用户名: 密码: 验证码:
云南地区地震波衰减(Q值)结构反演成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波衰减性质的研究是地震学研究的重要课题。地震波传播的路径效应(地震波衰减),除了随距离存在几何衰减外,还有一个重要的影响因素——即介质的非弹性衰减,用介质品质因子Q值来度量。Q值是地球介质的基本物理参数之一,是对地震进行定量和研究震源性质(如震源参数的测定等)所必需的重要参数,在震源物理和工程地震研究中有重要应用。
     现有研究认为,地震波衰减Q值与地壳结构特征,如火山区的岩浆分布,地震活动,构造活动区的断层分布,壳内低速层等有密切关系。因而通过对地壳、上地幔衰减结构横向变化的研究,将有助于我们更准确地认识其构造活动性、动力学特征、地幔中的热结构及粘滞结构等。地震波的衰减Q值比波速对地球结构和介质组成的变化更敏感,精细的三维衰减结构研究,能深化地壳结构和组成横向非均匀性的本质认识。
     云南地区位于青藏高原隆起的东南边坡地带,其地势西北高,东南低:处于印度板块向中国大陆北东向挤压作用的前沿地带,使得这个地区构造复杂,强震活动频繁。云南历史强震活动图象的研究表明,破坏性强震活动的分布是不均匀的,主要集中在几个区(带)上。深化对这些破坏性大地震发生的深部介质和构造环境认识,以及大震多发区与无大震发生地区在深部介质和构造环境上的异同,对地震孕育发生的成因机制研究及其预测理论、技术方法等研究有重要意义。
     地震层析成像已经是比较成熟的一种技术,目前大量应用于地震波速度结构反演,将其应用到Q值研究中来,势必会大大促进地震波衰减特性的研究。近十年来,随着区域数字地震台网建设的快速发展,获取了大量的数字地震波形资料,为开展Q值的层析成像研究提供了条件。
     本研究应用云南区域数字地震台网记录(23个子台)的地震波形资料(1999年6月-2007年12月),分别采用一维(1D)、二维(2D)、三维(3D)的反演方法,开展了云南地区地震波(S波)衰减结构(Q值结构)的反演研究:
     (1)采用Atkinson方法和遗传算法反演计算得到了云南地区及分区S波非弹性衰减Q值与频率(1~15Hz)的关系(既Q(f)=Q_0f~η关系)。
     (2)用测定地震波(S波)高频衰减因子t~*,再用t~*数据进行地震波衰减结构成像的技术方法,进行了云南地区地震波衰减(Q值)结构二维成像反演。研究并给出了实现衰减(Q值)结构二维成像反演的算法,在此基础上实现了用S波谱测定高频衰减因子t~*的反演程序和衰减(Q值)结构二维成像反演程序的设计和编制(Matlab编程),反演得到了云南地区0.5°×0.5°网格的Q值结构二维成像结果。
     (3)采用地震层析成像技术,用与2D反演同样的数据,进行了云南地区地震波衰减(Q值)结构三维成像反演。研究并给出了实现衰减(Q值)结构三维成像反演的算法,并设计和编制了衰减(Q值)结构三维成像反演程序(Matlab编程)。反演得到了云南地区1°×1°网格(平面网格)、深度分层为0km、5km、15km、25km、45km共5个分层模型的Q值结构三维成像结果。
     通过本文的研究,获得了云南地区地壳介质衰减结构的基本认识。一维分区反演、二维成像反演和三维成像反演结果均表明,云南地区地壳S波衰减Q值横向变化显著,总体上金沙江-红河断裂带以东地区(云南东部地区)Q值相对较低,以西地区(云南西部地区)Q值相对较高;滇西北地区(丽江-永胜-大理-楚雄一带),滇中地区(东川-昆明-玉溪-华宁-建水一带)存在两个明显的低Q值区。二维成像反演和三维成像反演结果进一步显示出,保山—腾冲和思茅-景洪一带还存在两个低Q值区域;而澜沧-耿马地区存在较明显的高Q值区。三维成像反演结果还表明,滇西北低Q值区、思茅-景洪低Q值区和保山—腾冲低Q值区大致到10km左右深度:而滇中低Q值区延伸到了20km左右深度。云南地区Q值的横向变化及其分布特征与该区构造活动、地震活动、地壳速度结构及热活动状态的区域差异性有较好的一致性,活动强烈、高热活动、低速区为相对低Q值区,地震波衰减较快。
     本文的研究结果还表明,澜沧-耿马强震活动区在Q值结构上与滇西北、滇中两个强震活动区存在明显差异,前者为高Q值区,后者为低Q值区。这种差异性在速度结构特征、热结构特征及活动构造特征等方面也存在。这可能进一步表明,云南地区强震活动确实存在两种不同的介质构造环境。
     总之,本文的研究,建立了开展S波非弹性衰减(Q值)一维(1D)、二维(2D)、三维(3D)反演研究的方法;并利用云南区域数字地震台网资料,实现了云南地区S波Q值1D、2D、3D反演,获得了云南地区地壳介质衰减结构的基本认识。1D反演结果(Q值与频率关系Q(f)=Q_0f~η)已被广泛应用于云南地区数字地震记录资料的分析、研究中,尤其是震源参数测定等方面的研究。2D、3D反演结果所揭示的云南地区地壳Q值结构特征,对深入认识云南地区强震发生的介质环境提供了新的资料和证据,进一步证实了云南地区强震活动存在两种不同的介质构造环境。
The study of seismic attenuation property is a major subject in seismology. The path effect of seismic wave propagation (seismic attenuation) involves an important influential factor, the anelastic attenuation of medium, which is measured with quality factor Q, apart from geometric attenuation with the distance. As a basic physical parameter of the Earth medium, Q value is essential for quantitative study of earthquakes and source property (e.g. determination of source parameters), which is widely used in earthquake source physics and engineering seismology.
     There existed the osculatory relations between the seismic attenuation Q value and the crust structure features, such as the magma distribution of volcano zone, the earthquake activities, the active faults and the low velocity layer of the crust et al.. The study of the attenuation structure in the crust and the upper mantle, it will help us to understand more truly the tectonic activity, dynamic features of the crust and the upper mantle, as well as the thermal structure and the viscosity structure of the mantle. The seismic wave attenuation Q value is more sensitivity to the variation of the earth medium than the seismic wave velocity. The finely study of the three-dimensional attenuation structure, it can deepen the knowledge to the heterogeneous of the crust structure.
     Yunnan region is located at the southeast edge of Qinghai-Tibet plateau, the topography is high in northwest and low in southeast. It is a front zone where the India-Burma plate moves and pushes northeastward to the China Mainland, therefore, the tectonics is complicated, the strong earthquakes are very frequent in this region. The study of the activity of the historically strong earthquakes suggested that the distribution of the destructively large earthquakes in Yunnan is inhomogeneous, which are mainly concentrated at the several seismic zones or belts. The study and knowledge of the deep medium and tectonic environments for these large earthquakes occurrence, and the difference between the large earthquake-prone zones and the non-seismic zones in the deep medium and tectonic environments, it have important significance for the study of the seismogenesis, the theories and the technical methods of the earthquake prediction etc..
     At present, the seismic tomography method had been applied widely to the inversion of the seismic wave velocity structure. By using of this technique, it would improve greatly the study of the seismic wave attenuation Q value. Recently 10 years, a great deal of seismic waveform data had been obtained following the establishment and improvement of regional digital seismograph networks, they provide the conditions for the tomography of seismic attenuation structure.
     In this paper, the inversion of the seismic wave attenuation Q value in Yunnan region had been conducted by using of 1D, 2D and 3D inversion methods respectively, waveform data( June, 1999 to December, 2007) from Yunnan regional digital seismograph network.
     (1) The 1D inversion of Q value of S-wave anelastic attenuation in Yunnan region and its subregions had been conducted with Atkinson method and genetic algorithm, and the relations between Q( f) and frequency f in Yunnan region and its subregions had been established.
     (2) The 2D tomography of S-wave anelastic attenuation in Yunnan region had been conducted by using of the high-frequency attention operation t* of S wave. The algorithm and program of 2D attenuation tomography had been established. The 2D attenuation tomography of 0.5°×0.5°gridding model in Yunnan region had been accomplished.
     (3) The 3D tomography of S-wave anelastic attenuation in Yunnan region had been conducted by using of the high-frequency attention operation t* of S wave. The algorithm and program of 3D attenuation tomography had been established. The 3D attenuation tomography in Yunnan region had been accomplished, for the model of 1°×1°plane gridding and 0, 5,15,25,45km vertical layering.
     The basic characteristics and knowledge of the crust attenuation structure in Yunnan region had been achieved by this study. The results of the 1D inversion, 2D tomography and 3D tomography all indicated that there is a significant lateral heterogeneity on Q value spatial distribution in Yunnan region. Q value is relatively high in western Yunnan and low in eastern Yunnan, divided by the
     Jinshajiang-Honghe fault; There existed two obviously low Q zone in the northwest Yunnan (Lijiang - Yongshen - Dali - Chuxiong) and in the central Yunnan (Dongchuan - Kunming - Yixi - Huaning - Jianshui). The results of the 2D tomography and 3D tomography also indicated that there are two low Q zone in Baoshan - Tengchong and Simao - Jinhong; Lanchang - Genma zone is high Q zone. The results of the 3D tomography indicated that the depth is about 10km for the low Q zone in the northwest Yunnan, Baoshan - Tengchong and Simao - Jinhong, and about 20km for the the low Q zone in the central Yunnan. The lateral heterogeneity on Q value spatial distribution in Yunnan region, is quite consistent with the regional difference between tectonic activities, seismic activities, crustal velocity structure and thermal activities of the region. Areas with intense tectonic activities, high heat activities and low velocities are usually one of low Q values, where the seismic wave attenuation is fast.
     The study results in this paper also presented that there existed obviously difference on the Q structure between the strong earthquake active zone of Lanchang - Genma and that of the northwest Yunnan, the central Yunnan; the former high Q zone, and the after low Q zone. This difference same existed on the velocity structure, thermal structure and tectonic activities etc.. That suggested that there are two kinds of different medium structure conditions for the strong earthquake activity in Yunnan region.
     In conclusion, the methods of the 1D inversion, 2D tomography and 3D tomography for S wave attenuation had been established in this paper. The 1D inversion, 2D tomography and 3D tomography for S wave attenuation in Yunnan region had been accomplished by using of the waveform data from Yunana regional digital seismograph network, and the basic characteristics and knowledge of the crust attenuation structure in Yunnan region had been achieved. The 1D inversion result ( the relations between Q( f) and frequency f ) had been applied widely on the analysis and study of the waveform data from Yunana regional digital seismograph network, especially on the determination of the seismic source parameters. The features of the crust attenuation structure in Yunnan region revealed by the 2D tomography and 3D tomography, it provided the new data and evidence to understand deeply the medium structure conditions for the strong earthquake activity, and it suggested that there are two kinds of different medium structure conditions for the strong earthquake activity in Yunnan region.
引文
丛连理,胡家富,傅竹武等.2002,中国大陆及邻近地区Lg尾波的Q值分布[J].中国科学,32(8):617-624.
    陈培善,刘福田等.1990,云南地区速度结构的横向不均性.中国科学(B辑),4,431-438.
    胡家富,段永康.2000,利用基阶面波反演地壳上地幔的Qβ结构[J].地震研究,23(3):318-323.
    胡家富,丛连理,苏有锦等,2003,云南及周边地区Lg尾波Q值的分布特征,地球物理学报,Vol.46,No.6,809-814.
    胡家富,苏有锦,朱雄关等,2003,云南的地壳波速度与泊松比结构及其意义,中国科学(D 辑),33(8),714-722。
    洪学海,朱介寿.2003,中国大陆地壳上地幔S波品质因子三维层析成像[J].地球物理学报,46(5):642-651.
    黄玉龙,郑斯华,刘杰等.2003,广东地区地震动衰减和场地响应的研究.地球物理学报,46(1):54-61.
    何正勤,叶太兰,苏伟.2004,云南地区地壳中上部横波速度结构研究.地球物理学报,47(5):838-844.
    姜葵主编,1988年云南澜沧-耿马地震,昆明:云南大学出版社,288-299.1993.
    阚荣举,韩源.云南遮放至马龙地学断面(说明书).见:国家地震局地学断面编委会.北京:地震出版社,1992.
    阚荣举,王绍晋等.1983,中国西南地区现代构造应力场与板内断块运动.地震地质,5(2),79-90.
    阚荣举.攀西古裂谷及其南延部分的地球物理场特征.见:主编.八十年代中国地球物理学进展.北京:学术书刊出版社,1989,275-283
    孔祥懦,刘士杰等.1987,攀西地区地壳和上地幔中的电性结构.地球物理学报,30(2),136-143.
    李光品,徐果明,高尔根等.2000,中国东部地壳、上地幔横波品质因子的三维层析成像,地震学报,22(1):73-81.
    刘杰,郑斯华,黄玉龙.2003,利用遗传算法反演非弹性衰减系数、震源系数和场地响应.地 震学报,25(2):211-218.
    刘建华,胥颐,郝天珧,2004,地震波衰减的物理机制研究,地球物理学进展,Vol.19,No.1,1-7.
    刘建华,刘福田,阎晓蔚等,2004,华北地区Lg尾波衰减研究--Lg尾波Q0地震成像,地球物理学报,Vol.47,No.6,1044-1052。
    刘建华,刘福田等.1989,中国南北地震带地壳和上地幔的三维速度图象.地球物理学报,32(2),143-151
    刘瑞丰、陈培善等.1993,云南及其邻区三维速度图象.地震学报,15(1):61-67.
    刘福田.1984,震源位置和速度结构的联合反演(Ⅰ)-理论和方法,地球物理学报,Vol.27,No.2,167-175.
    刘福田,李强等,1989,用于速度图象重建的层析成象法,地球物理学报,Vol.32,No.1,46-59.
    丽芳,刘杰,苏有锦等.2005,2001年施甸震群非弹性衰减及震源参数特征研究.中国地震,21(4):475-485.
    刘丽芳,刘杰,苏有锦.2006,姚安地震序列与大姚地震序列震源参数的对比研究.地震,26(1):10-17.
    林中洋,胡鸿翔等.1993,滇西地区地壳上地幔速度结构特征.地震学报,15(4):427-440.
    马昭军,刘洋.2005,地震波衰减反演研究综述,地球物理学进展,Vol.20,No.4,1074-1082.
    马宏生,刘杰,张国民等,2006,云南地区尾波Qc值的分布特征及其初步解释,地震,26(3):37-43.
    马宏生,汪素云,裴顺平等.2007,川滇及周边地区地壳横波衰减的成像研究.地球物理学报,50(2):465-471。
    秦嘉政,阚荣举.1986,用近震尾波估算昆明及其周围地区的Q值和地震矩,地球物理学报,Vol.29,No.2,145-156.
    秦嘉政.1989,云南地区短周期波区域Q值与地震烈度衰减关系,见:《云贵地区地震危险性研究文集》,闵子群主编,云南科技出版社,253-260。
    苏有锦,刘祖荫,蔡民军等.1999,云南地区强震分布的深部地球介质背景,地震学报,(21)3,313-322.
    苏有锦,秦嘉政.2001,川滇地区强地震活动与区域新构造运动的关系,中国地震,(17)1,24-34.
    宋方敏,汪一鹏,俞维贤等著.小江活动断裂带.北京:地震出版社,209-232,1998.
    孙洁,徐常芳等.1989,滇西地区地壳上地幔电性结构与地壳构造运动的关系.地震地质,11(1):1-11
    王伟君,陈凌,陈棋福等,2007,2003年大姚地震震中区的速度和衰减结构,地球物理学报,50(3):116-123.
    王勤彩,刘杰,郑斯华等.2005,云南地区与频率有关的P波、S波衰减研究.地震学报,27(6):588-597.
    王钧,黄尚瑶等.中国地温分布的基本特征.北京:地震出版社,1990
    汪缉安,徐青等.1990,云南大地热流及地热地质问题.地震地质,12(4):367-377.
    吴乾蕃,祖金华等.1988,云南地区地热基本特征.地震地质,10(4):177-183.
    徐彦,苏有锦,秦嘉政.2004,Q值研究动态.地震研究,Vol.27,No.4,385-389.
    谢富仁,张世民等.1999,青藏高原北、东边缘第四纪构造应力场演化特征,地震学报,Vol.21,No.5,502-512.
    向宏发,张晚霞,虢顺民等.1999,新生地震破裂带的识别类型划分及其构造意义,中国地震,(15)3,257-267.
    熊绍柏,腾吉文等.1986,攀西构造带动轴部地区地壳与上地幔结构的爆炸地震研究.地球物理学报,29,235-245.
    熊绍柏,郑晔等.1993,丽江-攀枝花-者海地带二维地壳结构及其构造意义.地球物理学报,36(4),434-443.
    姚虹,冯锐.1988,中国东西剖面的地壳Q结构研究,地震研究,Vol.21,No.6,539-550.
    周真恒,向才英等.1997,云南深部热流研究.西北地震学报,19(4):51-57.
    朱荣欢,苏有锦.2007,用H/V谱比法计算云南区域数字地震台站的场地响应.地震研究,Vol.30,No.3,248-252.
    朱荣欢,苏有锦.2007,云南区域数字地震台网台站场地响应研究.云南大学学报(自然科学版),29(4):364-370.
    Aki K.,1969,Analysis of seismic coda of local earthquakes as scatterwaves.J Geophys Res,74:615-631
    Aki K,Chouet B.1975,Origin of coda waves,source,attenuation,and scattering effects.J Geophys Res,80:3322-3342
    Aki K.,Lee W.,1976,Determination of three dimension velocity anomalies under a seismic array using first P arrival times from local earthquakes.1.A homogeneous initial model.J.Geophys. Res., Vol.81,4381-4399.
    Aki K., 1980, Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Interiors, 21: 50-60
    Aki K., Richards, P.G., Quantitative Seismology: Theory and Methods.Vol. 2. W.H.Freeman,San Francisco, 1980.
    Anderson D L , Archambeau C B. The Anelasticity of the Earth [J ]. Geophys. Res. 1964 , 69 : 2071-2084.
    Anderson D L. Ben-Menabem A. Arehambeau C B., 1965, Attenuation of seismic energy in up mantle. J. Geophys. Res., 70: 1441-1448.
    
    Andesong D L, R. S. Hart. 1978 , Q of the Earth [J ]. J . Geophys. Res., 83 (B12): 5869 - 5882.
    
    Al-Khatib H H , B J Mitchell., 1991, Upper nantle anelasticity and tectonic evolution of the western United States from surface wave attenuation[J ] . J . Geophys. Res. , 96 : 18 ,129 -18,146
    
    Atkinson G M, Mereu R F., 1992, The shape of ground motion attenuation curves in Southeastern Canada. Bull Seism Soc Am., 82(5): 2014-2031.
    Atkinson G M and D. Boore, 1995, New ground motion relations for eastern North America, Bull Seism Soc Am., 85: 17-30.
    Baqer S., Mitchell B. J., 1998 , Regional variations of Lg coda Q in the continental United States and its relation to crustal structure and evolution. Pure Appl. Geophys., 158 :613-638
    Canas J A, B J Mitchell., 1978, Lateral variation of surface wave anelastic attenuation across the Pacific [J ]. Bull. Seismol. Soc. Am., 68 : 1637 -1650.
    Cheng C C , Mitchell B J . 1981 , Crustal Q Structure in the United States from Multi - mode surface Waves [J ]. Bull. Seismol. Soc. Am., 71 : 161 -181.
    
    Chin, Byau-Heng and K. Aki, 1991, Simultaneous determination of source, path, and recording site effects on strong ground motion during the Loma Prieta earthquake---a preliminary result on pervasive non-linear site effect, Bull Seism Soc Am., 81:1859-1884.
    Cong L., Mitchell B. J., 1998 , Lg coda Q and its relation to the geology and tectonics of the Middle East. Pure Appl. Geophys., 158 : 563-585.
    
    Cong Lianli, Mitchell B J . Seismic Velocity and Q Structure of the Middle Eastern Crust and Upper Mantle from Surface - wave Dispersion and Attenuation [J ] . Pure Appl . Geophys , 1998 ,153 : 503 -538.
    Dutta N.C.and Ode H., 1979, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part: Biot theory. Geophysics , 44 (11):1777-1788.
    Dziewonski A M., J. Steim, 1982, Dispersion and attenuation of mantle waves from waveform inversion. Geophys. J. R. Astr. Soc., 70: 503-527
    Dziewonski A., 1984, Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., Vol.89, 5929-5952.
    Dogan Seber, Brian J Mitchell, 1992, Attenuation of surface waves across the Arabian Peninsula. Tectonophysics., 204:137- 150
    De Souza J. L. , Mitchell B. J., 1998 , Lg coda Q variations across South America and their relation to crustal evolution. Pure Appl. Geophys., 158 : 587-612.
    Donna Eberhart-Phillips and Graeme McVerry, 2003, Estimating Slab Earthquake Response Spectra from a 3D Q Model, Bulletin of the Seismological Society of America, Vol. 93, 2649-2663.
    Donna Eberhart-Phillips, Mark Chadwick, and Stephen Bannister, 2008, Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes, J. Geophys. Res. VOL. 113, B05308, doi:10.1029/2007JB005359.
    Hwang H J , B J Mitchell. 1987, Shear velocities , Q β , and the frequency dependence of Q β in stable and tectonically active regions from surface wave observations [J ] . Geophys. J . R. Astron. Soc. ,90:575-613.
    Herrmann R B., 1980 , Q estimates using coda of local earthquakes. Bull .Seism. Soc. Am., 70 : 447-469
    Horie A. Three-dimensional seismic velocity structure beneath the Kanto district by inversion of P-wave arrival times. phD Thesis, University of Tokyo, 1980.
    Hasegawa, H. S., 1985, Attenutation of Lg waves in the Canadian shield, Bull. Seism. Soc. Am., 75:1569-1582.
    Humphreys E. and Clayton R.W., 1988, Adaptation of Back Projection Tomography to Seismic Travel Time Problems, J. Geophys. Res., Vol.93, No.B2,1073-1085.
    
    Hashida, T, 1989. Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications. Tectonophysics, 59,163-180.
    Ho-liu, P., H. Kanamori, and R. W. Clayton, 1988, Applications of attenuation tomography to Imperial Valley and Coso-Indian wells region, southern California, J. Geophys. Res. 93, 10501-10520.
    Haydar J, AI. Shukfi, B J Mitchell., 1990, Three-dimensional attenuation structure in and around the new madrid seismic zone. Bull. Seism .Soc. Am., 80:615-632.
    Haberland, C, Rietbrock, A., 2001. Attenuation tomography in the western central Andes: a detailed insight into the structure of amagmatic arc. J. Geophys. Res. 106,11151-11167.
    Hansen S., C. Thurber, M. Mandernach, F. Haslinger, and C. Doran, 2004, Seismic Velocity and Attenuation Structure of the East Rift Zone and South Flank of Kilauea Volcano, Hawaii. Bull. Seismol. Soc. Am., 94(4):1430 -1440.
    Inoue H, FukaeY, TanabeK, et al. 1990, Whole mantle P-wave travel time tomography[J]. Phys Earth Planet Inter. 59:294-328.
    Jackson D.D. and Anderson D. L., 1970, Physical Mechanisms of seismic wave attenuation. Rev. Geophys, 8:1.
    Jacson D. and Matsuura M. 1985, A Bayesian approach to non-linear inversion. J. Geophys. Res., Vol.90, 581-591.
    Jacob K. 1970, Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth. J. Geophys. Res., Vol.75,6675-6689.
    Johnston D.H. and Toksoz M.N., 1979, Attenuation of seismic wave in dry and saturated rocks : II mechanisms. Geophysics, 44:691.
    Lees, J.M., Lindley, G.T., 1994. Three-dimensional attenuation tomography at Loma Prieta: inversion of t□ for Q.J. Geophys. Res., 99,6843-6863.
    Li Guangpin , Xu guoming , Gao Ergen , et al. 2000 , Qβ tomography under the crust and upper mantle in eastern China [J ]. Acta Seismologica Sinica, 13 (1): 84 - 92.
    Lutter W. J., Nowack R. L., 1990, Inversion for crustal structure using reflections from the PASSCAL Ouachita experiment. J. Geophys. Res., 95: 4 621 -4 631
    Mitchell B.J., 1975, Regionl rayleigh wave attenuation in North America, J.Geophy. Res., 81: 4904-4916.
    
    Mitchel B.J., L. W .B. Leite, G K Yu, et. al., 1976, Attenuation of Love and Rayleigh Waves across the Pacific at periods between 15 and 110 seeconds, Bull. Seism .Soc. Am. , 66:1189-1202.
    Martine Bussy, Jean-paul Montagner, 1993, Tomographic study of upper mantle attenuation in the pacific ocean, Geophysical Research Letter, 20: 663-666.
    Mitchel B. J., 1995, Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation, Reviews of Geophysics, 33(4): 441-462.
    Mitchell B. J., Pan Y., Xie J., et al., 1997, Lg coda Q variation across Eurasia and its relation to crustal evolution. J. Geophys. Res., 102 :22767-22779.
    Mitchell B. J., Baqer S., Akinci A., et al., 1998 , Lg coda Q in Australia and its relation to crustal structure and evolution. Pure Appl. Geophys., 158 : 639-653.
    Malagnini, L., Herrmann R B., et al., 2000, Regional ground-motion scaling in central Europe, Bull. Seism. Soc. Am., 90: 1052-1061.
    Mohamed K. Salah, Dapeng Zhao, 2003, Three-dimensional attenuation structure beneath southwest Japan estimated from spectra of microearthquakes, Physics of the Earth and Planetary Interiors, 136 :215-231.
    Nuttli O W,. 1988, Lg magnitudes and yield estimates for underground Novaya Zemlya nuclear explosions, Bull. Seism. Soc. Am., 78: 873-884
    Pavlis L.G., Booker J.R., 1980, The mixed discrete-continuous inverse problem:application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res., Vol.85,4801-4810.
    Rainner Tonn, 1989, Comparison of seven methods for the computation of Q. Physics of the earth and planetary interiors, 259-268.
    Romanowicz B., 1994, On the measurement of anelastic attenuation using amplitudes of low-frequency surface waves. Physics of the Earth and Planetary Interior, 82:179- 191.
    Romanowiez B., 1995 , A global tomographic model of shear attenuation in the upper Mantle. Journal of Geophysica Research, 100: 12,375- 12,394.
    Roth, E.G., Wiens, D.A., Dorman, L.M., Hildebrand, J., Webb,S.C, 1999. Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods. J. Geophys. Res. 104, 4795-4809.
    Rachel E.,Abererombie, 2000, crustal attenuation and site effects at Parkfled California. Journal of Geophysical Research, 105: 6277-6286.
    Rietbrock, A., 2001. P wave attenuation structure in the fault area of the 1995 Kobe earthquake. J. Geophys. Res., 106,4141-4154.
    Sato Y. 1958 , Attenuation, dispersion, and the wave guide of the G wave[J ]. Bull. Seismol. Soc. Am., 48:231-251.
    Sato H. 1977, Energy propagation including scattering effects, single isotropic scattering approximation. J Geophys Res, 25: 27-41.
    Solomon. 1970, Lateral variation of attenuation of P and S waves beneath the United States. Bull Seism Soc Amer, 60 (3) : 819-838.
    Solomon S C. 1972 , Seismic wave attenuation and partial melting in the upper mantle of North America [J ]. J . Geophys. Res., 77 : 1483-1502.
    
    Spencer and Gubbins, 1980, Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophysical Journal of the Royal Astronomical Society, Vol.63, 95-116.
    Singh S. and Herrmann R B. 1983, Regionalization of crustal coda Q in the continental United States. J. Geophys. Res. 88, 527-538.
    Shin T. C. and Herrmann R B., 1987, Lg Attenutation and source studies using 1982 Miramichi data, Bull. Seism. Soc. Am., 77: 384-397.
    Satake, K., Hashida, T., 1989. Three-dimensional attenuation structure beneath North Island, New Zealand. Tectonophysics, 59, 181-194.
    Scherbaum, F., 1990, Combined Inversion for the Three-Dimensional Q Structure and Source Parameters Using Microearthquake Spectra. J. Geophys. Res., 95,12423-12438.
    Scherbaum, F., Wyss, M., 1990. Distribution of attenuation in the Kaoiki, Hawaii, source volume estimated by inversion of P wave spectra. J. Geophys. Res., 95,12439-12448.
    Sekiguchi, S., 1991. Three-dimensional Q structure beneath the Kanto-Tokai district, Japan. Tectonophysics, 195, 83-104.
    
    Singh S., Ordaz, R. S., et al., 1999, A spectral analysis of 21 May 1997, Jabalpur, India, earthquake(Mw=5.8) and estimation of ground motion from future earthquakes in the Indian shield region, Bull. Seism. Soc. Am., 89:1620-1630.
    
    Shapiro, N.M., Singh, S.K., Iglesias-Mendoza, A., Cruz-Atienza, V.M., Pacheco, J.F., 2000.
    Evidence of low-Q below Popocatepetl volcano, and its implication to seismic hazard in Mexico city. Geophys. Res. Lett., 27,2753-2756.
    Stachnik J. C, Abers G. A., 2004, Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., VOL.109, B10304, doi: 10.1029/2004JB003018.
    Tsai YB , K Aki . 1969 , Simultaneous determination of the seismic moment and attenuation of seismic surface waves [ J ]. Bull. Seismol. Soc.Am., 76 : 1393 -1405.
    Thruber C. and Ellsworth W., 1980, Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am., Vol.70,1137-1148.
    Thurber C, 1983, Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., Vol.88, 8226-8236
    Tarantola A. and Valette B., 1982, Generalized nonlinear inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics, Vol.20, 219-232.
    Tsumura, N., Matsumoto, S., Horiuchi, S., Hasegawa, A., 2000. Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics, 319,241-260.
    Thomas M. Hearn, Suyun Wang, Shunping Pei, Zhonghuai Xu, James F. Ni and Yanxiang Yu, 2008, Seismic amplitude tomography for crustal attenuation beneath China, Geophys. J. Int. (2008)174,223-234.
    Urn J. and Thurber C, 1987, A Fast Algorithm For Tow-Point Seismic Ray Tracing. Bull. Seismol. Soc. Am., Vol.77, No. 3, 972-986.
    Winkler K. W., Amos Nur., 1982, Seismic attenuation: Effect of pore fluids and frictional sliding. Geophysics, 47: 1 -15.
    
    Walsh J.B., 1966,Seismic waves attenuation in rock due to friction. J.G R., 71 :2591.
    Walsh J.B.,1968, Attenuation in partially melted material. J. G. R.,73 :2209.
    Walsh J.B.,1969, New analysis of attenuation in partially melted rock. J. G. R., 74 :4333.
    Wu, H., and J. M. Lees, 1996, Attenuation structure of Coso geothermal area, California, from pulse widths, Bull.Seism .Soc.Am. ,86:1574- 1590.
    William C Hammond , Eugene D. Humphreys , 2000 ,upper mantle seismic wave attenuation: effects of realistic partial melt distribution. Journal of Geophysical Research, 105 (B5): 10987-10999.
    Xie J , Nuttli O W. 1988, Interpretation of high frequency coda at large distances: stochastic modeling and method of inversion. Geophysical J .Int., 95 :579-5951.
    Xie J., Mitchell B. J., 1990 , A back projection method for imaging large scale lateral variations of Lg coda Q with application to contiental Africa. Geophys. J. Int., 100(1): 161 - 181.
    Xie J R, Ni G J, Aoki Y. 2004, Lateral variations of crustal seismic attenuation along the in2dep th p rofiles in Tibet from QLg inversion. J Geophys Res, 109, B10308, doi: 10.1029 /2004JB002988.
    Yacoub N K, B J Mitchell. 1977, Attenuation of Rayleigh wave amplitudes across Eurasia [J ] . Bull. Seismol. Soc. Am., 67 : 751 -769.
    Yoshimoto K, Sato H, Yoshihisa, et al. 1993, Frequency-dependent attenuation of P and S waves in the Kanto area,Japan, based on the coda-normalization method. Geophys J Int, 114:165-174.
    Yoshimoto K, Sato H, Yoshihisa, et al. 1998, Frequency-dependent attenuation of high-frequency and waves in the upper crust in western Nagano, Japan. Pure Appl Geophys, 153:489-502.
    Zhao Cuiping, Kennett B L N, Furumura T., 2003, Contrasts in regional seismic wave p ropagation to station WMQ in centralAsia. Geophys J Int, 155: 44256
    Zhao et. al., 1992a, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res., 97(B13): 19909-19928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700