用户名: 密码: 验证码:
基于景观空间格局的土地可持续利用评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地作为人类生存与发展最重要的资源之一,是人类生存的载体,是人类一切生产和生活的场所。协调人地关系,可持续利用土地资源是经济、社会可持续发展的基础。土地可持续利用评价是土地可持续利用研究的关键问题,是土地可持续利用研究由理论到实践的必经环节,也是实施土地可持续利用的重要手段,是开展区域国土整治、土地利用规划和土地利用制度制定的重要依据。“结构决定功能”,土地空间镶嵌的稳定性是土地功能稳定的基础,是土地可持续利用的前提。就目前的土地可持续利用评价来看,在内容上,多注重区域土地功能在时间上的变化,对土地利用的空间格局关注较少;在评价方法上,多以线性加权方法为主,而一些新的综合评价方法,如神经网络方法、投影寻踪综合评价方法等,还没有在土地可持续利用评价中得到很好的应用。
     恩施土家族苗族自治州是湖北省唯一被划入西部大开发的地区,是鄂西生态文化旅游圈的重要组成部分。随着宜万铁路、沪蓉高速公路西段的开通,加上西部大开发的推进和鄂西生态文化旅游圈的建设,必将会极大地促进区域的社会经济发展,也给区域土地利用带来前所未有的压力。区内目前生态环境良好,但属于典型的生态脆弱区,生态环境一旦遭到破坏,将很难恢复。因此,在该区域开展土地可持续利用评价,了解目前土地利用所处的状况,找出土地可持续利用的限制因子,提出可持续利用对策,对实现区域土地可持续利用、实现区域可持续发展具有重要意义。
     本文首先对景观空间格局变化与土地可持续利用评价的关系进行理论探讨。
     人们的土地利用行为形成特定的景观空间格局,景观空间格局是土地利用的结果。首先,景观与土地在空间实体上具有相似性。人类的经济开发活动主要是在景观层次上进行的,景观为人类经济活动提供各种资源及场所,是人类的开发利用对象。而从土地的角度,土地是人类的基本生产资料,为人类的生产和生活提供场所和空间,人类所有的生产和生活都要落实到土地上,表现为土地利用行为及土地利用方式的时空变化。因此,景观是土地利用的结果。景观类型和土地利用类型、景观结构与土地利用结构、景观功能与土地功能、景观变化与土地利用/覆被的变化间具有极大的相似性。其次,从空间格局的演变上看,短时间尺度下,人类的土地利用行为是空间格局演变的主要驱动因子。
     土地是一个自然地理综合体,是一个由不同土地利用类型组成的空间镶嵌体,具有明显的空间异质性。一般认为,一定范围内异质性的增强有助于提高景观稳定性,而空间镶嵌稳定性是功能稳定性的基础。根据生态整体性与空间异质性理论,区域土地可持续利用的实质就是构建合理的空间异质性,维持土地利用的生态整体性。土地可持续利用评价不能局限于分析其构成要素的状况,而是要把握系统整体特征,综合考虑影响土地利用的社会因素、经济因素和生态因素等各种因素进行评价。景观结构与功能理论指出:“格局反衍过程,过程反衍机理,机理揭示规律”,景观结构决定着景观的功能。对区域土地利用来说,土地可持续利用即土地功能的延续和维持,就是要追求土地功能的稳定,而功能稳定又以景观空间镶嵌稳定性为基础。因此,土地可持续利用评价不仅对土地功能强弱进行评价,还必须评价其景观空间格局(土地利用空间结构),尤其是要对景观空间格局的稳定性进行评价。在景观空间格局稳定性定量评价方面,因空间异质性是空间格局稳定性的基础,般选择描述空间异质性的相关指标来对景观格局的稳定性进行评价。
     在此基础上提出基于景观空间格局的土地可持续利用评价思路:
     土地可持续利用就是区域土地在面临特定压力的情况下,能够稳定的、持续的获得较高综合效益以满足人类社会经济系统的需求,而这种土地功能的稳定性以土地空间镶嵌的稳定性为基础。因此,基于景观空间格局的土地可持续利用评价就是对区域土地面临的压力、土地的景观空间结构和综合效益的综合评价。压力是土地利用可持续性变化的驱动因子,综合效益最优是土地可持续利用的最终目标,景观空间镶嵌的稳定性是实现土地可持续利用的基础。基于景观空间格局来进行土地可持续利用评价,不仅可以实现结构和功能的结合,还可以将时间和空间耦合起来。
     在探讨景观空间格局演变与土地可持续利用评价之间关系的基础上,以ETM+和TM遥感影像、SRTM DEM遥感数据为数据源,综合运用“3S”技术及景观生态学方法研究恩施土家族苗族自治州1990年年以来的土地变化及空间格局演变,对其产生的生态环境影响(包括净第一性生物生产力、生态系统服务价值、生态足迹及水土保持效益)进行定量评估,建立起基于景观空间格局的“压力—功能—结构”土地可持续利用评价指标体系,对研究区1990年以来土地利用的持续性进行评价和障碍因子诊断。
     研究表明:
     1)自1990年以来,区域土地利用发生了较为剧烈的变化,其最主要的变化为草地和耕地的急剧减少,林地的持续增加,空间格局聚集性持续增强,多样性下降,空间格局的稳定性持续降低。
     从数量变化上看,1990年~2000年,变化幅度从大到小排序依次为:林地(7.92%)>草地(-6.20%)>耕地(-2.19%)>水域(0.23%)>建设用地(0.23%),水域与建设用地变化的比例相同,但水域变化的面积更大。2000年~2007年,变化幅度从大到小排序依次为:耕地(-8.41%)>林地(8.17%)>草地(-0.14%)>建设用地(0.11%)>水域(0.06%)。
     从变化强度上看,两个研究时段相比,2000年~2007年土地变化强度更大。1990年~2000年,土地利用的综合动态度为6.06%,各土地利用类型的变化强度按从大到小排序为:水域(11.51%)>草地(-9.42%)>建设用地(2.11%)>林地(1.51%)>耕地(-0.55%)。2000年~2007年,区域土地利用综合动态度为9.83%,各土地利用类型的变化强度按从大到小排序为:草地(-5.23%)>耕地(-3.19%)>水域(1.95%)>林地(1.94%)>建设用地(1.09%)。
     从土地利用类型的空间分布上看,从1990年以来,土地利用类型空间分布的基本变化趋势是:草地持续向高山收缩,林地持续往低海拔地区蔓延,耕地进一步向低海拔沟谷地回缩。从1990年到2000年,耕地分布的平均高程下降25.92米,平均坡度下降1.24度;草地分布的平均高程增加了474.73米,平均坡度上升了1度左右。2000年~2007年,林地分布的平均高程下降5.23米,平均坡度下降0.98度;耕地分布的平均高程下降96.99米,平均坡度下降0.97度。草地分布进一步往高山收缩,平均分布高程增加124.73米。
     从区域土地利用的空间格局上看,自1990年以来,空间格局的聚集度持续增大,多样性指数持续下降,空间格局的稳定性不断降低。从1990年到2000年,区域土地的利用的斑块数量从244128变为383276个,平均斑块面积从9.91公顷变小为6.31公顷,平均形状指数、分维数和分形指标趋大,土地利用空间格局趋于复杂化,破碎化;优势度和均匀度分别从1990年的0.7561、0.5302变化2000年的0.8522和0.4705,反应区域土地利用格局受林地和耕地两种用地类型的支配作用加强。景观聚集度增大,空间格局的多样性指数降低。从2000年到2007年,区域土地的利用的斑块数量从383276个变为185722个,平均斑块面积从6.31公顷变变为13.03为公顷;优势度和均匀度分别从2000年的0.8522、0.4705变化2007年的0.9867和0.3869,聚集度进一步提高,反应区域土地利用格局受林地和耕地两种用地类型的支配作用进一步得到加强,空间格局的多样性指数进一步降低。
     2)由于人口的增加和土地利用结构的调整,土地的生态承载能力有所降低,但总体上区域土地利用的生态环境效益持续提高。
     从面积加权平均的NPP来看,研究区域的净第一性生产力持续增加,1990年区域平均NPP为15.78t/(hm2·a),2000年上升到15.86 t/(hm2·a),2007年上升到16.63 t/(hm2·a)。各用地类型的NPP按大小基本排序为林地>耕地>草地>建设用地>水域。从单位面积NPP极值上看,1990的NPP极值为83.43 t/(hm2·a),2000年和2007的NPP极值均为98.87t/(hm2·a),说明研究期内生态环境的改善不仅仅表现在森林覆盖率的持续提高上,森林的生长情况也变得更好,其生物生产功能变得更强。
     生态系统服务价值评估的结果显示:研究区域自1990年以来,生态系统服务价值持续增长,表明区域生态环境质量得到持续改善,生态系统服务功能得到增强。从土地利用类型上看,林地和耕地构成区域生态系统服务价值来源的主体,其中又以林地的生态系统服务价值最大,并随时间推移得到加强。恩施州土地利用的生态系统服务价值1990年为3140522.2万元,2000年增长为3402427.2万元,2007年进一步增加到3662663.9万元。在生态系统服务价值的构成中,林地的生态系统服务价值最高,所占比例最大并逐渐增大;其次是耕地,但所占比例逐年下降。林地生态系统服务价值占区域总生态系统服务价值的比例1990年为77.85%,2000年味82.73%,2007年进一步增加到87.28%;耕地生态系统服务价值占区域总生态系统服务价值的比例1990年为18.72%,2000年将为16.33%,2007年进一步下降至11.78%。
     从生态足迹上看,自1990年以来,区域人均生态足迹持续增加,而人均生态承载持续下降,1990年略有生态盈余,随后转为生态赤字。1990年人均生态足迹为1.23hm2,2000年为1.44 hm2,2000年上升为2.2 hm2。两个时段相比较,2000以后人均生态足迹上升速度更快。其中,能源消费的生态足迹占据较大比重,并迅速上升。人均生态承载能力持续降低,1990年人均生态承载为1.447 hm2,200年降为1.3846 hm2,2007年进一步下降为1.2203 hm2。
     区域水土流失评价的结果表明,由于区域极高的森林覆盖率,研究区内水土流失轻微,水土保持效益良好。土壤侵蚀模数最大值1990年为694.947 t/km2·a,2000年为693.507t/km2·a,2007年为670.764 t/km2·a。根据土壤侵蚀分类分级标准,1990年以来研究区域土壤流失状况总体上为微度侵蚀,土壤轻度流失的面积1990年为558.9公顷,2000年为243.81公顷,2007年为230.04公顷。以轻度土壤流失面积最大的1990来看,其面积占区域土地总面积的比例仅万分之二。
     3)分别采用均方差决策赋权法、熵权法确定土地可持续利用评价指标权重,用线性加权方法进行区域土地可持续利用综合评价,并与投影寻踪综合评价方法评价结果进行比较印证,得到区域土地利用可持续性变化为:自1990年以来,研究区域土地利用的可持续性持续下降。土地可持续利用评价的障碍诊断表明:1990年,土地可持续利用的主要障碍因子是粮食单产水平较低,区域生态环境相对较差。1990年以后,随着区域内封山育林措施和国家退耕还林政策的实施,生态环境得到持续改善,土地可持续利用的主要限制因素为建设用地面积的增长、人口综合消费水平的提高和景观多样性的下降。其深层次的原因则是因为退耕还林使耕地、草地大量转变为林地,一方面使得区域生态环境进一步改善;另一方面直接导致区域土地的生态承载能力降低和空间格局的稳定性下降。
     最后,本文提出了区域土地可持续利用的对策:加强基本农田的建设,保护耕地,推行土地整理,提高耕地的产出能力;节约集约利用建设用地,控制建设对耕地的占用;抓住机遇进行产业结构调整;根据景观生态学集中于分散原理,构建生态安全格局:建立区域生态补偿机制,维持退耕还林政策的连续性。
Land, as one of the most important resources for human survival and development, is the carrier of human existence and the place where all human activities of production and living take place. For good man-land relationship and sustainable use of land resources are the basis for economic and social sustainable development, it is of great significance that the relationship between man and land should be well coordinated and use of land should be sustainable. Evaluation for sustainable land use is the key problem and an inevitable part in the research of the sustainable land use from theory to practice, it works as an important means of implementing sustainable land use, and it is an important basis for the renovation of regional land, the planning for land use and the formulation of the land use system. "Structure decides function", the stability of the spatial mosaic of land is the foundation of the stability of land function, and it is also the premise of sustainable land use. On the evaluation contents of sustainable land use, the researches in this area currently mainly emphasis on the multi-temporal changes of land functions, but the spatial pattern of land use draws less attention in the study field. On the evaluation merhods of sustainable land use, the current researches mainly take the linear weighting method, but some new evaluation methods, such as neural network method, projection pursuit comprehensive evaluation method and so on, have not been well applied so far.
     Enshi Tujia and Miao Autonomous Prefecture is the only region in the Great Western Development in Hubei Province, it is an important part of the Western Hubei Eco-cultural Tourism Circle. With the Yichang-Wanzhou railway opened and the western section of Shanghai-Chengdu Expressway opened, the advance of Great Western Development and the construction of Western Hubei Eco-cultural Tourism Circle will certainly give a boost to the social economy of this area and brings unprecedented pressure to the regional land use at the same time. Currently, the region keeps a good ecological environment, but belongs to typically ecological fragile areas, thus, the ecological environment, once damaged, will be difficult to restore. Therefore, it is of great significance to achieve regional sustainable development to develop evaluation for sustainable land use in this area, identify the current situation of land use, find out the limiting factors of sustainable land use, and put forward countermeasures to realize regional sustainable land use.
     This paper first discusses theoretically about the relationship between the changes of spatial patterns of landscape and evaluation for sustainable land use.
     The regional people's behavior of land-use forms a particular landscape spatial pattern; landscape spatial pattern is the result of land use. Firstly, from the perspective of spatial entity, landscape and land have great similarities. Human economic activities are mainly carried out at the landscape level, the landscape provides a variety of resources and sites for human economic activities and it is the objection for human beings to use and develop. Whereas, land is a fundamental means of production for human beings, and it provides venues and space for human production and life. All human life and production must be implemented in land reflected as spatial and temporal changes in human behavior and way of land-use. Therefore, the landscape is the result of land use. There exist great similarities between landscape types and land-use types, landscape structure and land-use structure, landscape function and land function, landscape changes and land use/cover changes. Secondly, the perspective of evolution of spatial pattern, at short time-scale, human behavior of land use is the main driving factor for the evolution of spatial pattern.
     Land is a synthesis of physical geography, a composition of different land use types in the space mosaic and is of obvious spatial heterogeneity. It is generally believed that the heterogeneity is enhanced in a certain range can help to improve the stability of landscape, while the stability of space mosaic is the base for the stability of function. According to the theories of ecological integrity and spatial heterogeneity, the essence of regional sustainable land use is to construct a reasonable spatial heterogeneity and to maintain the ecological integrity of land use. Evaluation for sustainable land use should not be limited to analyze the constituent elements, but to grasp the features of the system as a whole and to have a comprehensive consideration of social, economic and ecological factors to evaluate. On regional land use, sustainable land use is the continuation and maintenance of land function, which requires seeking the stability of the land function, while the stability of land function is based on the stability of landscape spatial mosaic. Therefore, evaluation for sustainable land use is not only mainly on the land function, but also on the landscape spatial pattern (spatial structure of land use), especially on the stability of the landscape spatial pattern. In the aspect of quantitative evaluation for the stability of landscape spatial pattern, for the spatial heterogeneity is the basis for the stability of spatial pattern, relevant indicators of spatial heterogeneity are generally used to evaluate the stability of landscape pattern.
     On this basis, this paper puts forward the evaluation for sustainable land use based on landscape spatial patterns as follows:
     Sustainable land use means that the regional land can bring about steady, sustainable and high comprehensive benefits in face of certain pressure to meet the needs of the human socio-economic system, whereas the stability of the land function is based on the stability of land spatial mosaic. Therefore, evaluation for sustainable land use based on landscape spatial patterns is the integrated evaluation of the pressure, landscape spatial structure and the comprehensive benefits. Pressure is the driving factor for the change of the sustainability of land use, the optimal comprehensive benefits are the ultimate goal of sustainable land use, and the stability of landscape spatial mosaic is the basis for achieving sustainable land use. To carry out the evaluation for sustainable land use based on landscape spatial patterns can not only achieve the combination of structure and function but also the coupling of time and space.
     Based on the research of the relationship between landscape spatial patterns and evaluation for sustainable land use, this paper comprehensively uses "3S" technologies and Landscape ecology approach based on data sources of ETM+and TM remote sensing images, SRTM DEM remote sensing data to study the change of land and the evolution of spatial pattern since 1990, and carry out quantitative assessments of the ecological environmental impact (Including net primary biological productivity, the value of ecosystem services, ecological footprint, and benefits of soil and water conservation). On this basis, the paper establishes an index system of evaluation for sustainable land use, applying the "3S" technologies sustainable use based on landscape spatial patterns of "pressure-function-structure" of study area, and gives assessments for the sustainability of land use in this region since 1990 and undertakes a comprehensive diagnosis of obstacle factors to put forward specific countermeasures for the sustainable use of land.
     The research shows that:
     1.Landscape ecological principles bring about new.requirements for the method, criteria and approach in the evaluation for sustainable land use. On the method of evaluation for sustainable land use, it is to take into comprehensive consideration of social factors, the economic factors and ecological factors on land use, and to put land use systems on the context of regional sustainable development and grasp the characteristics of overall system to do evaluations by taking into consideration of various factors. On the criteria of sustainable land use, it is to pursue an integrated optimization in the ecological, economic, social and aesthetic benefits rather than economic benefit maximization of a single cost-effective. On the approach to the technical evaluation, the essence of regional sustainable land use is the continuing construction of spatial heterogeneity and the dynamic maintain of ecological integrity. In Sustainable land use, it is required to keep the stability of the landscape, evaluation for sustainable land use is to evaluate not only the function of land but also the landscape spatial pattern (spatial structure of land use). The growth of human population and the economic and social development will promote human beings to strengthen land use, change their behavior of land use in space and way so as to derive sufficient output to sustain the population survival and the development of social economy, leading to the evolution of landscape patterns. Therefore, evaluation for sustainable land use based on landscape spatial patterns is actually the comprehensive evaluation of the pressure on regional land, landscape spatial structure and overall comprehensive benefit. Pressure is the driving factor of sustainability of land use changes driving comprehensive benefits, the optimal is the ultimate goal of sustainable land use, the stability of the spatial mosaic of landscape is the basis for achieving sustainable land use. Based on landscape spatial pattern, evaluation for sustainable land use can realize not only the combination of the structure and function but also the coupling of time and space.
     2.Since 1990, great changes have taken place more rapidly in the use of regional land, the major change is the sharp decline in grassland and cultivated land. With the continuing growth of wood land, the aggregation of spatial pattern has continued to improve, and the diversity to decline, thus the stability of spatial patterns has a consistent decline.
     From the perspective of changes in number during 1990~2000, the magnitude of changes in descending order were as follows:woodland (7.92%)> grassland (-6.20%)> arable land (-2.19%)> waters (0.23%> construction land (0.23%).The proportion of changes in waters and construction land are the same, but the area of waters has a bigger change. From 2000 to 2007, the magnitude of changes were as follows:arable land (-8.41%)>woodland (8.17%)> grassland (-0.14%)> construction land (0.11%)> waters(0.06%).
     From the perspective of the intensity of land-use changes to compare the two study periods, the intensity of land changes in the period from the year of 2000 to 2007 is more severe. From 1990 to 2000, the dynamic intensity for the regional comprehensive land-use is 6.06%, and the intensity of land-use changes by descending order is as follows:waters (11.51%)> grassland (-9.42%)> construction land (2.11%)> woodland (1.51%)> arable land (-0.55%).From 2000 to 2007, the dynamic intensity for the regional comprehensive land-use is 9.83%, the intensity of land-use changes by descending order is as follows:grassland (-5.23%)>arable land (-3.19%)> waters (1.95%)>woodland (1.94%)>construction land (1.09%).
     From the perspective of spatial distribution of land-use types, since 1990, the basic trend to the spatial distribution of land-use types is:the grassland continues to shrink to the mountains, woodland continues to spread to the low- altitude areas and the arable land further continues to back upon the low- altitude gully land. From 1990 to 2000, the average elevation of arable land distribution fell 25.92 meters with an average slope of 1.24 degrees decreased, the average elevation of grassland distribution increased 474.73 meters with an average slope of 1 degrees increased. From 2000 to 2007, the average elevation of woodland distribution fell 5.23 meters with an average slope of 0.98 degrees decreased, the average elevation of arable land distribution fell 96.99meters with an average slope of 0.97 degrees decreased, and grassland continues to shrink to the high mountains, with an average elevation in the distribution of 124.73 meters increased.
     From the perspective of spatial pattern of regional land use, since 1990, the aggregation degree of spatial pattern continues to increase with the diversity index continuously declining and the stability of spatial pattern diminishing. From 1990 to 2000, the patch number of the regional land use increased from the number of 244128 to 383276, and the average patch area decreased from 9.91 hectares to 6.31 hectares. Mean shape index, Fractal dimension and fractal indicators are big, and the land-use spatial patterns becomes more complicated and fragmentation. The richness and evenness change respectively from 0.7561 and 0.5302 in 1990 to 0.8522 and 0.4705 in 2000, which indicates that the dominant role of the two land-use types of woodland and arable land that affected regional land use pattern is enhanced. The aggregation degree of landscape is further improved, the dominant role of the two land-use types of woodland and arable land is further enhanced and the diversity index of the spatial pattern is further reduced.
     3.Due to the growth of population and the restructuring of land use, the ecological carrying capacity of land has been decreased, but generally the eco- environment benefits of the regional land use continues to be improved.
     From the perspective of Area-weighted average NPP, the net primary productivity in the study area continued to increase,in 1990, the regional average NPP was 15.78t/(hm2·a), in 2000, the regional average NPP rose to 15.86t/(hm2·a), and in 2007, the regional average NPP rose to 16.63 t/(hm2·a). The land types of NPP sorted by the size are:woodland> arable land> grassland> construction land> waters. From the NPP Maximum in per unit area, the NPP Maximum in 1990 was 83.43 t/(hm2·a), the average NPP Maximum in 2000 and 2007 are 98.87 t/(hm2·a),thus the improvement of the ecological environment during the study period leads to not only the continuous growth of the forest coverage rate, but also brings better growth situation to the forest and makes biological production functioning better.
     The results of the value evaluation for ecosystem services show that:since the year of 1990, the value of ecosystem services in the study area keeps growing, which shows that the quality of the ecological environment in this region is continuously improved and the function of the ecosystem services is improved. From the perspective of the land-use types, woodland and arable land are the region's main parts in forming the value for the regional ecosystem services, the value of wood land eco-system services takes up the maximum and is to be strengthened over time.
     From the perspective of ecological footprint, since the year of 1990, the regional per capita ecological footprint continues to grow, while the per capita ecological capacity continues to decline, the study area had slight ecological surplus in 1990, and then it had ecological deficit. In 1990, the per capita ecological footprint was 1.23hm2, in 2000, it was 1.44 hm2, and it rose to2.2 hm2 in 2007. Compared the two periods, the rise in per capita ecological footprint is faster after 2000. Among them, ecological footprint of energy consumption takes up a large proportion in the whole ecological footprint and it grows rapidly. The per capita ecological capacity continues to decline, in 1990, the per capita ecological capacity is 1.447 hm2, and it dropped to 1.3846 hm2 in 2000, and it continuously reduced to 1.2203 hm2 in 2007.
     The evaluation results of the soil erosion in this region show:due to the high coverage of forests in the study area, the soil erosion is slight, and the conservation benefits of soil and water are good. The maximum modulus of soil erosion was 694.947 t/km2-a in 1990, it was 693.507 t/km2-a in 2000, and was 670.764 t/km2-a in 2007. According to the criteria of soil erosion classification and grading, the overall situation of soil erosion in the study area was slight-erosion since 1990. The area of soil loss was 558.9 hectares in 1990,243.81 hectares in 2000 and 230.04 hectares in 2007. Taking the largest area of soil loss in 1990 for consideration, the area of soil loss takes up only 2/10000 in the proportion of the total land area in the study area.
     4. The sustainability of regional land use in the study area has continuously been declining since 1990. The major obstacle factors of sustainable land use in 1990 were the low level of grain production and the relatively poor regional eco-environment. After 1990, with the adoption of Forest Conservation Measures and the Policy of Converting arable land to Forestry in the region, the ecological environment continues to be improved. The major limiting factors of sustainable land use are the growth of construction land, the increasing of population composite consumption level and the declining of landscape diversity.
     Finally, this paper puts forward the countermeasures for regional sustainable land use:first, to strengthen the construction of basic farmland, protect arable land, implement land management and improve the output capacity of arable land; second, to use construction land economically and intensively and control the occupation of construction land on arable land; third, to seize the opportunity to carry out industrial restructuring and apply the Principle of decentralization of Landscape Ecology to constructing ecological security pattern; and at last, to establish regional ecological compensation mechanism and adhere to the continuity of the Policy of Converting arable land to. Forestry.
引文
[1]WCED. Our common future, Report of the world commission on environment and development [R]. Oxford:,1987.
    [2]吴次芳鲍海君.土地资源安全研究的理论与方法[M].北京:气象出版社,2004.
    [3]但承龙.土地可持续利用规划理论和方法[M].北京:经济管理出版社,2004.
    [4]刘耀林.土地评价理论、方法与系统开发[M].北京:科学出版社,2008.
    [5]蒙吉军.土地评价与管理[M].北京:科学出版社,2005.
    [6]傅伯杰,陈利顶,马诚.土地可持续利用评价的指标体系与方法[J].自然资源学报.1997(02):112-118.
    [7]傅伯杰.景观生态学原理及应用[M].北京:科学出版社,2001.
    [8]ACIAR. Proceedings of the international workshop on evaluation for sustainable land manage- ment in the developing world[R]. Vol.2 Technical Papers, Chiang Rai, Tailand, 1991.
    [9]University of Lethbridge. Proceedings of the international workshop on sustainable land management for 21st century [R]. Vol.2 Plenary Papers, Lethbridge, Canada,1993.
    [10]Dumanski J. Indicators of Land Quality and Sustainable Land Management:An Annotated Bibliography [R]. Environmentally and Socially Sustainable Development Series:Rural Development. The International Bank for Reconstruction and Development/The World Bank.Washington, D.C., U.S.A.,1998.
    [11]Smyth A J, Dumanski J. A framework for evaluating sustainable land management[J]. CANADIAN JOURNAL OF SOIL SCIENCE.1995,75(4):401-406.
    [12]Lightfoot. Farmer participatory procedures for managing and monitoring sustainable farming systems[J]. Journal ofthe Asian Farming SystemAssociation,1993(2):61~87.
    [13]Hurni H. Concept of sustainable land management[R]. Enschede,The Netherlands,1997: 210~215.
    [14]Fao. FESLM:An International Framework for Evaluating Sustainable Land Management[R]. World Soil Resources Reports,1993.
    [15]周炳中,杨浩,包浩生,等.PSR模型及在土地可持续利用评价中的应用[J].自然资源学报.2002(05):541-548.
    [16]于伯华,吕昌河.基于DPSIR模型的农业土地资源持续利用评价[J].农业工程学报.2008(09):53-58.
    [17]Syers J K, Hamblin A, Pushparajah E. Indicators and thresholds for the evaluation of sustainable land management[J]. CANADIAN JOURNAL OF SOIL SCIENCE.1995, 75(4):423-428.
    [18]Gameda S. Farm level indicators of sustainable land management[R]. Geo Information for Sustainable Land Management. ISSS/ITC, Enschede, Netherlands,1997.
    [19]John. Land resource management in the Machakos district,Kenyal 1930—1990[R]. World Bank Environmet Paper 5,1994.
    [20]Berroteran. Criteria and indicators of agricultural sustainability at National level[R]. Geo Information for Sustainable Land Management. ISSS/ITC, Enschede, Netherlands,1997.
    [21]Lefroy R, Bechstedt H D, Rais M. Indicators for sustainable land management based on farmer surveys in Vietnam, Indonesia, and Thailand[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):137-146.
    [22]Ericksen P J, Mcsweeney K, Madison F W. Assessing linkages and sustainable land management for hillside agroecosystems in Central Honduras:analysis of intermediate and catchment scale indicators[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT. 2002,91(1-3):295-311.
    [23]Dumanski J. Assessing the sustainable of saskatchewan farmingsystem[R]. CLBRRTechnical Bulletin,1994.
    [24]郭旭东,邱扬,连纲,等.基于PSR框架的土地质量指标体系研究进展与展望[J].地理科学进展.2003,22(5):479-489.
    [25]冷疏影,李秀彬.土地质量指标体系国家研究的新进展[J].地理学报.1999,54(2):177-185.
    [26]陈百明,张凤荣.中国土地可持续利用指标体系的理论与方法[J].自然资源学报.2001(03):197-203.
    [27]Cornforth I S. Selecting indicators for assessing sustainable land management[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT.1999,56(3):173-179.
    [28]Dumanski J, Pieri C. Land quality indicators:research plan[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):93-102.
    [29]Bindraban P S, Stoorvogel J J, Jansen D M, et al. Land quality indicators for sustainable land management:proposed method for yield gap and soil nutrient balance[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):103-112.
    [30]Huffman E, Eilers R G, Padbury G, et al. Canadian agri-environmental indicators related to land quality:integrating census and biophysical data to estimate soil cover, wind erosion and soil salinity[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2): 113-123.
    [31]Hurni H. Assessing sustainable land management (SLM)[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):83-92.
    [32]Kirkby M J, Le Bissonais Y L, Coulthard T J, et al. The development of land quality indicators for soil degradation by water erosion[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):125-136.
    [33]Lefroy R, Bechstedt H D, Rais M. Indicators for sustainable land management based on farmer surveys in Vietnam, Indonesia, and Thailand[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2000,81(2):137-146.
    [34]Osinski E. Operationalisation of a landscape-oriented indicator[J]. Agriculture, Ecosystems & Environment.2000,98(3):371-386.
    [35]Bouma J. Land quality indicators of sustainable land management across scales[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT.2002,88(2):129-136.
    [36]Mlui. Soil quality. contaminated land and waste utilization[R]. Annual Report of MLUI. 1997.28~37.
    [37]Salinas-Garcia. Long-term tillage and nitrogen fertilization efects on soil properties of alfisol under dry land corn/cotton production[J]. Soil andTillage Research,1997,42:1-2.
    [38]Hartemink A E. Soil chemical and physical properties as indicators of sustainable land management under sugar cane in Papua New Guinea[J]. GEODERMA.1998,85(4): 283-306.
    [39]Murage. Diagnostic indicators of soil quality in productive an d non-pred uctive small holders'fields of Kenya's Central Highlands[J]. Agriculture, Ecosystems and Environment, 2000,79:1-8.
    [40]Jeffrey. Soil quality:an indicator of sustainable land management?[J]. Applied Soil Ecology, 2000,15(1):75-83.
    [41]Herrick J E. Soil quality:an indicator of sustainable land management?[J]. APPLIED SOIL ECOLOGY.2000,15(1):75-83.
    [42]Carter M R. Soil quality for sustainable land management:Organic matter and aggregation interactions that maintain soil functions[J]. AGRONOMY JOURNAL.2002,94(1):38-47.
    [43]陈百明.区域土地可持续利用指标体系框架的构建与评价[J].地理科学进展.2002(03):204-215.
    [44]谢俊奇.可持续土地利用的社会、资源环境和经济影响评价的初步研究[J].中国土地科学.1998(03).
    [45]倪绍祥,刘彦随.区域土地资源优化配置及其可持续利用[J].农村生态环境.1999(02):8-12.
    [46]刘彦随,冯德显.三峡库区土地持续利用潜力与途径模式[J].地理研究.2001(02):139-145.
    [47]田冰,贾金生,侯喜梅.土地可持续利用评价指标研究[J].河北农业大学学报.2001(04):90-92.
    [48]李植斌.城市土地可持续利用评价研究[J].浙江师大学报(自然科学版).2000(01):68-73.
    [49]彭补拙,安旭东,陈浮,等.长江三角洲土地资源可持续利用研究[J].自然资源学报.2001(04):305-312.
    [50]尹君.土地资源可持续利用评价指标体系研究[J].中国土地科学.2001(02):78-81.
    [51]陈志刚,黄贤金.经济发达地区土地资源可持续利用评价研究——以江苏省江阴市为例[J].资源科学.2001(03):33-38.
    [52]张凤荣.中国土地资源及其可持续利用[M].北京:中国农业大学出版社,2000.
    [53]王良健,陈浮,包浩生.区域土地资源可持续管理评估研究——以广西梧州市为例[J].自然资源学报.1999(03):200-205.
    [54]谢俊奇.可持续土地利用系统研究[J].中国土地科学.1999(04).
    [55]彭建,王仰麟,刘松,等:景观生态学与土地可持续利用研究[J].北京大学学报(自然科学版).2004(01):144-160.
    [56]邱扬,傅伯杰.土地持续利用评价的景观生态学基础[J].资源科学.2000(06):1-8.
    [57]彭建,王仰麟,张源,等.滇西北山区土地持续利用动态评价与分析——以云南省永胜县为例[J].地理研究.2006(03):629-638.
    [58]彭建,王仰麟,刘松,等.海岸带土地持续利用景观生态评价[J].地理学报.2003(03):363-371.
    [59]卢远,华璀,邓兴礼.丘陵地区土地可持续利用的景观生态评价[J].山地学报.2004(05).
    [60]张秋琴,周宝同,莫燕,等.区域土地可持续利用景观生态评价研究[J].中国生态农业学报.2008(03).
    [61]刘艳中,李江风,张祚,等.生态足迹模型在我国土地可持续利用评价中的应用及启示[J].地理与地理信息科学.2008(01):80-84.
    [62]刘钦普,林振山,冯年华.生态足迹改进模型及在江苏省耕地利用评价中的应用[J].生态学杂志.2007(10):1685-1689.
    [63]戴晓燕,徐建华,董山,等.基于生态足迹模型的上海土地利用可持续性调控研究[J].华东师范大学学报(自然科学版).2007(06):20-28.
    [64]杨庆媛,王兆林,鲁春阳,等.生态足迹研究方法在土地资源可持续利用评价中应用——以重庆市为例[J].西南大学学报(自然科学版).2007(08):134-138.
    [65]高练,周勇,李清.基于生态足迹理论的湖北省耕地可持续利用分析[J].国土与自然资源研究.2008(04):45-47.
    [66]Odum H T. Emergy definition-Reply[J]. ECOLOGICAL ENGINEERING.1997,9(3-4): 215-216.
    [67]Odum H T, Doherty S J, Scatena F N, et al. Emergy evaluation of reforestation alternatives in Puerto Rico[J]. FOREST SCIENCE.2000,46(4):521-530.
    [68]蓝盛芳,钦佩.生态系统的能值分析[J].应用生态学报.2001,12(01):129-131.
    [69]张洁瑕,郝晋珉,段瑞娟.现代农业生态系统能值演替分析——以河北省曲周县为例[J].水土保持学报.2005(06):141-144.
    [70]张军民.新疆玛纳斯河流域绿洲生态经济能值分析[J].经济地理.2007(03).
    [71]张军民.基于能值分析的新疆玛纳斯河流域绿洲生态经济评价[J].水土保持通报.2007(01):151-154.
    [72]卢远,韦燕飞,邓兴礼,等.岩溶山区农业生态系统的能值动态分析[J].水土保持学报.2006(04):166-169.
    [73]刘新茂,蓝盛芳,陈飞鹏.广东省种植业系统能值分析[J].华南农业大学学报.1999(04):111-115.
    [74]李双成,蔡运龙.基于能值分析的土地可持续利用态势研究[J].经济地理.2002(03):346-350.
    [75]唐宁,廖铁军.基于能值分析的土地生态经济系统可持续性评价[J].安徽农业科学.2007(02):343-345.
    [76]张芳怡,濮励杰,张健.基于能值分析理论的生态足迹模型及应用——以江苏省为例 [J].自然资源学报.2006(04):653-660.
    [77]王建源,陈艳春,李曼华,等.基于能值分析的山东省生态足迹[J].生态学杂志.2007(09):1505-1510.
    [78]段七零.基于能值分析的江苏省耕地生态足迹区域差异[J].地理科学进展.2008(04):96-102.
    [79]王明全,王金达,刘景双,等.基于能值的生态足迹方法在黑龙江和云南二省中的应用与分析[J].自然资源学报.2009(01):73-81.
    [80]彭建,王仰麟,吴健生,等.我国土地持续利用研究进展[J].中国土地科学.2002(05):37-45.
    [81]严志强.县域土地利用的可持续性评价——以广西壮族自治区为例[J].广西师院学报(自然科学版).1999(02):1-6.
    [82]谭术魁,游和远.基于BP神经网络的湖北省城市土地可持续利用评价[J].科技进步与对策.2006(10):147-150.
    [83]袁俊,鲁励夫.基于人工神经网络的城市土地可持续利用评价研究——以武汉市为例[J].国土资源科技管理.2004(05):21-25.
    [84]Sheng C, Jiangfeng L, Xiaoli J, et al. Intensity evaluation of urban land use based on back-propagation artificial neuron network[A]. Proc. of the internatinal workshop on intelligent systems and applications[C].Wuhan,China:IEEE eXpress conference publishing, 2009:389-392.
    [85]Sheng C, Jiangfeng L, Weisheng X, et al. Evaluation of regional sustainable development based on particle swarm optimaization[A]. Proc. of ICIECS2009[C].Wuhan,China:IEEE eXpress conference publishing,2009.
    [86]熊华,刘耀林,车珊珊,等.基于支持向量机的土地利用变化模拟模型[J].武汉大学学报(信息科学版).2009(03):366-369.
    [87]周勇,田有国,任意,等.定量化土地评价指标体系及评价方法探讨[J].生态环境.2003(01):37-41.
    [88]ISSS/ITC. Sustainable land management & geoinformation (abstract) [R]. ITC. Enschede, Netherlands,1997
    [89]中国科学院可持续发展战略研究组.2004中国可持续发展战略报告[M].北京:科学出版社,2004.
    [90]陈述彭.地球科学的复杂性与系统性[J].地理科学.1991,11(4):297-305.
    [91]蔡运龙.土地利用/土地覆被变化研究:寻求新的综合途径[J].地理研究.2001(6):645-652.
    [92]刘康.土地利用可持续性评价的系统概念模型[J].中国土地科学.2001(06):19-25.
    [93]钟方雷,徐中民,张志强.生态经济学与传统经济学差异辨析[J].地球科学进展.2008,23(4):401-407.
    [94]诸大建.生态经济学:可持续发展的经济学和管理学[J].中国科学院院刊.2008,23(6):520-530.
    [95]黄玉源.生态经济学的学科性质及分类地位分析[J].科学中国人.2006(7):78-81.
    [96]刘克英.生态经济学基本问题研究[J].生态经济.2006(3):4244.
    [97]戴利,弗蕾,张志强,等.生态经济学:原理与应用[M].郑州:黄河水利出版社,2007.
    [98]刘则渊,王贤文.生态经济学研究前沿及其演进的可视化分析[J].西南林学院学报.2008,28(4):3-11.
    [99]王万茂,高波.论土地生态经济学与土地生态经济系统(下)[J].地域研究与开发.1993,12(4):1-4.
    [100]王万茂,高波.论土地生态经济学与土地生态经济系统(上)[J].地域研究与开发.1993,12(3):5-10.
    [101]张明.以土地利用/土地覆被变化为中心的土地科学研究进展[J].地理科学进展.2001(04):297-304.
    [102]陈百明,刘新卫,杨红.LUCC研究的最新进展评述[J].地理科学进展.2003,22(1):22-29.
    [103]唐华俊,吴文斌,杨鹏,等.土地利用/土地覆被变化(LUCC)模型研究进展[J].地理学报.2009,64(4):456-468.
    [104]韩超峰,陈仲新.LUCC驱动力模型研究综述[J].中国农学通报.2008,24(4):365-368.
    [105]高志强,刘纪远,曹明奎,等.土地利用和气候变化对区域净初级生产力的影响[J].地理学报.2004,59(4):581-591.
    [106]田宇鸣,李新.土地利用/覆被变化(LUCC)环境效应研究综述[J].环境科学与管理.2006,31(4):60-64.
    [107]蒙吉军,吴秀芹,李正国.黑河流域LUCC (1988-2000)的生态环境效应研究[J].水土保持研究.2005,12(4):17-21.
    [108]邬伦.地理信息系统:原理、方法和应用[M].北京:科学出版社,2004.
    [109]刘纪远,庄大方,张增祥,等.中国土地利用时空数据平台建设及其支持下的相关研究[J].地球信息科学.2002,4(3):3-7.
    [110]肖笃宁,苏文贵,贺红士.景观生态学的发展和应用[J].生态学杂志.1988(06):43-48.
    [111]Duning X. Core Concets of Landscae Ecology[J]. Journal of Environmental Sciences. 1999,11(2):379-384.
    [112]邬建国.景观生态学——概念与理论[J].生态学杂志.2000(01):42-52.
    [113]王仰麟,赵一斌.景观生态系统的空间结构;概念,指标与案例[J].地球科学进展.1999,14(3):235-241.
    [114]伍业钢,邬建国.缀块性和缀块动态:Ⅲ.生态与进化效应[J].生态学杂志.1992,11(6):34-41.
    [115]李百炼,伍业钢.缀块性和缀块动态:Ⅱ.描述与分析[J].生态学杂志.1992,11(5):28-37.
    [116]Sebert-Cuvillier E, Simon-Goyheneche V, Paccaut F, et al. Spatial spread of an alien tree species in a heterogeneous forest landscape:a spatially realistic simulation model[J]. Landscape Ecology.2008,23(7):787-801.
    [117]Johnson A, Wiens J, Milne B, et al. Animal movements and population dynamics in heterogeneous landscapes[J]. Landscape Ecology.1992,7(1):63-75.
    [118]King A W, Johnson A R, O'Neill R V. Transmutation and functional representation of heterogeneous landscapes[J]. Landscape Ecology.1991,5(4):239-253.
    [119]李哈滨,王政权.空间异质性定量研究理论与方法[J].应用生态学报.1998,9(6):651-657.
    [120]Hobbs R J, Cramer V A. Natural ecosystems:Pattern and process in relation to local and landscape diversity in southwestern Australian woodlands[J]. Plant and Soil.2003,257(2): 371-378.
    [121]Thorbek P, Topping C J. The influence of landscape diversity and heterogeneity on spatial dynamics of agrobiont linyphiid spiders:An individual-based model[J]. BioControl.2005, 50(1):1-33.
    [122]Skopek V, Sterbacek Z, Vachal J. A method of approach to landscape stability. Part 2: Ecooptimization of experimental territorial landscape segment in Bohemian forest[J]. Environmental Management.1991,15(2):215-225.
    [123]Skopek V, Vachal J, Sterbacek Z. A method of approach to landscape stability. Part 1: Fundamentals and methodology [J]. Environmental Management.1991,15(2):205-214.
    [124]岳天祥,马世骏.生态系统稳定性研究[J].生态学报.1991,11(4):361-366.
    [125]陈利顶,傅伯杰.干扰的类型,特征及其生态学意义[J].生态学报.2000,20(4):581-586.
    [126]Mcgarigal K, Cushman S A, Neel M C, et al. FRAGSTATS:Spatial Pattern Analysis Program for Categorical Maps[DB/CD]. Amherst:Computer software program produced by the authors at the University of Massachusetts,2002.
    [127]FRAGSTATS Documentation[Z].2010:2010, http://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html.
    [128]肖笃宁,钟林生.景观分类与评价的生态原则[J].应用生态学报.1998,9(2):217-221.
    [129]傅伯杰,吕一河.生态系统评估的景观生态学基础[J].资源科学.2006(04):5-5.
    [130]傅伯杰.黄土区农业景观空间格局分析[J].生态学报.1995,15(2):113-120.
    [131]傅伯杰.景观多样性分析及其制图研究[J].生态学报.1995,15(4):345-350.
    [132]刘纪远,张增祥,徐新良,等.21世纪初中国土地利用变化的空间格局与驱动力分析[J].地理学报.2009,64(12):1411-1420.
    [133]韩荡,王仰麟.区域持续农业的景观生态研究[J].干旱区地理.1999,22(3):1-8.
    [134]肖笃宁.土地变化研究中的景观生态学方法[A].土地变化科学与生态建设”学术研讨会论文集[C],青海西宁,2004.
    [135]王仰麟.农业景观格局与过程研究进展[J].环境科学进展.1998,6(2):29-34.
    [136]Wiens J. Landscape ecology as a foundation for sustainable conservation[J]. Landscape Ecology.2009,24(8):1053-1065.
    [137]王仰麟,杨新军.风景名胜区总体规划中的旅游持续发展研究:以浙江金华双龙国家重点风?…[J].资源科学.1999,21(1):37-43.
    [138]Forman R T T, Godron M. landscape ecology[M]. New York:John Wiley & Sons,1986.转引自文献[7].
    [139]肖笃宁,布仁仓.生态空间理论与景观异质性[J].生态学报.1997,17(5):453-461.
    [140]Nassauer J I. Culture and Changing Landscae Structure. [J]. Landscae Ecology.1995, 10(4):229-237.
    [141]肖笃宁,李秀珍.当代景观生态学的进展和展望[J].地理科学.1997,17(4):356-364.
    [142]姜小光,王成.成像光谱数据的光谱信息特点及最佳波段选择:以北京顺义区为例[J].干旱区地理.2000,23(3):214-220.
    [143]戴欣明,章孝灿.一种关系化的GIS空间数据结构[J].计算机应用研究.2003,20(2):56-57.
    [144]罗音,舒宁.基于信息量确定遥感图像主要波段的方法[J].城市勘测.2002(4):28-32.
    [145]解修平,周杰,张海龙,等.基于景观生态和马尔可夫过程的西安地区土地利用变化分析[J].资源科学.2006,28(6):175-181.
    [146]张春华,王宗明,宋开山,等.基于马尔可夫过程的三江平原土地利用动态变化预测[J].遥感技术与应用.2009(2):210-216.
    [147]刘纪远,布和敖斯.中国土地利用变化现代过程时空特征的研究:基于卫星遥感数据[J].第四纪研究.2000,20(3):229-239.
    [148]张玉虎,贾海峰,于长青.永定河流域典型区土地利用/覆被变化[J].山地学报.2009(5):564-572.
    [149]刘纪远,张增祥,等.20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究.2003,22(1):1-12.
    [150]彭建,王仰麟,吴健生.净初级生产力的人类占用:一种衡量区域可持续发展的新方法[J].自然资源学报.2007(01):153-158.
    [151]高志强,刘纪远,曹明奎,等.土地利用和气候变化对区域净初级生产力的影响[M].2004:581-591.
    [152]郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型[J].植物生态学报.2000,24(1):9-12.
    [153]彭建,刘松,吕婧.区域可持续发展生态评估的能值分析研究进展与展望[J].中国人口资源与环境.2006,16(5):47-51.
    [154]彭建,王仰麟,吴健生.区域可持续发展生态评估的物质流分析研究进展与展望[J].资源科学.2006,28(6):189-195.
    [155]谢高地,鲁春霞,等.全球生态系统服务价值评估研究进展[J].资源科学.2001,23(6):5-9.
    [156]谢高地,肖玉,鲁春霞.生态系统服务研究:进展、局限和基本范式[J].植物生态学报.2006,30(2):191-199.
    [157]Costanza. The value of the world's ecosystem services and natural capital[J]. Nature.1997, 1997(387):253-260.
    [158]谢高地,鲁春霞,等.青藏高原高寒草地生态系统服务价值评估[J].山地学报.2003,21(1):50-55.
    [159]Wackernagel M, Rees W E. Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective[J]. ECOLOGICAL ECONOMICS. 1997,20(1):3-24.
    [160]Wackernagel M, Yount J D. The ecological footprint:An indicator of progress toward regional sustainability[J]. ENVIRONMENTAL MONITORING AND ASSESSMENT. 1998,51(1-2):511-529.
    [161]Wackernagel M, Onisto L, Bello P, et al. National natural capital accounting with the ecological footprint concept[J]. ECOLOGICAL ECONOMICS.1999,29(3):375-390.
    [162]Wackernagel M, Lewan L, Hansson C B. Evaluating the use of natural capital with the ecological footprint-Applications in Sweden and subregions[J]. AMBIO.1999,28(7): 604-612.
    [163]Holmberg J, Lundqvist U, Robert K H, et al. The ecological footprint from a systems perspective of sustainability[J]. INTERNATIONAL JOURNAL OF SUSTAINABLE DEVELOPMENT AND WORLD ECOLOGY.1999,6(1):17-33.
    [164]徐中民,张志强.甘肃省1998年生态足迹计算与分析[J].地理学报.2000,55(5):607-616.
    [165]徐中民,张志强,程国栋,等.中国1999年生态足迹计算与发展能力分析[J].应用生态学报.2003,14(2):280-285.
    [166]张志强,徐中民,等.中国西部12省(区市)的生态足迹[J].地理学报.2001,56(5):599-610.
    [167]徐中民,程国栋,等.生态足迹方法:可持续性定量研究的新方法:—以张掖地区1995年的生态足迹计算为例[J].生态学报.2001,21(9):1484-1493.
    [168]谢高地,鲁春霞,等.中国的生态空间占用研究[J].资源科学.2001,23(6):20-23.
    [169]章锦河,张捷.旅游生态足迹模型及黄山市实证分析[J].地理学报.2004,59(5):763-771.
    [170]谢高地,曹淑艳.生态足迹方法作为生态系统评估工具的潜力[J].资源科学.2006,28(4):8.
    [171]符素华,刘宝元.土壤侵蚀量预报模型研究进展[J].地球科学进展.2002,17(1):78-84.
    [172]王万忠.黄土地区降雨侵蚀力R值的研究[J].中国水土保持.1987(12):34-40.
    [173]王万忠.黄土地区降雨特性与土壤流失关系的研究:Ⅱ一降雨侵蚀力指标R值的探讨[J].水土保持通报.1984(2):58-62.
    [174]黄炎和,付勤.闽东南降雨侵蚀力指标R值的研究[J].水土保持学报.1992,6(4):1-5.
    [175]张宪奎,许靖华.黑龙江省土壤流失方程的研究[J].水土保持通报.1992,12(4):1-9,18页.
    [176]侯大斌.川渝地区土壤可蚀性评价[D].雅安:四川农业大学,2001.
    [177]方纲清,阮伏水,等.福建省主要土壤可蚀性特征初探[J].福建水土保持.1997(2):19-23.
    [178]卜兆宏,董勤瑞.降雨侵蚀力因子新算法的初步研究[J].土壤学报.1992,29(4):408-418.
    [179]陈明华,黄炎和.坡度和坡长对土壤侵蚀的影响[J].水土保持学报.1995,9(1):31-36.
    [180]江忠善,郑粉莉.坡面水蚀预报模型研究[J].水土保持学报.2004,18(1):66-69.
    [181]陈克平,宁大同.基于GIS非点源污染模型的地形因子分析[J].北京师范大学学报:自然科学版.1997,33(2):281-284.
    [182]金争平,史培军.黄河皇甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992.
    [183]杨娟,葛剑平,李庆斌.基于GIS和USLE的卧龙地区小流域土壤侵蚀预报[J].清华大 学学报(自然科学版).2007,46(9):1526-1529.
    [184]张侠,尚建平,赵德义,等.基于熵值法的城市土地可持续利用评价——以石家庄市为例[J].国土与自然资源研究.2009(4):33-35.
    [185]江艺明.基于熵值法的土地利用可持续性评价研究[J].农村经济与科技.2007(04).
    [186]刘一苏,刘喜广.基于熵值法的泰安市土地可持续利用评价[J].安徽农业科学.2006,34(12):2625-2626.
    [187]戴全厚,刘国彬,刘普灵,等.黄土丘陵区中尺度生态经济系统健康诊断方法探索[J].中国农业科学.2005,38(5):990-998.
    [188]戴全厚,刘国彬,田均良,等.侵蚀环境小流域生态经济系统健康定量评价[J].生态学报.2006,26(7):2219-2228.
    [189]李祚泳.投影寻踪的理论及应用进展[J].大自然探索.1998,17(1):47-50.
    [190]李祚泳,侯宇光.投影寻踪回归模型及其在降水预测中的应用[J].新疆气象.1998,21(3):9-11.
    [191]丁颖.基于投影寻踪的城市可持续发展评价[J].云南建筑.2008(2):40-42.
    [192]王恩辰.海域综合承载力视角下环渤海地区可持续发展能力分析——基于投影寻踪模型[J].环渤海经济瞭望.2009(11):41-43.
    [193]张先起,刘慧卿.水资源可持续利用程度评价的投影寻踪模型[J].云南水力发电.2006,22(4):8-12,16页.
    [194]李明月,江华.征地制度改革:基于退耕还林制度设计的视角[J].经济问题探索.2005(4):124-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700