用户名: 密码: 验证码:
运动延缓高脂诱导大鼠胰岛素抵抗形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     观察有氧运动对高脂膳食诱导的SD大鼠胰岛素抵抗形成的干预作用及其相关机制探讨。
     研究方法:
     本研究以正常SD雄性大鼠为实验对象,统一普通饲料适应性喂养一周后,随机分为4组:普食对照组(C组)、普食运动组(E组)、高脂膳食对照组(H组)、高脂膳食运动组(HE组)。通过10周高脂配方饲料(热卡比蛋白质23.5%,脂肪44.1%,碳水化合物32.4%,提供能量约408Kcal/100g)喂养以诱导胰岛素抵抗,同时对大鼠实施无负重有氧游泳运动干预。综合利用体重、空腹胰岛素(FINS)、空腹血糖(FBG)、胰岛素抵抗指数(HOMA-IR)、胰岛素敏感指数(ISI)、胰岛素耐量试验(ITT)评价动物模型的建立和部分运动干预效果;观察高脂膳食和运动对大鼠血脂指标、内脏脂肪储量、肝重、肝功能谷丙转氨酶、谷草转氨酶(ALT、AST)及对组织(肝脏和肌肉)脂质异位沉积的影响;采用酶联免疫法和实时荧光定量PCR技术系统全面观察血清脂联素、内脏脂肪组织脂联素mRNA表达及骨骼肌和肝脏脂联素受体基因表达在高脂和运动干预条件下所发生的改变,以及SD大鼠肝脏和骨骼肌脂联素受体的分布情况;采用Western blotting方法测定大鼠肝脏和股四头肌腺苷酸蛋白激酶α(AMPKα)蛋白表达及其磷酸化水平在高脂和规律运动后的变化情况。
     研究结果:
     1实验前四组大鼠体重无差异。实验末,H组高于C组、E组低于C组、HE组低于H组、HE组高于E组(P<0.01)。平均增重两运动组较两安静组缓慢,以H组增长最快而E组增长最缓慢。FBG、HOMA-IR无显著性差异(P>0.05);FINS指标:H组高于C组、E组低于C组、HE组低于H组(P<0.05);ISI指标:H组低于C组、E组高于C组、HE组高于H组(P<0.05)。
     2 ITT实验中,各组0时血糖无差异,腹腔注射胰岛素后,H组在15min、30min、60min血糖值均显著高于C组(P<0.05);HE组在15min、30min、60min血糖值均显著低于H组(P<0.05);E组在15min、30min血糖均显著低于C组(P<0.05)。
     3内脏脂肪重、腹脂指数和肝重,H组均高于C组,E组均低于C组,HE组均低于H组(P<0.01或P<0.05)。
     4 H组TC、TG、LDL-C、TC/HDL均显著高于C组(P<0.05),HDL-C、FFA无显著性差异(P>0.05);E组和C组比,TC、HDL-C、TC/HDL差异无显著性(P>0.05),TG、LDL-C、FFA显著低于C组(P<0.01或P<0.05);HE组和H组比,HDL-C、LDL-C、FFA差异不具显著性(P>0.05),TC、TG、TC/HDL显著低于H组(P<0.05或P<0.01);HE组和E组比,TC、TG差异无显著性(P>0.05),HDL-C显著低于E组(P<0.05),LDL-C、TC/HDL、FFA显著高于E组(P<0.01或P<0.05)。
     5 H组和C组肝脏TC、肌TG差异无显著性(P>0.05),肝脏TG非常显著性高于C组(P<0.01),肝脏FFA显著高于C组(P<0.05);E组和C组肝脏TC、肌TG差异无显著性(P>0.05),肝脏TG非常显著性低于C组(P<0.01),肝脏FFA显著低于C组(P<0.05);HE组肝脏TC显著低于H组(P<0.05),肝脏TG和FFA均非常显著性低于H组(P<0.01),肌TG差异不具显著性(P>0.05)。血清ALT和AST未出现显著性差异(P>0.05)。
     6虽未见显著性差异(P>0.05),但仍可看出血清脂联素水平与FINS和ALT指标均成负相关(R=-0.069,R=-0.179),与HDL呈正相关(R=0.043)。各组大鼠循环脂联素水平未见显著性差异(P>0.05)。H组内脏脂肪组织脂联素mRNA表达显著低于C组(P<0.05);E组略低于C组,HE组略低于H组,但差异不具显著性(P>0.05)。
     7 AdipoR1mRNA以股四头肌表达较为丰富,AdipoR2mRNA在肝脏高表达,差异有显著性(P<0.05)。H组AdipoR1/R2mRNA表达显著低于C组(P<0.05),而两运动组(E组和HE组)均与同类安静组水平相当(P>0.05)。
     8各组大鼠股四头肌间AMPKα蛋白表达无显著性差异(P﹥0.05)。HE组AMPKα(Thr172)磷酸化水平显著高于H组(P<0.05),较H组高43.2%;E组AMPKα(Thr172)磷酸化水平非常显著性高于C组(P<0.01),较C组高83.7%。
     9各组大鼠肝脏组织间AMPKα蛋白表达无显著性差异(P﹥0.05)。HE组AMPKα(Thr172)磷酸化水平显著高于H组(P<0.05),较H组高51.1%;其余各组无显著性差异(P﹥0.05)。
     主要结论:
     1高脂膳食饲养10周可诱导正常SD大鼠出现IR。间接评价IR指标ISI较HOMA-IR敏感。运动提高了大鼠组织胰岛素敏感性。
     2运动干预显著延缓高脂大鼠血脂代谢紊乱、内脏脂肪堆积和肝脏脂质异位沉积。运动用作提高胰岛素敏感性的干预措施时,肌脂和IR之间的关系还不甚清楚。
     3内脏脂肪组织脂联素mRNA表达降低可能是高脂大鼠IR形成的机制之一。循环脂联素水平变化可能并不是运动延缓高脂大鼠IR形成的主要贡献因素和机制所在。
     4正常SD大鼠股四头肌以AdipoR1高表达,AdipoR2在肝脏高表达。骨骼肌和肝脏AdipoR1/R2mRNA表达的下调可能是高脂大鼠IR形成的机制之一。未观察到运动干预的显著影响。
     5运动提高了普食大鼠骨骼肌AMPKα磷酸化水平,提示大鼠骨骼肌对规律耐力运动产生适应可能是由连续激活骨骼肌AMPKα活性引起。运动提高了高脂大鼠肝脏和骨骼肌AMPKα磷酸化水平,提示肝脏和骨骼肌AMPKα活性的连续激活可能是运动延缓高脂大鼠IR形成的关键机制之一。
Objective To investigate the effects of exercise intervention during IR formation of high-fat-induced SD rats as well as some mechanisms.
     Methods Normal male SD rats were divided into four groups: normal dietary control group(C group), normal dietary exercise group(E group), high fat dietary control group(H group)and high fat dietary exercise group(HE group)after one week’s adaptive feeding. H and HE groups were fed 10-weeks’high-fat(23.5% protein,44.1% fat and 32.4% carbohydrate, supply energy about 408Kcal/100g)in order to induce IR, while E and HE groups began to swim without loading. Comprehensive using body weight, FINS, FBG, HOMA-IR, ISI and insulin tolerant test(ITT) to evaluate the building of animal model and effects of exercise intervention. Observing the impacts of high-fat feeding and exercise on blood lipids, visceral fat reserves, liver weight, liver function(ALT and AST), as well as tissue lipids(liver and skeletal muscle)ectopic deposition. Adopting ELISA and real-time PCR to observe adiponectin and its receptors(R1 and R2)mRNA expression systematically and comprehensive, including serum adiponectin, visceral fat tissue adiponectin mRNA expression, skeletal muscle and liver adiponectin receptors mRNA expression and their distributions in SD rats. Using western blotting to determinate AMPKαexpression and its phosphorylation level of liver and red quadriceps(considering the reaction to aerobic exercise is more sensitive on slow muscle fiber)after high-fat-induced and regular exercise.
     Results (1) There were no difference of weight before experiment while that of H was higher than C group, E was lower than C group, HE was lower than H group, HE was higher than E group after experiment(P<0.01).The average weight gain was the fastest on H group while E group was the slowest. There were no difference on FBG and HOMA-IR(P>0.05); H was higher than C group, E was lower than C group, HE was lower than H group on FINS index(P<0.05); on the contrary, H was lower than C group, E was higher than C group, HE was higher than H group on ISI index(P<0.05). (2) In ITT, there were no difference of FBG at zero point. After intraperitoneal injection of insulin, FBG of H group was higher significantly than C group at 15min, 30min and 60min points(P<0.05); HE group was lower than H group at the same points(P<0.05); E group was lower significantly than C group at 15min and 30min points(P<0.05).(3) H group was higher than C group, E group was lower than C group, and HE group was lower than H group on visceral fat reserves, liver weight and AW/BW(P<0.01orP<0.05).(4) H group was higher than C group on TC, TG, LDL-C, TC/HDL(P<0.05), and there were no difference of HDL-C and FFA(P>0.05); there were no difference between E and C group of TC, HDL-C, TC/HDL(P>0.05), H group were lower than C group on TG, LDL-C, FFA(P<0.01or P<0.05); there were no difference between HE and H group of HDL-C, LDL-C, FFA(P>0.05), HE group were lower than H group on TC, TG, TC/LDL(P<0.05or<0.01); there were no difference between HE and E group of TC,TG(P>0.05), HE group was lower than E group on HDL-C(P<0.05), while higher than E group on LDL-C,TC/LDL and FFA(P<0.01or<0.05).(5) There were no difference between H group and C group of liver TC and skeletal muscle TG(P>0.05), liver TG and FFA were higher than C group significantly(P<0.01or<0.05); There were no difference between E group and C group on liver TC and skeletal muscle TG(P>0.05), liver TG and FFA were lower than C groupsignificantly(P<0.01or<0.05); There were no difference between HE group and H group on skeletal muscle TG(P>0.05), liver TC, TG and FFA were lower than H group significantly(P<0.05or<0.01); There were no difference between four groups on serum ALT and AST(P>0.05).(6) In spite of no significant difference(P>0.05), serum adiponectin was negative correlation with FINS and ALT(R=-0.069,R=-0.179)while positive correlation with HDL(R=0.043).There were no difference between four groups of serum adiponectin(P>0.05). H group was lower than C group on adiponectin mRNA expression of visceral fat tissue(P<0.05), E group was slightly lower than C group and HE group was slightly lower than H group, but the difference were unsignificantly(P>0.05).(7) Adiponectin R1mRNA expression was abundant on quadriceps and R2mRNA expression was abundant on liver tissue(P<0.05). H group were lower than C group significantly on adiponectin R1/R2mRNA expression(P<0.05), while the two exercise groups were as much as the two sedentary groups(P>0.05).(8) There were no significant difference between four groups on AMPKαexpression of quadriceps(P>0.05). HE group was 43.2% higher than H group(P<0.05)and E group was 83.7% higher than C group on AMPKα(Thr172) phosphorylation level(P<0.01).(9) There were no significant difference between four groups of AMPKαexpression of liver tissue(P>0.05). HE group was 51.1% higher than H group on AMPKα(Thr172) phosphorylation level(P<0.05)and there were no difference betweenthe others(P>0.05).
     conclusions (1) High-fat-feeding for 10 weeks may induce normal SD rats into IR. When evaluating IR indirectly, ISI index was more sensitive than HOMA-IR index. Exercise improved rats insulin sensitivity. (2) Lipid metabolism abnormal may occur before glucose metabolism abnormal during IR formation of high-fat-induced rats. Exercise intervention delayed blood lipids metabolism abnormal, visceral fat accumulation, and liver lipids ectopic deposition significantly. The relationship between skeletal muscle lipids and IR still remained unclear when exercise was for improving insulin sensitivity. (3) Reduction on adiponectin mRNA expression of visceral fat tissue may one of the mechanisms of IR formation of high-fat-induced rats. Cycle adiponectin level may not be the main contribution factor and mechanism of delaying IR formation of high-fat-induced rats by exercise. Energy negative balance caused by exercise may paly the main role.(4) Adiponectin R1/R2 mRNA expressed in both liver and quadriceps of normal SD rats.R1 was high expressed in quadriceps and R2 was in liver. Reduction on adiponectin R1/R2 mRNA expression of skeletal muscle and liver may one of the mechanisms of IR formation of high-fat-induced rats. The study had not observed the significant effects of exercise intervention.(5) Exercise improved skeletal muscle AMPKα(Thr172) phosphorylation level of C group rats, which suggesting that rats skeletal muscle adapted to regular endurance exercise may be caused by continuous activation of skeletal muscle AMPKα. Exercise improved liver and skeletal muscle AMPKα(Thr172) phosphorylation level of H group rats, which suggesting that continuous activation of liver and skeletal muscle AMPKαmay be one of the key mechanisms of delaying IR formation of high-fat-induced rats by exercise.
引文
1李光伟.胰岛素抵抗评估及其临床应用[J].中华老年多器官疾病杂志, 2004, 3(1): 11-12.
    [1]盛树力.多肽激素的当前理论和应用[M].北京:科学技术文献出版社, 1998.
    [2]廖二元,超楚生,伍汉文.内分泌学[M].北京:人民卫生出版社, 2003: 1443.
    [3] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature, 2001, 414(6865): 782-787.
    [4] Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome[J]. Lancet, 2005, 365(9468): 1415-1428.
    [5] Defronzo RA, et al. Hepatic and peripheral insulin resistance: a commom feature of type 2 and type 1 diabetes mellitus[J]. Diabetologia, 1982, 23: 313.
    [6]田爱平,郭赛珊,申竹芳.高脂饲料与胰岛素抵抗动物模型[J].中国药理学通报, 2006, 22(3): 267-9.
    [7] American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement[J]. Circulation, 2005, 112(17): 2735-2752.
    [8] West KM. Epidemiology of Diabetes and its Vascular Lesions[J]. Elsevier: New York, 1978.
    [9] Orchard TJ, Temprosa M, Goldberg R, et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial[J]. Ann Intern Med, 2005, 142(8): 611-619.
    [10]李光伟,姜亚云,杨文英等.胰岛素抵抗及胰岛素分泌对2型糖尿病预防干预效果的影响—糖尿病预防干预策略探讨[J].中国糖尿病杂志, 1999, 7(3): 131-134.
    [11] Orchard TJ, Temprosa M, Goldberg R, et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial[J]. Ann Intern Med, 2005, 142(8): 611-619.
    [12] Laaksonen DE, Lindstrom J, Lakka TA, et al. Physical activity in the preventionof type 2 diabetes: the Finnish diabetes prevention study[J]. Diabetes, 2005, 54(1): 158-165.
    [13] Schneider S, Amorosa L, Khachadurian A, et al. Studies on the mechanism of improved glucose control during regular exercise in type 2 diabetes[J]. Diabetologia, 1984, 26: 355-360.
    [14] Joseph A, Charles J, Caris A, et al, Effect of the voume and intensity of exercise training on insulin sensitivity[J]. J Appl Physiol, 2004, 96: 101-106.
    [15] Taylor R, Ram P, Zimmet P, et al. Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji[J]. Diabetologia, 1984, 27(6): 578-82.
    [16] Heled Y, Shapiro Y, Shani Y, et al. Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus[J]. Metabolism, 2004, 53(7): 836-41.
    [17] Burstein R, Polychronakos C, Toews CJ, et al. Acute reversal of the enhanced insulin action in rained athletes: association with insulin receptor changes[J]. Diabetes, 1985, 34: 756-60.
    [18] Kang J, Robertson RJ, Goss FL, et al. Effect of carbohydrate substrate availability on ratings of perceived exertion during prolonged exercise of moderate intensity[J]. Percept Mot Skills, 1996, (2): 495-506.
    [19] Seals DR, Hagberg JM, Allen WK, et al. Glucose tolerance in young and older athletes and sedentary men[J]. J Appl Physiol, 1984, 56(6): 1521-5.
    [20] Pessin JE,Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance[J]. J Clin Invest, 2000, 106: 165-169.
    [21] Taira M,Hashimoto N. Insulin receptor abnormality and its clinical aspect[J]. Nippon Rinsho, 1998, 56: 1866-1870.
    [22] Nishimura H, et al. Postreceptor defect in insulin action in streptozotocin-induced diabetic rat[J]. Am J Physiol, 1989, 256E: 624.
    [23]吴毅,等.运动对糖尿病大鼠骨骼肌细胞胰岛素受体及葡萄糖运载体的影响[J].中国康复医学杂志, 1998, 13: 50-52.
    [24] Salhanick AI,et al. The mechanism of up-regulation of the hepatic insulin receptor in hypoinsinsulinemic diabetes mellitus[J]. J Biol Chem, 1985, 260: 16232.
    [25] Donnelly R, Qu X. Mechanisms of insulin resistance and new pharmacological approaches to metabolism and diabetic complications[J]. Clin Exp Pharmacol Physiol, 1998, 25: 79-87.
    [26] Goldstein BJ,Ahmad F,Ding W,et al. Regulation of the insulin signaling pathway by cellular protein-tyrosine phosphatases[J]. Mol Cell Biochem, 1998, 182: 91-99.
    [27] Bouzakri K, Karlson HK, Vestegaard H, et al. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients[J].Diabetes, 2006, 55(3): 785-791.
    [28] Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models[J]. J Clin Invest, 2000,106: 459-465.
    [29] Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport[J]. J Biol Chem, 1999, 274: 1865-1868.
    [30] Krook A, Bjrnholm M, Galuska D, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type2 diabetic patients[J]. Diabetes, 2000, 49: 284.
    [31] Wadlley GD, Tunstall RJ, Sanigorski A, et al. Differential effects of exercise on insulin-signaling gene expression in human skeletal muscle[J]. J Appl Phsiol, 2001, 90: 436-440.
    [32] Brown MD, Moore GE, Korytkowski MT, et al. Improvement of insulin sensitivity by short-term exercise training in hypertensive African American women[J]. Hypertension, 1997, 30(6): 1549-53.
    [33] Yu M,Blomstrand E,Alexander V. Exercise-associated differences in an array of proteins involved in signal transduction and glucose transport[J]. J Appl Physiol, 2001, 90: 29-34.
    [34] Chibalin AV, Yu M, Ryder JW, et al. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2[J]. Proc Natl Acad Sci USA, 2000, 97(1): 38.
    [35]胡永善,等.运动对糖尿病大鼠肝细胞膜胰岛素受体的影响[J].中国康复医学杂志,1997, 12: 109-111.
    [36]冯光斌,吴毅,等.运动对糖尿病大鼠骨骼肌细胞胰岛素受体的影响[J].中国运动医学杂志,1998, 17: 16-19.
    [37] Force T,Bonventre JV. Growth factors and mitogen-activated protein kinases[J]. Hypertension, 1998, 31(1pt2): 152-162.
    [38] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev, 2001, 81(2): 807-869.
    [39] Sweeney G, Somwar R, Ramlal T, et al. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes[J]. J Biol Chem, 1999, 274(15): 10071-10078.
    [40] Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle[J]. FASEB J, 1998, 12(15): 1379-1389.
    [41] Osmann AA, Hancock J, Hunt DG, et al. Exercise training increases ERK2 activity skeletal muscle of obese Zucker rats[J]. J Appl Physiol, 2001, 90(2): 454.
    [42]胡瑞萍,吴毅等.运动对大鼠骨骼肌胰岛素信号转导蛋白表达和活性的影响[J].中国康复医学杂志,2005, 20(6): 409-411.
    [43] Goodyear LJ,Chang PY,Sherwood DJ. et al. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle[J]. Am J Physiol Endocrinol Metab, 1996, 271(3pt1): E403-408.
    [44] Aronson D, Dufresne SD, Goodyear LJ. Contractile activity stimulates the c-jun NH2-terminal kinase pathways in rat skeletal muscle[J]. J Biol Chem, 1997, 272(43): 25636-25640.
    [45]江钟立,陈家伟,朱红军等.运动和胰岛素对高血糖大鼠骨骼肌JNK和p38信号传导系统的调节作用[J].中国康复医学杂志,2003, 18(2): 69.
    [46]丛琳,陈吉棣等.运动对糖尿病大鼠骨骼肌GLUT4和MAPK的作用[J].中国糖尿病杂志,2001, 9(6): 345-347.
    [47] Mei Yu,Eva Blomstrand,Alexander V. Chibalin, Harriet Wallberg Henriksson, Juleen R. Zierath, and Anna Krook. Exercise-associated differences in an array of proteins involved in signal transduction and glucose transport[J]. J Appl Physiol, 2001, 90: 29-34.
    [48] Chibalin AV, Yu M, Ryder JW, et al. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle:differential effects on insulin-receptor substrates 1 and 2[J]. Proc Natl Acad Sci USA, 2000, 97(1): 38.
    [49] Widegren U,Ryder JW,Zierath JR. Mitogen- activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction[J]. Acta Physiol Scand, 2001, 172(3): 227-238.
    [50] Houmard JA,Shaw CD,Hickey MS,et al. Effects of shortterm exercise training on insulin-stimulated PI3-kinase activity in human skeletal muscle[J]. Am J Physiol, 1999, 277: E1055-E1060.
    [51] Kirwan JP,Aguila LF del, Hernandez JM, et al. Regular exercise enhances insulin activation of IRS-1-associated PI3-kinase in human skeletal muscle[J]. J Appl Physiol, 2000, 88: 797-803.
    [52] John PK, Aguila LF, Hernandez JM, et al. Regular exercise enhances insulin activation of IRS-1 associated PI3-kinase in human skeletal muscle[J]. J Appl Physiol, 2000, 88: 797-803.
    [53] Christ CY,Hunt D,Hancock J,et al. Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucket rats[J]. J Appl Physiol, 2002, 92(2): 736-744.
    [54]许纲,丁树哲.骨骼肌丝裂原活化蛋白激酶信号级联与运动[J].中国运动医学杂志,2004, 23(5): 577-580.
    [55] Fink RI,et al. Evidence that glucose transport is rate limiting for in vivo glucose uptake[J]. Metabolism, 1992, 41: 897.
    [56] Seki Y , Sato K , Kono T , et al. Broiler chickens (Ross strain) lack insulin-responsive glucose transporter GLUT4 and have GLUT8 cDNA[J]. General and Comparative Endocrinology, 2003, 133: 80-87.
    [57] Marette A, et al. Abundance, location and insulin-induced translocation of glucose transporters in red and white muscle[J]. Am J Physiol, 1992, 263: C443.
    [58] Charron MJ,Katz EB,Zierath JR. Metabolic and molecular consequences of modifying GLUT4 expression in skeletal muscle[J]. Biochem Soc Trans, 1997, 25: 963-968.
    [59] Maclean PS, Zheng D, Jones JP, et al. Exercise-induced transcription of the muscle glucose transporter 4(GLUT4) gene[J]. Biochem Biophys Res Commun, 2002, 292: 409-414.
    [60] Kim JK, Zisman A, Fillmore JJ, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4[J]. Journal of Clinical Investigation, 2001, 108: 153-160.
    [61] Hardin DS,et al. Mechanisms of enhanced insulin sensitivity in endurance trained athletes: effects on blood flow and differential expression of GLUT4 skeletal muscle[J]. J Clin Endocrinol Metab, 1995, 80: 2437.
    [62] Stallknecht B, et al. Effect of physical training on glucose transporter ptotein and mRNA levels in rat adipocytes[J]. Am J Physiol, 1993, 265(Endocrinol Metab, 28): E129.
    [63] Gavvey WT, et al. Role of glucose transporters in the cellular insulin resistance of typeⅡnon insulin-dependent diabetes mellitus[J]. J Clin Invest, 1988, 81: 1528.
    [64] Youn JH, et al. Time courses of changes in hepatic and skeletal muscle insulin action and GLUT4 protein in skeletal muscle after STZ injection[J]. Diabetes, 1994, 43(4): 564.
    [65] Kristiansen S, Gade J, Wojtaszewski JF, et al. Glucose uptake is increased in trained vs. untrained muscle during heavy exercise[J]. Appl physiol, 2001, 89: 1151-1158.
    [66]杨晓冰,吴毅,李益明,等.运动对糖尿病大鼠骨骼肌细胞葡萄糖运载体4转位机制的影响[J].中华物理医学与康复杂志, 1999, 21: 214-215.
    [67] Bruce EK, Ken IM, David S, et al. Dealing with energy demand: the AMP-activated protein kinase[J]. Trends Biochem Sci, 1999, 24(1): 22.
    [68] Lihn AS, Jessen N, Pedersen SB, et al. AICAR stimulates adiponectin and inhibits cytokines in adipose tissue[J]. Biochem Biophys Res Commun, 2004, 316: 853–858.
    [69] Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes[J]. J Biol Chem, 2005, 280: 25250–25257.
    [70] Orci L, Cook WS, Ravazzola M, et al. Rapid transformation of white adipocytesinto fat-oxidizing machines[J]. Proc Natl Acad Sci USA, 2004, 101: 2058–2063.
    [71] Wu X, Motoshima H, Mahadev K, et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes[J]. Diabetes, 2003, 52: 1355–1363.
    [72] Sell H, Dietze-Schroeder D, Eckardt K ,et al. Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone[J]. Biochem Biophys Res Commun, 2006, 343: 700–706.
    [73] Nielsen JN,Jorgensen SB,Frosig C,et al. A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals[J]. Biochem Soc Trans, 2003, 31: 186-190.
    [74] Clark SA,Chen ZP,Murphy KT,et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2004, 286: E737-E743.
    [75] Towler MC,Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circ Res, 2007, 100(3): 328-341.
    [76] Turnley AM. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system[J]. J Neurochem, 1999, 72(4): 1707-1716.
    [77] Daval M,Foufelle F,Ferre P. Functions of AMP-activated protein kinase in adipose tissue[J]. J Physiol, 2006,1(574): 55-62. [78 ] Chen HC,Bandyopadhyay G,Sajan MP,et al. Activation of the ERK pathways and typical protein kinase C isoforms in exercise and aminoimidazole-4-carboxamide-1-beta-D-riboside(AICAR)-stimulated glucose transport[J]. J Biol Chem, 2002, 277(26): 23554-23562.
    [79] Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states[J]. Am J Physiol Endocrinol Metab, 2002, 283(1): E1-E11.
    [80] Jakobsen SN,Hardie DG,Morrice N,et al. 5’-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside[J]. J Biol Chem, 2001, 276(50): 46912-46916.
    [81] Barnes BR, Ryder JW, Steiler TL, et al. Isoform-specific regulation of 5’AMP-activated protein kinase in skeletal muscle from obese Zucker rats in response to contraction[J]. Diabetes, 2002, 51: 2703-2708.
    [82] Salt IP, Connell JM, Gould GW. AICAR inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes[J]. Diabetes, 2000, 49: 1649-1656.
    [83] Misra P,Chakrabarti R. The role of AMP kinase in diabetes[J]. Indian J Med Res, 2007, 125: 389-398.
    [84] Holmes BF,Kurth-Kraczek EJ,Winder WW. Chronic activation of 5’- AMP-activated protein kinase increases GLUT4, hexokinase, and glycogen in muscle[J]. J Appl Physiol, 1999, 87(5):1990-1995.
    [85] Buhl ES,Jessen N,Pold R,et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome[J]. Diabetes, 2002, 51: 2199-2206.
    [86] Yamauchi T,et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002, 8(11): 1288-95.
    [87] Lochhead PA, Salt IP, Walker KS, et al. 5-aminoimidazole-4-carbox-amide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase[J]. Diabetes, 2000, 49: 896-903.
    [88] Ruderman NB, Saha AK, Kraegen EW. Minireview: malonyl-CoA, AMP-activated protein kinase, and adiposity[J]. Endocrinology, 2003, 144: 5166-5171.
    [89] Foretz M, Taleux N, Guigas B, et al. Regulation of energy metabolism by AMPK: a novel therapeutic approach for the treatment of metabolic and cardiovascular disease[J]. Med Sci(Paris), 2006, 22: 381-388.
    [90] Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation[J]. J Clin Invest, 2006, 116: 1776-1783.
    [91] Hayashi T, Hirshman MF, Fujii N, et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism[J]. Diabetes, 2000, 49: 527-31.
    [92] Winder WW, Hardie DG. Inactivation of acety1-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise[J]. Am J Physiol, 1996, 270(2 Pt 1): E299-304.
    [93] Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase[J]. J Appl Physiol, 1997, 83(4): 1104-9.
    [94] Rasmussen BB, Hancock CR, Winder WW. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase[J]. J Appl Physiol, 1998, 85(5): 1629-34.
    [95] Hutber CA, Hardie DG, Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase[J]. Am J Physiol, 1997, 272(2 Pt 1): E262-6.
    [96] Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle[J]. J Biol Chem, 1997, 272(20): 13255-61.
    [97] Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5'AMP-activated proteinkinase mediation of the effect of muscle contraction on glucose transport[J]. Diabetes, 1998, 47(8): 1369-73.
    [98] Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle[J]. Am J Physiol, 1997, 273(36): E1107-12.
    [99] Wright DC, Geiger PC, Holloszy JO, et al. Contraction-and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle[J]. Am J Physiol Endocrinol Metab, 2005, 288: 1062-6.
    [100] Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5' AMP-activated protein kinase activity in human skeletal muscle[J]. Biochem Biophys Res Commun, 2000, 273(3): 1150-5.
    [101] Wojtaszewski JF, Mourtzakis M, Hillig T, et al. Dissociation of AMPK activity and ACCβphosphorylation in human muscle during prolonged exercise[J]. Biochem Biophys Res Commun, 2002, 298(3): 309-16.
    [102] Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase(AMPK) is activated in muscle of subjects with type 2 diabetes during exercise[J]. Diabetes, 2001, 50(5): 921-7.
    [103] Wojtaszewski JF, Nielsen P, Hansen BF, et al. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle[J]. J Physiol, 2000, 528 Pt 1: 221-6.
    [104] Stephens TJ, Chen ZP, Canny BJ, et al. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise[J]. Am J Physiol Endocrinol Metab, 2002, 282(3): E688-94.
    [105] Chen ZP, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation[J]. Am J Physiol Endocrinol Metab, 2000, 279(5): E1202-6.
    [106] Ihlemann J, Ploug T, Hellsten Y, et al. Effect of tension on contraction-induced glucose transport in rat skeletal muscle[J]. Am J Physiol, 1999, 277(2 Pt 1): E208-14.
    [107] Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle[J]. Am J Physiol, 2001, 280(5): E677-84.
    [108] Steinberg GR, Watt MJ, McGee SL, et al. Reduced glycogen availability is associated with increased AMPK alpha 2 activity, nuclear AMPK alpha 2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle[J]. Appl Physiol Nutr Metab, 2006, 31: 302-312.
    [109] Salt I, Celler JW, Hawley SA, et al. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing theα2 isoform[J]. Biochem J, 1998, 334(Pt 1): 177-87.
    [110] Durante PE, Mustard KJ, Park SH, et al. Effects of endurance training onactivity and expression of AMP-activated protein kinase isoforms in rat muscles[J]. Am J Physiol Endocrinol Metab, 2002, 283(1): E178-86.
    [111]吴毅,胡瑞萍,胡永善,等.运动对2型糖尿病大鼠骨骼肌细胞腺苷酸活化蛋白激酶表达和活性的影响[J].中华物理医学与康复杂志,2007, 29(3): 145-14.
    [112] Holloszy JO. A forty-year memoir of research on the regulation of glucose transport into muscle[J]. Am J Physiol Endocrinol Metab, 2003, 284(3): E453-67
    [113] Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity[J]. Annu Rev Med, 1998, 49: 235-61.
    [114] Goodyear LJ, Hayashi T. Effects of exercise on glucose transport in skeletal muscle:glucose transporters and intracellular signaling mechanisms. In: Nose H, Nadel ER, Morimoto T, editors[J]. The 1997 Nagano Symposium on sports sciences. Carmel(IL): Cooper, 2001: 83-93.
    [115]刘传道,江钟立,等.不同强度的耐力运动对糖尿病大鼠骨骼肌GLUT4mRNA表达的影响[J].中国康复医学杂志,2005, 20(4): 244-247.
    [116]江钟立,陈家伟,朱红军,等.运动和胰岛素对高血糖大鼠骨骼肌JNK和p38信号传导系统的调节作用[J].中国康复医学杂志,2003, 18(2): 69.
    [117] Olmes B,Dohm GL. Regulation of GLUT4 gene expression during exercise[J]. Med Sci Sports Exerc, 2004, 36(7):1202-1206.
    [118] Vincent MF, Marangos PJ, Gruber HE, et al. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes[J]. Diabetes, 1991, 40(10): 1259-66.
    [119] Bergeron R, Russell III RR, Young LH, et al. Effects of AMPK activation on muscle glucose metabolism in conscious rats[J]. Am J Physiol, 1999, 276(5 Pt 1): E938-44.
    [120] Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, et al. 5'AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle[J]. Diabetes, 1999, 48(8): 1667-71.
    [121] Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside: effects on flow, granulocytes, and injury[J]. Circulation, 1989, 80(5): 1400-11.
    [122] Young ME, Radda GK, Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR: an activator of AMP-activated protein kinase[J]. FEBS Lett, 1996, 382: 43-7.
    [123] Mu J, Brozinick Jr JT, Valladares O, et al. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle[J]. Mol Cell, 2001, 7(5): 1085-94.
    [124] Aschenbach WG, Sakamoto K, et al. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise[J]. Sports Medicine, 2004, 34: 91-103.
    [125] Holmes BF, Kurth-Kraczek EJ & Winder WW. Chronic activation of5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle[J]. J Appl Physiol, 1999, 87: 1990–1995.
    [126] Winder WW & Holmes BF. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated[J]. J Appl Physiol, 2000, 89: 2430–2437.
    [127] Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW & Dohm GL. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase[J]. J Appl Physiol, 2001, 91: 1073–1083.
    [128] Holmes BF, Lang DB, Birnbaum MJ, Mu J & Dohm GL. AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2004, 287: E739–E743.
    [129] Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA & Pilegaard H. Effects of -AMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J]. FASEB J, 2005, 19: 1146–1148.
    [130] Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF & Shulman GI. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis[J]. Am J Physiol Endocrinol Metab, 2001, 281: E1340–E1346.
    [131] Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J]. Proc Natl Acad Sci USA, 2002, 99: 15983–15987.
    [132] Rockl KS,Hirshman MF,Brandauer J,et al. Skeletal muscle adaptation to exercese training: AMP-activated protein kinase mediates muscle fibei type shift[J]. Diabetes, 2007, 18.
    [133] Hardie DG,Hawley SA. AMP-activated protein kinase: the energy change hypothesis revisited[J]. Bioessays, 2001, 23(12):1112-1119.
    [134] Nielsen JN, Wojtaszewski JF, Haller RG, et al. Role of 5’AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle’s disease[J]. J Physiol, 2002, 541(pt3): 979-989.
    [135] Sriwijitkamol A,Ivy JL,Roberts CC,et al. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training[J]. Am J Physiol Endocrinol Metab, 2006, 290: E925-E932.
    [136] Sriwijitkamol A,Coletta DK,Wajcberg E,et al. Effects of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study[J]. Diabetes, 2007, 56(3): 836-848.
    [137] Marchesini G,Brizi M,Bianchi G,et al. Nonalcoholic fatty liver disease-A feature of the metabolic syndrome[J]. Diabetes, 2001, 50: 1844-1850.
    [138] Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance[J]. Gastroenterology, 2007,132(6): 2169-80.
    [139] Fukuhara A, Matsuda M, Nishizawa M, er al. Visfatin:a protein secreted by visceral fat that mimics the efects of insulin[J]. Science, 2005, 307: 426-430.
    [140] Pederson BK, Febbraio M. Muscle-derived interleuk in 6a possible link between skeletal muscle, adipose tissue, liver, and brain[J]. Brain Behav Immun, 2005, 19(5): 371-376.
    [141] Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ[J]. Proc Nutr Soc, 2001, 60: 329-339.
    [142] Nora Kloting, Matthias Bluher. Extended longevity and insulin signaling in adipose tissue[J]. Experimental Gerontology, 2005, 40: 878-883.
    [143] Schwartz MW, Porte D Jr. Diabetes, obesity, and the brain[J]. Science, 2005, 307: 375-379.
    [144] Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight[J]. Nat Med, 2004, 10: 524-529.
    [145] Kim S, Moustaid-Moussa N. Secretory, endocrine and autocrine/paracrine function of the adipocyte[J]. J Nutr, 2000, 130: 3110S-3115S.
    [146] Schwartz MW, Kahn SE. Insulin resistance and obesity[J]. Nature, 1999, 402: 860-861.
    [147] Yanagisawa K. The effects of body fat distribution on glucose tolerance in overweight subjects: glucose intolerance and insulin resistance induced by intra-abdominal fat accumulation[J]. Nippon Naibunpi Gakkai Zasshi, 1991, 67: 1240-1251.
    [148] Laza MA. How obesity causes diabetes: not a tall tale[J]. Science, 2005, 307: 373-375.
    [149] Scherer PE, Willians S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocvtes[J]. J Biol Chem, 1995, 270(45): 2646-2649.
    [150] Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1(Adipose Most abundant Gene transcript1)[J]. Biochem Biophys Res Commun, 1996, 221(2): 286-289.
    [151] Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma[J]. J Biochem(Tokyo), 1996,120(4): 803-812.
    [152] Arita Y, Kihara S, Ouchi N, et al. Paradoxiael decrease of an adipose specific protein, adiponectin, in obesity[J]. Biochem Biophys Res Commun, 1999, 257(1): 79-83.
    [153] Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proc Natl Acad Sci USA, 2001, 98(4):2005-2010.
    [154] Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity[J]. J Biol Chem, 2004, 279: 12152-12162.
    [155] Nemet D, Wang P, Funahashi T, et al. Adipocytokines, Body ComPosition, and Fitness in Children[J]. Pediatr Res JT, 2003, 53(1): 148-152.
    [156] Yamauchi T, Kamom J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J]. Nature, 2003, 423: 762-769.
    [157] Civitarese AE, Jenkinson CP, Richardson D, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes[J]. Diabetologia, 2004, 47(5): 816-820.
    [158] Chinetti G, Zawadski C, Fruchart JC, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα,PPARγ,and LXR[J]. Biochem Biophys Res Commun, 2004, 314: 151-158.
    [159] Kharroubi I, Rasschaeit J, Eizirik DL, et al. Expression of adiponectin receptors in pancreatic beta cells[J]. Biochem Biophys Res Commun, 2003, 312(4): 1118-1122.
    [160] Tauchida A, Yamauchi T, Ito Y, et al. Insulin/Foxol pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity[J]. J Biol Chem, 2004, 279(29): 30817-22.
    [161] Fasshauer M, Klein J, Kralisch S, et al. Growth homone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes[J]. FEBS Lett, 2004, 558: 27-32.
    [162] Winzell MS, Nogueiras R, Dieguez C, et al. Dual action of adiponectin on insulin secretion in insulin-resistant mice[J]. Biochem Biophys Res Commun, 2004, 321(1): 154-160.
    [163] Debard C, Laville M, Berbe V, et al. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients[J]. Diabetologia, 2004, 47(5): 917-925.
    [164] Li WJ, Tonelli J, Kishore P, et al. Adiponectin receptors are expressed in human adipose tissue[J]. Diabetes, 2004, 53(S2): A80.
    [165] Trujillo ME, Scherer PE. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome[J]. J Intern Med, 2005, 257: 167-175.
    [166] Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptor[J]. Endocr Rev, 2005, 26: 439-451.
    [167] Fang X, Sweeney G. Mechanisms regulating energy metabolism by adiponectin in obesity and diabetes[J]. Biochem Soc Trans, 2006, 34: 798-801.
    [168] Ouchi N, Kihara S, Arita Y, et al. Novel Modulator for Endothelial Adhesion Molecules: Adipocyte-derived Plasma Protein Adiponectin[J]. Circulation JT, 1999, 100(25): 2473-2476.
    [169] Cai JY,Liu KZ,Zhu LH. Study of correlations among serum adiponectin, plasm a glucose and lipids profiles in type2 diabetic individuals[J]. China Journal of Modem Medicine, 2004, 149(12): 108-113.
    [170] Lihn AS, Ostergard T, Nyholm B, et al. Adiponectin mRNA expression in subcutaneous adipose tissue is reduced in first-degree relatives of type 2 diabetic patients[J]. Am J Physiol Endocrinol Metab, 2003, 284: 443-448.
    [171] PellméF, Smith U, Funahashi T, et al. Circulating adiponectin levels are reduced in nonobese but insulin-resistant first-degree relatives of type 2 diabetic patients[J]. Diabetes, 2003, 52: 1182-1186.
    [172] Daimon M, Yamaguchi H, Oizumi T, et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study[J]. Diabetes Care, 2003, 26: 2015-2020.
    [173] Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population[J]. Lancet, 2002, 360: 57-58.
    [174] Kubota N, T erauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation[J]. J Biol Chem, 2002, 227: 25863-25866.
    [175] Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACR30[J]. Nat Med, 2002, 8: 731-737.
    [176] Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys[J]. Diabetes, 2001, 50: 1126-1133.
    [177] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med, 2001, 7: 941-946.
    [178] Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increased expression and plasma concentrations of adiponectin, an adipose-derived protein[J]. Diabetes, 2001, 50(9): 2094-2099.
    [179] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002, 8(11): 1288-1295.
    [180] Jurimae J, Purge P, Jurimae T. Adiponectin is altered after maximal exercise in highly trained male rowers[J]. Eur J Appl Physiol JT, 2005, 93(4): 502-505.
    [181] Ferguson MA, White LJ, McCov S, et al. Plasma adiponectin response to acute exercise in healthy subjects[J]. Eur J Appl Physiol, 2004, 91(2-3): 324-329.
    [182] Naderali EK, Estdella D, Rocha M, et al. A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue[J]. Clin Sci(Lond), 2003, 105(4): 403-408.
    [183] Tsukinoki R, Morimoto K, Nakayama K. Association between lifestyle factors and plasma adiponectin levels in Japanese men[J]. Lipids in Health and Disease, 2005, 4: 27-34.
    [184] Liu YM, Lacorte JM, Viguerie N, et al. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding[J]. J Clin Endocrinol Metab, 2003, 88(12): 5881-5886.
    [185] Imbeault P, Pomerleau M, Harper ME, et al. Unchanged fasting and postprandial adiponectin levels following a 4-day caloric restriction in young healthy men[J]. Clin Endocrinol, 2004, 60(4): 429-433.
    [186] Iwahashi H, Funahashi T, Kurokawa N, et al. Plasma adiponectin levels in women with anorexia nervosa[J]. Horm Metab Res, 2003, 35(9): 537-540.
    [187] Kraemer RR, Aboudehen KS, Carruth AK, et al. Adiponectin responses to continuous and progressively intense intermittent exercise[J]. Med Sci Sports Exerc, 2003, 35(8): 1320–1325.
    [188] You T, Yang R, Lyles MF, et al. Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors. Am J Physiol Endocrinol Metab JT[J]. Endocrinology and Metabolism, 2005, 288(4): E741-747.
    [189]Jurimae J, Hofmann P, Jurimae T, et al. Plasma adiponectin in response to sculling exercise at individual anaerobic threshold in college level male rowers[J]. Int J Sports Med JT, 2006, 27(4): 272-277.
    [190] Jurimae J, Purge P, Jurimae T. Adiponectin and stress hormone responses to maximal sculling after volume-extended training season in elite rowers[J]. Metabolism JT, 2006, 55(1): 13-19.
    [191] Punyadeera C, Zorenc AH, Koopman R, et al. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle[J]. Eur J Endocrinol JT 4, 2005,152(3): 427-436.
    [192] Yokoyama H, Emoto M, Araki T, et al. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in Type 2 diabetes[J]. Diabetes Care, 2004, 27: 1756–1758.
    [193] Jamurtas AZ, Theocharis V, Koukoulis G, et al. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males[J]. Eur J Appl Physiol, 2006, 97: 122-126.
    [194] Zeng Q, Isobe K, Fu L, et al. Effects of exercise on adiponectin and adiponectin receptor levels in rats[J]. Life Sci, 2007, 80: 454-459.
    [195] Yatagai T, Nishida Y, Nagasaka S, et al. Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men[J]. Endocr J, 2003, 50: 233–238.
    [196] Hulver MW, Zheng D, Tanner CJ, et al. Adiponectin is not altered with exercise training despite enhanced insulin action[J]. Am J Physiol Endocrinol Metab, 2002, 283(4): E861-865.
    [197] Kobayashi J, Murase Y, Asano A, et al. Effect of walking with a pedometer on serum lipid and adiponectin levels in Japanese middle-aged men[J]. J Atheroscler Thromb, 2006, 13: 197-201.
    [198] Rosenbaum M, Nonas C, Weil R, et al. School-based intervention acutely improves insulin sensitivity and decreases inflammatory markers and body fatness in junior high school students[J]. J Clin Endocrinol Metab, 2007, 92: 504-508.
    [199] Jurimae J, Purge P, Jurimae T, et al. Adiponectin and stress hormone responses to maximal sculling after volume-extended training season in elite rowers[J]. Metabolism, 2006, 55: 13-19.
    [200] Bobbert T, Wegewitz U, Brechtel L, et al. Adiponectin oligomers in human serum during acute and chronic exercise: relation to lipid metabolism and insulin sensitivity[J]. Int J Sports Med, 2007, 28: 1-8.
    [201] Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweitht and obese girls[J]. Metabolism, 2005, 54(11): 1472-1479.
    [202] Polak J, Klimcakova E, Moro C, et al. Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese wemen[J]. Metabolism, 2006, 55: 1375-1381.
    [203] O'Leary VB, Marchetti CM, Krishnan RK, et al. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat[J]. J Appl Physiol, 2006, 100: 1584-1589.
    [204] Boudou P, Sobngwi E, Mauvais-Jarvis F, et al. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men[J]. Eur J Endocrinol JT, 2003, 149(5): 421-424.
    [205] Kriketos AK, Gan SK, Poynten AM, et al. Exercise increases adiponectin levels and insulin sensitivity in humans[J]. Diabetes Care, 2004, 27: 629-631.
    [206] Kondo T, Kobayashi I, Murakami M. Effect of exercise on circulating adipokine levels in obese young women[J]. Endocr J, 2006, 53: 189-195.
    [207] Marcell TJ, McAuley KA, Traustadottir T, et al. Exercise training is notassociated with improved levels of C-reactive protein or adiponectin[J]. Metabolism JT, 2005, 54(4): 533-541.
    [208] Tang Z, Yuan L, Gu C, et al. Effect of exercise on the expression of adiponectin mRNA and GLUT4 mRNA in type 2 diabetic rats[J]. J Huazhong Univ Sci Technol Med Sci, 2005, 25: 191-193,201.
    [209] Bluher M, Bullen JW, Lee JH, et al. Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance and regulation by physical training[J]. J Clin Endocrinol Metab, 2006, 91: 2310-2316.
    [210] Oberbach A, Tonjes A, Kloting N, et al. Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance[J]. Eur J Endocrinol, 2006, 154: 577-585.
    [211] Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin[J]. J Clin Endocrinol Metab, 2001, 86: 3815–3819.
    [212] Weiss EP, Racette SB, Villareal DT, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial[J]. Am J Clin Nutr, 2006, 84: 1033-1042.
    [213] Kimura M, Shinozaki T, Tateishi N, et al. Adiponectin is regulated differently by chronic exercise than by weight-matched food restriction in hyperphagic and obese OLETF rats[J]. Life Sci, 2006, 79: 2105-2111.
    [214] Das UN. Anti-inflammatory nature of exercise[J]. Nutrition, 2004, 20: 323-326
    [215] Chang SP, Chen YH, Chang WC, et al. Increase of adiponectin receptor gene expression by physical exercise in soleus muscle of obese Zucker rats[J]. Eur J Appl Physiol, 2006, 97: 189-195.
    [216] Huang H, Tada-Iida K, Sone H, et al. The effect of exercise training on adiponectin receptor expression in KKAy obese/diabetic mice[J]. J Endocrinol, 2006, 189: 643-653.
    [217] Yokota T, Meka CS, Medina KL, et al[J]. J Clin Invest, 2002, 109: 1303-1310.
    [218] Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, et al. Regulation of adiponectin by adipose tissue-derived cytekines: in vivo and in vitro investigations in humans[J]. Am J Physiol Endocrinol Metab, 2003, 285(3): E527-E533.
    [219] Fasshauer M, Klein J, Neumann S, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes[J]. Biochemical and Biophysical Communication, 2002, 290: 1084-1089.
    [220] Tomas E, Kelly M, Xiang X, et al. Metabolic and hormonal interactions between muscle and adipose tissue[J]. Proc Nutr Soc, 2004, 63(2): 381-385.
    [221]吴静.肿瘤坏死因子—α与胰岛素抵抗[J].国外医学内分泌学分册, 1999,19(5).
    [222]陆志强.脂肪细胞源性的肿瘤坏死因子与胰岛素抵抗[J].国外医学内分泌学分册,1997, 17(1).
    [223] Hotamisligil GS, et al. The expression of TNF-αin human obesity and insulin resistance[J]. J Clin Invest, 1995, 95: 2409.
    [224] Li G, Barrett EJ, Barrett MO, et al. TNF-αinduces insulin resistance in endothelial cells via a p38 MAPK-dependent pathway[J]. Endocrinology, 2007, 19: 10.
    [225] Wauters M, Considine RV, Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator[J]. Eur J Endocrinol, 2000, 143: 293-311.
    [226] Barzilai N, Wang J, Massilon D, et al. Leptin selectively decrease visceral adiposity and enchance insulin action[J]. J Clin Invest, 1997, 100: 3105-3110.
    [227] Gippini A,Mato A,Pazos R,et al. Effect of long-term strength training on glucose metabolism: Implication for individual impact of high lean mass and high fat mass on relationship between BMI and insulin sensitivity[J]. J Endocrinol Invest, 2002, 25(6): 520-525.
    [228] Leak-Cerro A,Garcia-Luan PP,Astorga R,et al. Serum leptin levels in male marathon athletes before and after the marathon run[J]. J Clin Endocrnol Metab, 1998, 3: 2376-2379.
    [229] Minokoshi Y, Kim YB, Peronio D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nature, 2002, 415(6869): 339-343.
    [230] Houmard JA, Cox JH, Maclean PS, et al. Effect of short-term exercise training on leptin and insulin action[J]. Metabolism, 2000, 49: 858-861.
    [231] Ishii T, Yamakita T, Yamagami K, et al. Effect of exercise training on serum leptin levels in type 2 diabetic patients[J]. Metabolism, 2001, 50(10): 1136-1140.
    [232] Perusse L, Collier G, Gagnon J, et al. Acute and chronic effects of exercise on leptin levels in humans[J]. J Appl Physiol, 1997, 83: 5-10.
    [233] Reseland JE, Anderssen SA, Solvoll K, et al. Effect of long-term changes in diet and exercise on plasma leptin concentrations[J]. Am J Clin Nutr, 2001, 73(2): 240-245.
    [234] Fisher JS, Van Pelt RE, Zinder O, et al. Acute exercise effect on postabsorptive serum leptin[J]. J Appl Physiol, 2001, 91: 680-686.
    [235] Olive JL, Miller GD. Differential effects of maximal and moderate intensity runs on plasma leptin in healthy trained subjects[J]. Nutrition, 2001, 17(5): 365-369.
    [236] Torjman MC, Zafeiridis A, Paolone A, et al. Serum leptin during recovery following maximal incremental and prolonged exercise[J]. Int J Sports Med, 1999, 20: 444-450.
    [237] Weltman A, Pritzlaff CJ, Windman L, et al. Intensity of acute exercise does not affect serum concentration in young men.[J] Med Sci Sports Exe, 2000, 32: 1556-1561.
    [238] Zaccaria M, Ermolao A, Roi SG, et al. Leptin reduction after endurance races differing in duration and energy expenditure[J]. Eur J Appl Physiol, 2002, 87: 108-111.
    [239] Boudou P,Sobngwi E,Mauvais-Jarvis F,et al. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men[J]. Eur J Endocrinol, 2003, 149(5): 421-424.
    [240] Steppan CM, Bailey ST, Bhat S, et al. The hormore resistin links obesity to diabetes[J]. Nature, 2001, 409(6818): 307-312.
    [241] Hiroaki S,Audrey Nguyen MT,Philip DGM,et al. Adenovirus-mediated chronic“hyperresistinemia”leads to in vivo insulin resistance in normal rats[J]. J Clin Invest, 2004, 114: 224-231.
    [242] Nagaev I,Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle[J]. Biochem Biophys Res Commun, 2001, 285(2): 561-564.
    [243] Way JM,Gorgun CZ,Tong Q,et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferater activated receptor-γagonists[J]. J Biol Chem, 2002, 276: 25651-25653.
    [244] Lee JH,Chan JL. Yiannakouris N et al. Circulating Resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or Leptin administration: cross-sectional and interventional studies in normal, insulin resistance, and diabetic subjects[J]. J Clin Endocrinol Metab, 2003, 88(10): 4848-4856.
    [245]李慧,邹大进,张乐之,等.血清抵抗素水平与肥胖及2型糖尿病的关系[J].中华糖尿病杂志,2004, 12(3): 199-201.
    [246] Azuma K,Katsukawa F,Oguchi S, et al. Correlation between serum resistin level and adiposity in obese individuals[J]. Obes Res, 2003, 11(8): 997-1001.
    3李光伟.胰岛素抵抗评估及其临床应用[J].中华老年多器官疾病杂志, 2004, 3(1): 11-12.
    [1]廖二元,超楚生,伍汉文.内分泌学[M].北京:人民卫生出版社, 2003: 1443.
    [2]田爱平,郭赛珊,申竹芳.高脂饲料与胰岛素抵抗动物模型[J].中国药理学通报,2006, 22(3): 267-9.
    [3]李媛,王保芝,岂春晓,等.一种新的肥胖大鼠模型的制备方法[J].河北医科大学学报, 2005, 26(4): 305-307.
    [4] Ploug T, Stallknecht BN, Pedersen D, et al. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle[J]. Am J Physiol, 1990, 259(6Pt1): E778-E786.
    [5]李光伟.胰岛素敏感性评价及其在临床研究中的应用[J].中华内分泌代谢杂志,2000, 16(3): 198-200.
    [6] Fueger PT, Bracy DP, Malabanan CM, et al. Hexokinase II overexpression improves exercise-stimulaed but not insulin-stimulated muscle glucose uptake inhigh-fat-fed C57BL/6J mice[J]. Diabetes, 2004, 53: 306-314.
    [7] Youngren JF, Paik J, Bamard RJ. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed insulin-resistant rats[J]. J Appl Physiol, 2001, 91: 2240-2247.
    [8] Hansen PA, Han DH, Marshall BA, et al. A high fat diet impairs stimulation of glucose transport in muscle[J]. J BiolChem, 1998, 273: 26157-63.
    [9] Mithieux G, Guignot L, Bordet JC, et al. Intrahepatic mechanism underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet[J]. Diabetes, 2002, 51: 139-143.
    [10] Chan CB, de Leo D, Joseph JW, er al. Increased uncoupling protein-2 levelsin cells are associated with impaired glucose-stimulated insulin secretion[J]. Diabetes, 2001, 50: 1302-1310.
    [11] Remer MK, Ahren B. Alteredβ-cell distribution of pdx-1and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice[J]. Diabetes, 2002, 51: S138-43.
    [12]卜石,杨文英,王昕,等.胰岛长期高脂饲养对大鼠葡萄糖刺激的胰岛素分泌的影响[J].中华内分泌代谢杂志, 2003, 19: 25-28.
    [13] Tremblay F, Lavigne C, Jacques H, et al. Defective insulin-induced GLUT4 translocation in skeletalmuscle of high fat-fed rats is associated with alterations in both Akt/Protein Kinase B and A-typical Protein Kinase C (ζ/λ) activities[J]. Diabetes, 2001, 50: 1901-10.
    [14] Kim CH, Youn JH, Park JY, et al. Effect of high-fat diet and exercise training on intracellular glucose metabolism in rats[J]. Am J Physiol Endocrinol Metab, 2000, 278: E977-84.
    [15] Storlien LH, James DE, Burleigh KM, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats[J]. Am J Physiol, 1986, 251: E576-583.
    [16]谢明智,刘海帆,张凌云,等.实验性肥胖及糖尿病大鼠模型[J].药学学报,1985, 20: 801-6.
    [17]许岭翎,向红丁,张荣,等.高脂饮食诱发血糖升高的动物模型中瘦素与胰岛素变化的关系[J].基础医学与临床, 2001, 21: 441-4.
    [18]殷俊,陈名道,周丽斌,等.长程高脂饮食对实验大鼠糖尿病形成的影响[J].中国医师杂志, 2004, 6: 47-49.
    [19]李晨钟,张素华,舒昌达,等.用高脂肪膳食复制胰岛素抵抗大鼠模型[J].基础医学与临床, 2000, 20: 93-95.
    [20]王彤,周国用,马静,等.链脲佐菌素诱导C57BL/6J小鼠2型糖尿病模型研究[J].中国实验动物学报, 2000, 8: 92-97.
    [21] Hevener A, Reichart D, Janez A, et al. Female rats do not exhibit free fatty acid-induced insulin resistance[J]. Diabetes, 2002, 51: 1907-12.
    [22] Chalkley SM, Hettiarachchi M, Chisholm DJ, et al. Long-term high-fat feeding leads to severe insulin resistance but not diabees in Wistar rats[J]. Am J Physiol Endocrinol Mebab, 2002, 282: E1231-8.
    [23] Haffner SM, Gonzalez C, Miettinen H, et al. A prospective analysis of the HOMA model: the mexico city diabetes study[J]. Diabetes Care, 1996,19(10): 1138-1141.
    [24]范建高,钟岚,等.胰岛素抵抗在高脂饮食大鼠非酒精性脂肪性肝炎发病中的作用[J].胃肠病学, 2000, 5(3): 169-171.
    [25]吴飞飞.脂肪肝和2型糖尿病大鼠抵抗素和游离脂肪酸的研究[D].昆明医学院硕士学位论文, 2005.
    [26]王保芝,王学礼,王树峰,等.胰岛多肽激素经淋巴而非门脉途径转运的结构基础电镜研究[J].中国解剖学杂志, 2000, 23(suppl): 54.
    [1] Bjorntorp P. Hormonal control of regional fat distribution[J]. Hu Reprod, 1997, 12(1): 21.
    [2] Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissue[J]. Ann Med, 1995, 27(4): 435.
    [3] Bonadonna RC, Groop L, Kraemer N, et al. Obesity and insulin resistant in humans: a dose-response study[J]. Metabolism, 1990, 39: 452-459.
    [4]柳红芳.多不饱和脂肪酸对高脂诱导大鼠胰岛素抵抗的干预及其机制研究[D].中国人民解放军军医进修学院博士后出站工作报告, 2004.
    [5]兰凤贺,冯丽英,李桂芝,等.胰岛素抵抗的研究进展[J].河北医学, 1994, 16(4): 225-227.
    [6] Boden G , Chen X ,Iqbal N Acute .Lowing of plasma fatty acide lower basal insulin secretion in diabetic and nondiabetic subjects [J] .Diabete, 1998, 47: 1609-1612.
    [7] Defronzo FA, Gunnarsson R, Bfokman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus[J]. J Clin Invest, 1985, 76: 149-151.
    [8] Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans[J]. J Clin Invest, 1996, 97: 2859-2865.
    [9] Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic beta-cell signal transduction[J]. Annu Rev Biochem, 1995, 64: 689.
    [10] Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade[J]. Diabetes, 1999, 48(6): 1270.
    [11] Randel PJ, Kerbeg AJ, Espinal J. Mechanism decreasing glucose oxidation in diabetes and starvation:role of lipid fuels and hormones[J]. Diabetes Metab Rev, 1998, 4: 623-638.
    [12] Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM[J]. Diabetes, 1997, 46(1): 3.
    [13] Anai M, Funaki M, Ogihara T, et al. Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats[J]. Diabetes, 1998, 47(1): 13.
    [14] Boden G. Fatty acids and insulin resistance[J]. Diabetes Care, 1996, 19(4): 394-395
    [15] McGarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in theetiology of type 2 diabetes[J]. Diabetes, 2002, 51: 7-18.
    [16] Helge JW, Watt PW, Richter EA, et al. Fast utilization during exercise:adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans[J]. J Physiol, 2001, 537(Pt 3): P1009-20.
    [17] Johnson NA, Stannard SR, Mehalski K, et al. Intramyocellular triacylglycerol in prolonged cycling with high and low carbohydrate availability[J]. J Appl Physiol, 2003, 94(4): 1365-72.
    [18] Hoppeler H, Billeter R, Horvath PJ, et al. Muscle structure with low and high fat diets in well-trained male runners[J]. Int J Sports Med, 1999, 20(8): 522-6.
    [19] Kiens B, Essen-Gustavsson B, Gad P, et al. Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men[J]. Clin Physiol, 1987, 7(1): 1-9.
    [20] Vogt M, Puntschart A, Howald H, et al. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes[J]. Med Sci Sports Exerc, 2003, 35(6): 952-60.
    [21] Zderic TW, Davidson CJ, Schenk S, et al. High-fat diet elevates resting intramuscular triglyceride concentrating and whole body lipolysis during exercise[J]. Am J Physiol Endocrinol Metab, 2004, 286(2): E217-25.
    [22] Falholt K, Jensen I, Lindkaer JS, et al. Carbohydrate and lipid metabolism of skeletal muscle in type 2 diabetic patients.[J] Diabet Med, 1988, 5: 27-31.
    [23] Pan DA, Lillioja S, Kriketos AD, et al. Skeletal triglycetride levels are inversely related to insulin action[J]. Diabetes, 1997, 46: 983-98.
    [24] Storlien LH, Jenkins AB, Chisholm DJ, et al. Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and w-3 fatty acids in muscle phospholipid[J]. Diabetes, 1991, 40: 280-289.
    [25] Van Loon LJ,Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state[J]. Pflugers Arch, 2006, 451(5): 606-616.
    [26] Nuutila P, Knuuti MJ, Maki M, et al. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography[J]. Diabetes, 1995, 44: 31-36.
    [27] Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiol Rev, 2006, 86: 205-243.
    [1] Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ[J]. Proc Nutr Soc, 2001, 60: 329-339.
    [2] Nora Kl?ting, Matthias Blüher. Extended longevity and insulin signaling in adipose tissue[J]. Experimental Gerontology, 2005, 40: 878-883.
    [3] Johannes Klein, Nina Perwitz, Daniel Kraus, et al. Adipose tissue as source and target for novel therapies[J]. Trends in Endocrinology & Metabolism, 2006, 17: 26-32.
    [4] Blüher Matthias, Kahn Barbara B, Kahn C Ronald, et al. Extended longevity in mice lacking the insulin receptor in adipose tissue[J]. Science, 2003, 299: 572-574.
    [5] Fukuhara A, Matsuda M, Nishizawa M, er al. Visfatin:a protein secreted by visceral fat that mimics the efects of insulin[J]. Science, 2005, 307: 426-430.
    [6] Schwartz MW, Porte D Jr. Diabetes, obesity, and the brain[J]. Science, 2005, 307: 375-379.
    [7] Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight[J]. Nat Med, 2004,10: 524-529.
    [8] Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease[J]. Eur J Endocrinol, 2003, 148(3): 293-300.
    [9] Milan G, Granzotto M, Scarda A, et al. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss[J]. Obes Res, 2002, 10: 1095-1103.
    [10] Altomonte J, Harbaran S, Richter A, et al. Fat depot-specific expression of adiponectin is impaired in Zucker fatty rats[J]. Metabolism, 2003, 52: 958-963.
    [11]吴飞飞.脂肪肝和2型糖尿病大鼠抵抗素和游离脂肪酸的研究[D].昆明医学院硕士学位论文, 2005.
    [12] Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity[J]. J Biol Chem, 2004, 279: 12152-12162.
    [13] Stefan E, Mareike F, Kerstin G, et al. Association between adiponectin and mediators of inflammation in obese women[J]. Diabetes, 2003, 52: 942-947.
    [14] Lihn AS, Ostergard T, Nyholm B, et al. Adiponectin mRNA expression in subcutaneous adipose tissue is reduced in first-degree relatives of type 2 diabetic patients[J]. Am J Physiol Endocrinol Metab, 2003, 284: 443-448.
    [15] Statnick MA, Beavers LS, Conner LJ, et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes[J]. Int J Exp Diabetes Res, 2000, 1(2): 81-88.
    [16] Gabriella M, Marnie G, Alessandro S, et al. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss[J]. Obesity research, 2002, 10: 1095-1103.
    [17]唐兆生,袁莉,等.运动对2型糖尿病大鼠脂联素和GLUT4基因表达的影响[J].中国现代医学杂志, 2005, 15(22): 3439-3442.
    [18] Hadjadi S, Aubert R, Fumeron F, et al. Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetic subjects[J]. Diabetologia, 2005, 48: 1088-1092.
    [19] Pilz S, Mangge H, Wellnitz B, et al. Adiponectin and mortality in patients undergoing coronary angiography[J]. J Clin Endocrinol Metab, 2006, 91: 4277-4286.
    [20] Kistorp C, Faber J, Galatius S, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure[J]. Circulation, 2005, 112: 1756-1762.
    [21] Ferguson MA, White LJ, McCov S, et al. Plasma adiponectin response to acute exercise in healthy subjects[J]. Eur J Appl Physiol, 2004, 91(2-3): 324-329.
    [22] Kraemer RR, Aboudehen KS, Carruth AK, et al. Adiponectin responses to continuous and progressively intense intermittent exercise[J]. Med Sci Sports Exerc, 2003, 35(8): 1320–1325.
    [23] Hulver MW, Zheng D, Tanner CJ, et al. Adiponectin is not altered with exercise training despite enhanced insulin action[J]. Am J Physiol Endocrinol Metab, 2002, 283(4): E861-865.
    [24] Punyadeera C, Zorenc AH, Koopman R, et al. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle[J]. Eur J Endocrinol JT 4, 2005, 152(3): 427-436.
    [25] Kriketos AK, Gan SK, Poynten AM, et al. Exercise increases adiponectin levels and insulin sensitivity in humans[J]. Diabetes Care, 2004, 27: 629-631.
    [26] Yokoyama H, Emoto M, Araki T, et al. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in Type 2 diabetes[J]. Diabetes Care, 2004, 27: 1756–1758.
    [27] Boudou P, Sobngwi E, Mauvais-Jarvis F, et al. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men[J]. Eur J Endocrinol JT, 2003, 149(5): 421-424.
    [28] Brekke HK, Lenner RA, Taskinen MR, et al. Lifestyle modification improves risk factors in type 2 diabetes relatives[J]. Diabetes Res Clin Pract JT, 2005, 68(1): 18-28.
    [29] Marcell TJ, McAuley KA, Traustadottir T, et al. Exercise training is not associated with improved levels of C-reactive protein or adiponectin[J]. Metabolism JT, 2005, 54(4): 533-541.
    [30] Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweitht and obese girls[J]. Metabolism, 2005, 54(11): 1472-1479.
    [31] Yatagai T, Nishida Y, Nagasaka S, et al. Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men[J]. Endocr J, 2003, 50: 233–238.
    [32] Ryan AS, Nicklas BJ, Berman DM, et al. Adiponectin levels do not change with moderate dietary induced weight loss and exercise in obese postmenopausal women[J]. Int J Obes Relat Metab Disord, 2003, 27: 1066–1071.
    [33] Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial[J]. JAMA, 2003, 289: 1799–1804.
    [34] Mousavinasab F, Tahtinen T, Jokelainen J, et al. Lake of increase of serum adiponectin concentrations with a moderate weight loss duing six months on a high-caloric diet in military service among a young male finnish population[J]. Endocrine JT, 2005, 26(1): 65-69.
    [35] Jurimae J, Purge P, Jurimae T. Adiponectin and Stress hormoe response to maximal sculling after volume extended training season in elite rower [J].Metabolism JT, 2006, 55 (1): 13-19.
    [36]黄彩华,刘礼斌,高松龄,等.瘦素(suLeptin)与运动[J].体育科学, 2005, 25(3): 65-69.
    [37] Das UN. Anti-inflammatory nature of exercise[J]. Nutrition, 2004, 20(3): 323-326.
    [38] Black SE, Mitchell E, Freedson PS, et al. Improved insulin action following short-term exercise training: role of energy and carbohydrate balance[J]. J Appl Physiol JT, 2005, 99(6): 2285-2293.
    [39] Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin reptors that mediate antidiabetic metabolic effects[J]. Nature, 2003, 423: 762-769.
    [40] Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxol pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity[J]. J Biol Chem, 2004, 279: 30817-30822.
    [41] Fang X, Palanivel R, Zhou X, et al. Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts[J]. J Mol Endocrinol, 2005, 35: 465-476.
    [42]龚燕平.脂联素及其受体在胰岛素抵抗中的作用初探[D].中国人民解放军总医院军医进修学院硕士学位论文, 2005.
    [43] Chen LF, Greene WC. Shaping the nuclear action of NF-кB[J]. Nat Rev Mol Cell Biol, 2004, 5: 392-401.
    [44]王遂军,贾伟平,包玉倩,等.血清脂联素与肥胖的关系[J].中华内分泌代谢杂志, 2005, 21: 36-38.
    [45] Civitarese AE, Jenkinson CP, Richardson D, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes[J]. Diabetologia, 2004, 47(5): 816-820.
    [46] Tauchida A, Yamauchi T, Ito Y, et al. Insulin/Foxol pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity[J]. J Biol Chem, 2004, 279(29): 30817-22.
    [47] Bullen JW, Jr, Bluher S, Kelesidis T, et al. Regulation of adiponectin and its receptor in response to development of diet-induced obesity in mice[J]. Am J Physiol, 2007, 292: E1079-E1086.
    [48] Zeng Q, Fu L, kazuhiro T, et al. Effects of short-term exercise on adiponectin and adiponectin receptor levels in rats[J]. J Atheroscler Thromb, 2007,14: 261-265.
    [49] Jürim?e J, Purge P, Jürim?e T, et al. Adiponectin is altered after maximal exercise in highly trained male rowers[J]. Eur J Appl Physiol, 2005, 93: 502-505.
    [50] Huang H, Tada-Iida K, Sone H, et al. The effect of exercise training on adiponectin receptor expression in KKAy obese/diabetic mice[J]. J Endocrinol, 2006, 189: 643-653.
    [51] Fasshauer M, Klein J, Neumann S, et al. Adiponectin gene expression is inhibited by ?-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes[J]. FEBS Letters, 2001, 507: 142-146.
    [52] Zeng Q, Isobe K, Fu L, et al. Effects of exercise on adiponectin and adiponectin receptor levels in rats[J]. Life Sci, 2007, 80: 454-459.
    [1] Bruce EK, Ken IM, David S, et al. Dealing with energy demand: the AMP-activated protein kinase[J]. Trends Biochem Sci, 1999, 24(1): 22.
    [2] Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ[J]? Exerc Sport Sci Rev, 2005, 33(3): 114-9.
    [3] Pedersen BK, Febbraio M. Muscle-derived interleukin-6--a possible link between skeletal muscle, adipose tissue, liver, and brain[J]. Brain Behav Immun, 2005, 19(5): 371-6.
    [4] Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell[J]? Annu Rev Biochem, 1998, 67: 821-55.
    [5] Rockl KS,Hirshman MF,Brandauer J,et al. Skeletal muscle adaptation to exercese training: AMP-activated protein kinase mediates muscle fibei type shift[J]. Diabetes, 2007, 18.
    [6] Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle[J]. Proc Nutr Soc, 2004, 63: 275-278.
    [7] Sriwijitkamol A,Coletta DK,Wajcberg E,et al. Effects of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study[J]. Diabetes, 2007, 56(3): 836-848.
    [8] Hardie DG. AMP-activated protein kinase: a key system mediating metabolic responses to exercise[J]. Med Sci Sports Exerc, 2004, 36: 28-34.
    [9] Roepstorff C, Vistisen B, Donsmark M, et al. Regulation of hormone sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise[J]. J Physiol, 2004, 560: 551-562.
    [10] Davies SP, Carling D, Munday MR, et al. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping[J]. Eur J Biochem, 1992, 203: 615-23.
    [11] Corton JM, Gillespie JG, Hawley SA, et al. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells[J]? Eur J Biochem, 1995, 229: 558-65.
    [12] Velasco G, Geelen MJ, Guzman M, et al. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism[J]. Arch Biochem Biophys, 1997, 337: 169-75.
    [13] Hubert A, Husson A, Chedeville A, et al. AMP-activated protein kinase counteracted the inhibitory effect of glucose on the phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes[J]. FEBS Lett, 2000, 481: 209-12.
    [14] Lochhead PA, Salt IP, Walker KS, et al. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase[J]. Diabetes, 2000, 49: 896-903.
    [15] Bergeron R, Russell RR 3rd, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats[J]. Am J Physiol, 1999, 276: E938-44.
    [16] Hoene M, Lehmann R, Hennige AM, et al. Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmillexercise[J]. J Physiol, 2008, 10(Epub ahead of print).
    [17] Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increase hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol, 2008, 294(3):G619-26
    [18] Takekoshi K, Fukuhara M, Quin Z, et al. Long-term exercise stimulates adenosine monophosphate-activated protein kinase activity and subunit expression in rat visceral adipose tissue and liver[J]. Metabolism, 2006, 55(8): 1122-8.
    [19] Holloszy JO. A forty-year memoir of research on the regulation of glucose transport into muscle[J]. Am J Physiol Endocrinol Metab, 2003, 284(3): E453-67.
    [20] Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity[J]. Annu Rev Med, 1998, 49: 235-61.
    [21] Goodyear LJ, Hayashi T. Effects of exercise on glucose transport in skeletal muscle:glucose transporters and intracellular signaling mechanisms. In: Nose H, Nadel ER, Morimoto T, editors[J]. The 1997 Nagano Symposium on sports sciences. Carmel(IL): Cooper, 2001: 83-93.
    [22] Bonen A, Tan MH, Watson-Wright WM. Effects of exercise on insulin binding and glucose metabolism in muscle[J]. Can J Physiol Pharmacol, 1984, 62(12): 1500-4.
    [23] Goodyear LJ, Giorgino F, Sherman LA, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects[J]. J Clin Invest, 1995, 95(5): 2195-204.
    [24] Wojtaszewski JF, Hansen BF, et al. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle[J]. Diabetes, 2000, 49(3) :325-31.
    [25] Wojtaszewski JF, Nielsen JN, Richter EA. Invited review: effect of acute exercise on insulin signaling and action in humans[J]. J Appl Physiol, 2002, 93(1): 384-92.
    [26] Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle[J]. Am J Physiol, 1997, 273: E1107-1112.
    [27] Bergeron R, Russell RR 3rd, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats[J]. Am J Physiol, 1999, 276: E938-944.
    [28] Ruderman NB, Saha AK, Vavvas D, et al. Malonyl-CoA, fuel sensing, and insulin resistance[J]. Am J Physiol, 1999, 276: E1-18.
    [29] Abu-Elheiga L, Oh W, Kordari P, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets[J]. Proc Natl Acad Sci USA, 2003, 100: 10207-12.
    [30] Watt MJ, Steinberg GR, Chan S, et al. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling[J]. FASEB J, 2004, 18: 1445-6.
    [31] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002, 8: 1288-95.
    [32] Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation[J]. Proc Natl Acad Sci USA, 2002, 99: 16309-13.
    [33] Wu X, Motoshima H, Mahadev K, et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes[J]. Diabetes, 2003, 52: 1355-63.
    [34] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002, 8(11): 1288-1295.
    [35] Yoon MJ, Lee GY. Adiponectin in increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha[J]. Diabetes, 2006, 55(9): 2562.
    [36] Nicolas M, Nobuharu F, Michael F et al. AMP-Activated Protein Kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise[J]. Diabetes, 2002, 50: 921-927.
    [37] Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism[J]. Diabetes, 2004, 53: S143–S151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700