118-323km段基性、酸性岩脉K-Ar年龄[J].地质通报,2005.24(3):243-245.
    [101]覃小锋,李江,陆济等.阿尔金碰撞造山带西段的构造特征[J].地质通报,2006,25(1-2):104-112.
    [102]李曰俊,吴根耀,孟庆龙等.塔里木盆地中央地区的断裂系统:几何学、运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [103]修群业,于海峰,刘永顺.阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄[J].地质学报,2007,81(6):787-794.
    [104]史仁灯,杨经绥,吴才来等.柴达木北缘超高压变质带中的岛弧火山岩[J].地质学报,2004,78(1):52-64.
    [105]校培喜.阿尔金山中段清水泉-茫崖蛇绿构造混杂岩带地质特征[J].西北地质,2003,36(2):20-29.
    [106]刘良,车自成.阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据[J].科学通报,1998,43(8):880-883.
    [107]相振群,陆松年,李怀坤等.北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义[J].地质通报,2007,26(12):1678-1686.
    [108]陈宣华,G. Gehrels,王小凤.阿尔金山北缘花岗岩的形成时代及其构造环境探讨[J].矿物岩石地球化学通报,2003,22(4):294-298.
    [109]郝杰,王二七,刘小汉等.阿尔金山脉中金雁山早古生代碰撞造山带:弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据[J].岩石学报,2006,22(11):2743-2752.
    [110]宋述光,张立飞,Y.Niu等.北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J].科学通报.2004,49(6):592-595.
    [111]兰朝利,李继亮,何顺利.古特提斯多岛洋洋-陆俯冲:木孜塔格蛇绿岩的矿物学证据[J].地球科学(中国地质大学学报),2007,32(3):322-328.
    [112]李海兵,杨经绥,许志琴等.阿尔金断裂带印支期走滑活动的地质及年代学证据[J].科学通报,2001,46(16):1333-1338.
    [113]郝杰,刘小汉.南天山蛇绿混杂岩形成时代及大地构造意义[J].地质科学,199328(01):93-95.
    [114]龙灵利,高俊,熊贤明等.南天山库勒湖蛇绿岩地球化学特征及其年龄[J].岩石学报,2006,22(1):65-73.
    [115]马中平,夏林圻,徐学义等.南天山库勒湖蛇绿岩锆石年龄及其地质意义[J].西北大学学报:自然科学版,2007,37(1):107-110.
    [116]杨海波,高鹏,李兵等.新疆西天山达鲁巴依蛇绿岩地质特征[J].新疆地质,2005,23(2):123-126.
    [117]杨天南,李锦轶,孙桂华等.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据[J].岩石学报,2006,22(1):41-48.
    [118]周鼎武,苏犁,简平等.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J].科学通报,2004,49(7):1411-1415.
    [119]李文明,任秉琛,杨兴科等.东天山中酸性侵入岩浆作用及其地球动力学意义[J].西安地质,2002,35(4):41-64.
    [120]孙桂华,李锦轶,王德贵等.东天山阿其克库都克断裂南侧花岗岩和花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报,2006,25(8):945-952.
    [121]王博,舒良树,Dominique CLUZEL.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义[J].岩石学报,2007,23(8):1885-1900.
    [122]张光亚,赵文智,王红军等.塔里木盆地多旋回构造演化与复合含油气系统[J].石油与天然气地质,2007,28(5):653-663.
    [123]贾进华,张宝民,朱世海等.塔里木盆地志留纪地层、沉积特征及岩相古地理.古地理学报,2006,8(3):339-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700