用户名: 密码: 验证码:
LPS诱导胆管上皮细胞上皮—间叶样表型转化及其分子机制初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝内胆管结石(primary Hepaticlithiasis),即肝胆管结石病,特指始发于肝内胆管系统的结石。是我国常见病、多发病,主要分布在华东、西南、中南地区。肝胆管结石病的病因目前还不完全清楚。已有临床和实验研究资料表明肝胆管结石的形成与胆道慢性炎症、细菌感染等因素有关。以往对原发性肝胆管结石病的基础研究多集中在胆石的成因方面,而从胆管上皮细胞去探讨原发性肝胆管结石的成因机制较少报道。胆管纤维化是肝胆管结石病的基本病理过程,其机制不清。EMT是具有极性的上皮细胞转换成具有活动能力、能够在细胞基质间自由移动的间质细胞过程。它以上皮细胞极性的丧失及间质特性的获得为重要特征,具体包括:细胞粘附分子(E-钙粘蛋白)表达减少;角蛋白为主的细胞骨架转变为波形蛋白(Vimentin)为主的细胞骨架,从而引起细胞形态的改变。
     TGF-β1是一种公认的的诱导EMT发生的细胞因子,它对细胞侵袭能力的促进作用往往伴随着细胞形态特征从上皮细胞向间叶细胞的转化。由于EMT与肿瘤的浸润及转移有关,因此关于EMT在肿瘤方面研究较多,也有关于EMT在良性病变的报道与研究,如在肝脏纤维化、肾小管纤维化等方面。Helen等人最近报告了在肝移植术后,肝内胆管上皮细胞存在着EMT现象,并且用相应的阻断剂能抑制EMT发生或逆转。Ho-Soon Choi等报告,用LPS剌激胆囊上皮细胞,能使胆囊上皮细胞中TGF-β1mRNA表达增加。这些研究说明在胆道系统中,胆管上皮细胞在特定的环境中(LPS)可能发生EMT。因此我们推测在原发性肝胆管结石形成机制中胆管上皮细胞可能发生EMT。
     为了检验我们的假想,本实验设计如下:首先,在肝胆管结石组织标本中,采用免疫组织化学的方法检测了上皮性标志物(E-cadherin、α-catenin)、间叶性标志物(Vimentin、α-SMA)在胆管上皮细胞中的的表达,并评价其临床意义;然后,在体外用人肝胆管上皮细胞(HIBEpiC)与LPS共培养,模仿胆道感染早期的变化,观察胆管上皮细胞能否发生EMT转化,分别用阻断及RNA干扰技术,来检测胆管上皮细胞发生EMT是否经过TGF-β1/Smads信号通路,以期探讨肝胆管上皮细胞发生EMT的可能机制。为了检验在活体内LPS能否使肝胆管上皮细胞发生EMT,我们选用SD大鼠,从胆总管注入一定剂量的LPS,在相应时段取胆管组织标本,用免疫组化方法检测上皮标志物和间叶标志物的表达情况。
     结果:
     1.31例原发性肝胆管结石胆管上皮细胞中E-cadherin、α-catenin表达阳性主要表现为胞膜呈棕黄色连续线性染色,也可见在胞浆中表达。呈正常阳性表达率分别为67.7%、74.2%,表达缺失率为32.3%、25.8%。Vimentin在中、大等胆管上皮细胞中11例表达阳性,阳性率为35.5%。α-SMA有9例表达阳性,阳性率为29.0%。TGF-β1阳性表达率为38.7%,Smad2/3阳性率为48.4%。Smad 2/3蛋白主要在小胆管上皮细胞核中表达。以上表明,在肝胆管结石胆管上皮细胞中上皮标志物表达缺失,间叶标志物表达阳性,提示原发性肝胆管结石形成过程中胆管上皮细胞可能发生了EMT,且可能是通过TGF-β1-Smad 2/3信号通路传导的。
     2.LPS刺激人肝内胆管上皮(HIBEpiC )24 h后可测到明显的TGF-β1表达,继续培养至48 h,TGF-β1 mRNA表达到高峰,72 h后开始下降,但仍维持较高水平。说明LPS可促使胆管上皮细胞TGF-β1的释放,且在48 h释放达高峰。
     3.PCR检测:上皮标志物E-cadherin mRNA的表达随培养时间的延长,其表达逐渐降低,在72 h时更明显。而S100A4和α-SMA的mRNA随培养时间的延长,其表达明显上调。Western blot结果显示,LPS刺激后,E-cadherin蛋白表达明显下调,S100A4和α-SMA蛋白表达明显上调与其mRNA表达水平一致。提示:LPS能诱导HIBEpiC发生上皮-间叶样表型转化。
     4.在加入LPS的细胞培养基中用紫杉醇(PT)预处理后,TGF-β1、Smad2、Smad3 mRNA表达明显下降,特别是在48 h最明显,与处理前相比,分别下降了60%、36%和28%。这说明,TGF-β1的特异阻断剂PT能阻断其信号通路TGF-β1- Smad2/3中TGF-β1的表达。表明:LPS诱导HIBEpiC发生EMT可能是通过TGF-β1- Smad2/3信号通路传导的。
     5.转染siRNA Smad2/3 DNA片断48 h后,荧光强度最强,72 h荧光强度逐渐减弱,细胞转染效率78%。荧光定量PCR发现,siRNA Smad2/3 DNA片断转染的胆管上皮细胞中的Smad2/3 mRNA的表达与对照组相比明显下降,而其上皮标志物E-cadherin在转染后表达明显上调,在48、72 h分别上调了64%和20%,间叶标志物S100A4和α-SMA表达明显下调。其中以Smad2/3基因沉默效果最好,在2时相点转染后,其表达下调90%以下。Western blot结果示:与干扰以前相比,48、72 h E-cadherin蛋白表达升高,分别升高了40%、20% ,S100A4和α-SMA表达则下降,在48 h分别下降了20%、35%,在72 h S100A4和α-SMA表达分别下降了21%、44%。48 h与72 h相比,72 h的S100A4和α-SMA沉默效果最好。进一步提示:LPS诱导HIBEpiC发生EMT可能是通过TGF-β1- Smad2/3传导的,而且,Smad2/3为该信号通路中的关健基因。
     6.LPS剌激SD大鼠胆管上皮细胞后,胆管上皮细胞中间叶标志物(S100A4、α-SMA)蛋白异常阳性表达,而上皮标志物表达缺失。提示:LPS在体内可以诱导胆管上皮细胞发生上皮-间叶样表型转化。结论:
     1.在原发性肝胆管结石胆管上皮细胞中存在上皮-间叶样表型转化。
     2.LPS可诱导人肝内胆管上皮细胞发生上皮-间叶样表型转化,并且可能是通过TGF-β1-Smad2/3信号传导的。
     3.在活体内,LPS可诱导胆管上皮细胞发生上皮-间叶样表型转化。
Purpose: Primary hepatolithiasis (HL), a condition marked by the presence of calculus in intrahepatic ducts, is a common disease in China and is especially prevalent in the Eastern and Southern regions of China. Although HL is a benign disease, it is intractable and usually requires operative interventions due to frequent stone recurrences. Most importantly, this disease has a high association with cholangiocarcinoma. Clinical data and experimental studies indicate that hepatolithiasis is associated with chronic inflammation of bile ducts, biliary fibrosis, biliary stricture, and bacterial infections. However, the cellular and molecular etiology of hepatolithiasis has remained elusive. Many previous studies have focused on the formation of stones, while little attention has been paid to the role of bile duct epithelial cells (BEC). Epithelial-mesenchymal transition (EMT) is, by definition, a process whereby epithelial cells convert to migratory mesenchymal cells. This process is characterized by a loss of cell polarity and acquired expression of mesenchymal components. EMT results in a dramatic remodeling of the cytoskeleton, which includes reduced expression of cell adhesion molecules (i.e., E-cadherin) and the transition of keratin-based cytoskeleton into vimentin-based cytoskeleton, thus leading to changes in cell morphology. It has been reported that EMT contributes to both renal fibrogenesis and the fibrogenetic processes that occur in chronic liver diseases such as hepatocirrhosis.
     Members of the transforming growth factor-β(TGF-β) family are pleiotropic cytokines involved in multiple physiological and pathological processes, including cellular proliferation, adhesion, apoptosis, differentiation and immunoregulatory activities. TGF-β1 activates Smad signaling via its two cell surface receptors—TGF-βtype I receptor (TβRI) and TGF-βtype II receptor (TβRII)—leading to Smad-mediated transcriptional regulation of target genes.Therefore, we assumed that primary hepatolithiasis could be caused by EMT, wherein BECs lose differentiated functions and develop a fibroblast phenotype. This study explored whether intrahepatic biliary epithelial cells undergo EMT during hepatolithiasis by detecting changes in epithelial and mesenchymal markers via immunohistochemical assays.
     Results:
     1.Expressions of the epithelial markers E-cadherin andα-catenin were frequently lost in HL samples (32.3% and 25.9%, respectively), while the mesenchymal marker vimentin was found to be present in normal amounts in 35.5% of hepatolithiasis samples;α-SMA was also found to be present in 29.0% of samples. The positive rates of TGF-β1 and Smad 2/3 in the samples paralleled those of the mesenchymal markers, but was comparable between the HLBECs and the control cells (p>0.05).
     2.Twenty-four hours after the administration of LPS, marked TGF-β1 mRNA was detected. The expression of TGF-β1 mRNA reached the peak at 48 h, but the mRNA level decreased after 72 h. These results suggest that the expression of TGF-β1 was induced by LPS and reached a peak value at 48 h . Therefore, we detected the expression of proteins involved in the EMT process at 48 h and 72 h in the following experiments.
     3.Along with the exposure to LPS, the mRNA of epithelial markers E-cadherin decreased gradually, whereas the mesenchymal markers (S100A andα-SMA) increased significantly . However, the expression of markers S100A4 andα-SMA at different time points did not show any difference (p >0.05). Consistent with the results of :westblotting, the protein level of E-cadherin decreased , and S100A andα-SMA increased .
     4.Administration of paclitaxel alone did not change the expression of TGF-β1 mRNA. However, pretreatment with paclitaxel before administration of LPS significantly down-regulated the mRNA of TGF-β1, Smad2/3, especially at 48 h, when the mRNA of TGF-β1, Smad2 /3 decreased by 60%, 36% and 28%, respectively. These results indicated that PT was not a specific antagonist of Smad2/3 because the blockage of Smad2/3 by PT was not as efficient as that of TGF-β1 . We assumed that there were other proteins besides Smad 2/3 involved in the reduced transcription of TGF-β1 that resulted from treatment with PT.
     5.It was observed that 48 hours after transfection with siRNA Smad2/3, the fluorescence intensity reached its peak, but the fluorescence intensity gradually weakened after 72 hours. The transfection efficiency of HIBEpiCs was 78% (data not shown). The results of real-time PCR showed that the levels of Smad 2/3 mRNA in transfected cells were significantly decreased by even more than 90% at both 48 h and 72 h and that the mRNA of epithelial marker E-cadherin was significantly up-regulated. Both at 48 h and at 72 h, E-cadherin mRNA increased by 64% and 20%, respectively. Expression of mesenchymal markers S100A4 andα-SMA was significantly reduced . It was confirmed that Smad 2/3 played a key role in the TGF-β/Smad signaling pathway. Forty-eight to seventy-two hours after the transfection of siRNA to Smad2/3, the E-cadherin protein in HIBEpiCs increased by 40% and 20%, respectively . The level of S100A4 protein decreased by 21 % and 41%, andα-SMA protein decreased by 35 % and 44% . Inhibition of S100A4 andα-SMA at 72 h was more efficient than that at 48 h (p <0.01), but the expression of E-cadherin showed no difference between the two time points (p >0.05).
     6.In rat model, the mesenchymal marker vimentin was found to be present, while expressions of the epithelial markers E-cadherin andα-catenin were frequently lost in bile duct epithelial cells of rat with LPS administration, suggesting the development of EMT in bile duct epithelial cells.
     Conclusions:
     1.in BECs from patients with primary HL, epithelial markers were lost, the TGF-β1/Smad pathway was activated, and mesenchymal markers were upregulated. These data indicate that TGF-β1-mediated EMT plays a role in the formation of hepatolithiasis.
     2.LPS can induce the expression of TGF-?1 and a subsequent EMT in HIBEpiCs, and the inhibition of TGF-?1 or Smad 2/3 could reverse this EMT, suggesting that the TGF–?/Smad pathway may be a potential target for the prevention and treatment of biliary fibrosis.
     3.LPS could also induce the EMT of bile duct epithelial cells in rat model
引文
1. azuma S. Gallstone disease: Epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract Res Clin Gastroenterol. 2006;20(6):1075-1083.
    2. Lee TY, Chen YL, Chang HC, Chan CP, Kuo SJ. Outcomes of hepatectomy for hepatolithiasis. World J Surg. 2007;31(3):479-482.
    3. Gressner OA, Weiskirchen R ,Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options[J]. Comparative Hepatology, 2007, 6:7 doi:10.1186/1476-5926-6-7
    4. Rygiel1 KA, Robertson1 H, Marshall1 HL,et al. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease[J]. Laboratory Investigation, 2008, 88:112–123
    5. Thiery J P.Epithelial-mesenchymal trandition in tumor progression [J].Curropin Cell Boil 2003,15(6):740-746
    6. Rygiel KA,Robertson H,Burt AD,Jones DEJ,Kirby JA,Demonstration of the transition of intrahepatic biliary epithelia cells to fibroblasts during chronic inflammatory liver diseases.J Hepatol 2006;45:S241(abstract)
    7. Ho-Soon Choi,M.D.,Christopher E.Savard,M.S.,Jae-Woon Choi,M.D.et al.Paclitaxel interrupts TGF-β1 signaling between gallbladder epithelial cells and myofibroblasts.J Surg Res 2007;183-191.
    8. Ray M E,Mehra R,Sandler H M,et al E-cadherin protein expression predicts prostate cancer salvage radiotherapy outcomes [J]. JUrol,2006,176(4ptⅠ): 1409- 1414
    9. Savager P. Leaving the neighborhood : molecular mechanisms involved during epithelial-mesenchymal transition.Bioessays,2001,23:912-923
    10. Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol 2004; 15: 390-397.
    11. Tyler JR, Robertson H, Booth TA, Burt AD, Kirby JA. Chronic allograft nephropathy: intraepithelial signals generated by transforming growth factor-beta and bonemorphogenetic protein-7. Am J Transplant 2006; 6: 1367-1376.
    12. Vongwiwatana A, Tasanarong A, Rayner DC, Melk A, Halloran PF. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant 2005; 5: 1367-1374.
    13. obertson H, Xu X, Burt AD, Kirby JA. Epithelial to mesenchymal transition in chronic cholestatic liver disease. J Pathol 2005; 207: 30A (abstract).
    14. Asayama Y,Taguchi KiK,Aishima SiS,et al.The mode of tumour progession in combined hepatocelluar carcinoma and cholangiocarnoma:an immunohistochemical analysis of E-cadherin,alpha-catenin and beta-catenin.Liver.2002 Feb;22(1):43-50.
    15. Nakajima S,Doi R,Toyoda E,et al .N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res.2004 Jun 15;10(12Pt1):4125-33.
    16.董家鸿.肝胆管结石的临床病理类型与手术方式的选择[ J ].外科理论与实践, 2003, 8 (2) : 99 - 100.
    17. Robertson H, Xu X, Burt AD, Kirby JA. Epithelial to mesenchymal transition in chronic cholestatic liver disease. J Pathol 2005; 207: 30A (abstract).
    18. Strutz F ,Okada H, Neilson EG. The role of the tubular epithelial cell in renal fibrogenesis .Clin Exp Nephrol 2001,5:62-74.
    19. Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD, Kirby JA. pithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest. 2008 Feb;88(2):112-23. Epub 2007 Dec 3.
    20. Zeisberg M,Hanai J,Sugimoto H,Mammoto T,Cgarytan D,Strutz F,et al.BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury,Nat Mad 2003;9:964-967
    21. Xia J-L,Dai C,Michalopoulos GK Liu Y.Hepatocyte growth factor attenuares liver fibrosis induced by bile duct ligation.Am J Patgol 2006;168:1500-1512).
    22. Helen Robertson,John A.Kirby.et al.biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis [J]. Journal of Surgical ResearchVolume 141, Issue 2, August 2007, Pages 183-191
    23. Kubo S, Kinoshita H, Hirohashi K,et al. Hepatolithiasis associated with cholangiocarcinoma.[J]. World J Surg. 1995, 19(4): 637-641.
    24. Nakai A, Imano M, Takeyama Y, et al. An immunohistochemical study of osteopontin in hepatolithiasis[J]. J Hepatobiliary Pancreat Surg. 2008, 15(6):615-621.
    25. Ramadori G, Saile B. Portal tract fibrogenesis in the liver[J].Lab Invest, 2004,84 (2):153-159.
    26. hoi SS, Diehl AM,Epithelial-to-mesenchymal transitions in the liver. Hepatology. 2009 Dec;50(6):2007-13.
    27. Nakanuma Y, Harada K, Sato Y, Ikeda H. Recent progress in the etiopathogenesis of pediatric biliary disease,particularly Caroli's disease with congenital hepatic fibrosis and biliary atresia.Histol Histopathol. 2010 Feb;25(2):223-35.
    28. Gressner A M, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets[J]. J Cell Mol Med, 2006, 10 (1) : 76-99.
    29. Schiffer M, von Gersdorff G, Bitzer M, et al. Smad proteins and transforming growth factor-βsignaling[J] . Kidney Int Suppl, 2000,58: S45-S52.
    30. ten-Dijke P, Hill C S. New insights into TGF-beta-Smad signalling[J]. Trends Biochem Sci , 2004 ,29 (5) :265-273.
    31. Mazzucchelli L. Protein S100A4 : too long overlocked by pathologists ? [J ] . Am J Pathol ,2002 ,160 (1) :7 - 13.
    32. Gribenko AV ,Hopper J E ,Makhatadze GI. Molecuar characterization and tissue distribution of a novel member of the S100 family of EF-hand proteins[J ]. Biochemistry ,2001 ,40 (51) :15538 - 15548.
    33. Mullins D W, Martins R S, Burger C J, et al. Tumor cell-derived TGF-beta and IL-10 dysregulate paclitaxel-induced macrophage activation[J]. J Leukoc Biol, 2001, 69(1): 129-137.
    34. Bridle KR, Popa C, Morgan ML, Sobbe AL, Clouston AD, Fletcher LM, Crawford DH. Rapamycin inhibits hepatic fibrosis in rats by attenuating multiple profibrogenic pathways. Liver Transpl. 2009 Oct;15(10):1315-24.
    35. Yue HY, Yin C, Hou JL,et al. Hepatocyte nuclear factor 4{alpha} attenuates hepatic fibrosis in rats. Gut. 2009 Aug 10.
    36. Freudenberg M,Galanos C. Metabolic fate of endotoxin in rat . In:Frieman H.Klein T W, Nakano M. et al. eds . Advances in experimental medicine and biology vo1256. NewYork: Plenum Press.1990.499-509
    37. Chen XM. Han DW. Noguchi K,et al. Selective uptake of two types of lipopplysaccharide by Kupffer cells and other liver cells. J Pathologhysiol,1995,4:27
    38. Soloway RD,et al.Pigment gallstones.Gastroenterology 1977;72:167
    39. Dam H,et al.Alimentary production of gallstones in hamster . Acta Patho Microbiol Scan 1952;30:236
    40. Imamoglu K,et al.Experimental production of gallstones by incomplete stricture of terminal common bile duct.Surgery 1957;42:623
    41.肖路加,彭其芳等,化脓性胆管炎和胆红素结石的动物模型.中华外科杂志,1985; 23:399-402
    1. Greenburg G, Hay ED. Ep ithelia suspended in collagen gels can lose polarity and exp ress characteristics of migrating mesenchymal cells [ J ]. J Cell Biol, 1982, 95 (1) : 3332339.
    2. Boyer B, VallésAM, Edme N. Induction and regulation of epithelial2mesenchymal transitions [ J ]. Biochem Pharmacol, 2000, 60 (8) : 1091-1099
    3. Thiery JP. Ep ithelial2mesenchymal transitions in development and pathologies [ J ]. CurrOp in Cell Biol, 2003, 15 (6) : 7402746.
    4. Strutz F ,Okada H, Neilson EG. The role of the tubular epithelial cell in renal fibrogenesis Clin Exp Nephrol 2001,5:62-74)
    5. Boyer B, Vallés AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions[J]. Biochem Pharmacol, 2000,60(8):1091-1099.
    6. Savagner P. Leaving the neighborhood:molecular mechanisms involved during epithelial-mesenchymal transition [J]. Bioessays, 2001,23(10):912-923.
    7. Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumour p rogression: is it all in a switch [ J ] ? Cancer Lett, 2002, 176 (2) : 1232128.
    8. Stetler2Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellularmatrix during invasion andmetastasis [ J ]. Annu Rev Cell Biol, 1993, 9 (6) : 5412573.
    9. Peinado H, Portillo F, Cano A.Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004,48:365-375.
    10. Zheng G, Lyons JG, Tan TK, et al. Disrup tion of E-cadherin by matrix metallop roteinase directly mediates ep ithelial2mesenchymal transition downstream of transforming growth factor2beta1 in renal tubular ep ithelial cells [ J ]. Am J Pathol, 2009, 175 ( 2) : 580--591
    11. Nelson WJ, Nusse R.Convergence of Wnt, b-catenin, and cadherin pathways. Science 2004,303:1483-1487.
    12. allaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004,4:118-132.
    13. Peinado H, Portillo F, Cano A.Transcriptional regulation of cadherins duringdevelopment and carcinogenesis. Int J Dev Biol. 2004,48:365-375.
    14. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002,3:155-166.
    15. Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem. 2001,276:27424-27431.
    16. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004,117:927-939.
    17. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004,118:277-279.17
    18. Lu Z,Ghosh S,Wang Z,et al.Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin,increased transcriptional activity of beta-catenin,and enhanced tumor cell invasion.Cancer-Cell.2003;4(6):499-515.
    19. Xu Z,Shen MX,Ma DZ,et al.TGF-beta1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-beta1-enhanced cell migration in SMMC-7721 cells.Cell-Res.2003;13(5):343-350.
    20. Yang J,Liu Y.Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis.Am-J-Pathol.2001.159:1465-1475.
    21. Wang D,Shen Q,Chen YQ,et al.Collaborative activities of macrophage-stimulating protein and transforming growth factor-beta1 in induction of epithelial to mesenchymal transition:roles of the RON receptor tyrosine kinase.Oncogene.2004;23(9):1668-1680.
    22. Kasai H, Allen JT,Mason RM, et al. TGF2beta1 induces human alveolar ep ithelial to mesenchymal cell transition ( EMT) [ J ]. Res2 pir Res, 2005, 6 (1) : 56.
    23. Eger A, Stockinger A, Park J,et al. beta-Catenin and TGF-beta signaling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene. 2004,23:2672-2680.
    24. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003,3:756-767.
    25. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial- mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004,18:99-115.
    26. adil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-b/Smad and Jagged1/Notch signalling in epithelial-tomesenchymal transition. EMBO J. 2004, 23:1155-1165.
    27. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003,3:903-911.
    28. Karhadkar SS, Bova GS, Abdallah N,et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004,431:707-712.
    29. Louro ID, Bailey EC, Li X, et al. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res. 2002,62:5867-5873.
    30. Mullor JL, Dahmane N, Sun T,et al. Wnt signals are targets and mediators of Gli function. Curr Biol. 2001,11:769-773.
    31. Genda T,Sakamoto M,Ichida T,et al. Loss of cell-cell contact is induced by integrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells. Lab-Invest. 2000,80:387-394.
    32. Frame MC.Src in cancer:deregulation and consequences for cell behaviour. Biochim-Biophys-Acta. 2002,1602:114-130.
    33. Irdy RB, Yeatman TJ. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer-Res. 2002,62:2669-2674.
    34. Edme N, Downward J, Thiery JP. Ras induces NBT-Ⅱepithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J-Cell-Sci. 2002,115:2591-2601.
    35. Bhowmick NA, Zent R, Ghiassi M, et al. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J-Biol-Chem. 2001,276:46707-46713.
    36. Lan M, Kojima T, Osanai M, et al. Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis. 2004,25:2385-2395.
    37. Fukata M, Nakagawa M, Kaibuchi K, et al. Role of Rho-family GTPases in cell polarization and directional migration. Curr-Opin-Cell-Biol. 2003,15:590-597.
    38. Janda E, Lehmann K, Killisch I, et al. Ras and TGF-beta cooperatively regulateepithelial cell plasticity and metastasis:dissection of Ras signaling pathways. J-Cell-Biol. 2002,156:299-313.
    39. Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial- mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer-Res. 2003,63:2172-2178.
    40. Kim K,Lu Z,Hay ED,et al.Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT.Cell-Biol-Int.2002.26(5):463-476.
    41. Espada J,Perez-Moreno M,Braga VM.,et al.H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes.J-Cell-Biol.1999.146:967-980.
    42. Eger A,Stochinger A,Park J,et al.beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition.Oncogene.2004;23(15):2672-2680.
    43. Nieto MA.The snail superfamily of zinc-finger transcription factors. Nat-Rev-Mol- Cell-Biol.2002;3(3):155-166.
    44. Bolos V,Peinado H,Perez-Moreno MA,et al.The transcription factor slug represses E-cadherin expression and induces epithelial-mesenchymal transitions:a comparison with snail and E47 repressors.J-Cell-Sci.2003.116:499-511.
    45. Hajra KM,Chen DY,Fearon ER,et al:The SLUG zinc-finger protein represses E-cadherin in breast cancer.Cancer-Res.2002.62:1613-1618.
    46. Yokoyama K,Kamata N,Fujimoto R,et al.Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas.Int-J-Oncol.2003;22(4):891-898.
    47. Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol 2004; 15: 390-397.
    48. Tyler JR, Robertson H, Booth TA, Burt AD, Kirby JA. Chronic allograft nephropathy: intraepithelial signals generated by transforming growth factor-beta and bone morphogenetic protein-7. Am J Transplant 2006; 6: 1367-1376.
    49. Vongwiwatana A, Tasanarong A, Rayner DC, Melk A, Halloran PF. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the roleof tubular cells in fibrogenesis. Am J Transplant 2005; 5: 1367-1374.
    50. Rygiel KA, Robertson H, Burt AD, Jones DEJ, Kirby JA. Demonstration of the transition of intrahepatic biliary epithelial cells to fibroblasts during chronic inflammatory liver diseases. J Hepatol 2006; 45: S241
    51. Robertson H, Xu X, Burt AD, Kirby JA. Epithelial to mesenchymal transition in chronic cholestatic liver disease. J Pathol 2005; 207: 30A (abstract).
    52. Mishra B, Tang Y, Katuri V, Fleury T, Said AH, Rashid A, et al. Loss of cooperative function of transforming growth factor-beta signaling proteins, smad3 with embryonic liver fodrin, a beta-spectrin, in primary biliary cirrhosis. Liver Int 2004; 24: 637-645.
    53. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-B1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9: 964-967.
    54. Wu M-J, Wen M-C, Chiu Y-Y, Shu K-H, Tang M-J. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int 2006; 69: 2029-2036.
    1. Kusano T, Isa T,Oh tsuboM , et al. N atural p rogression of untreated hepato lith iasis that show s no clinical signs at its initial p resentation[J ]. J Clin Gastroentero l, 2001, 33 (2) : 1142117
    2. Ohta T, Nagnkawa T , Takeda T , etal1 Histological evaluation t he intrahepa-ticbiliaryt ree in int rahepatic choIesterol stones. including immunohistochemical staining against apolipoprotein A-1 [J ] . Heptology , 1993 , 17 (4) : 5312537.
    3. Kondo S , Nimura Y, Hayakawa N , et al . A clinicopat hologic study of primary cholesterol hepatolit hiasis [ J ] . Hepatugast roentewlogy , 1995 , 42 (5) : 4782486.
    4.董家鸿.肝胆管结石的临床病理类型与手术方式的选择[J ].外科理论与实践, 2003, 8 (2) : 992100
    5.刘允怡,赖俊雄,刘晓欣中国实用外科杂志2009年7月第29卷第7期540-541
    6.王曙光.肝胆管结石外科治疗观念的转变[J].肝胆胰外科杂志,2006,18(3):133- 134.
    7.董家鸿,黄志强,蔡景修,等.规则性肝段切除术治疗肝内胆管结石病[J].中华普通外科杂志,2002,17(7):418-421.
    8. Kazuhia U1 Hironobu 01Masaji T1 et al1 Indication and procedure for t reatment of hepatolilhiasis [ J ] . Arch Surg1 2002 ; 137 :1492153.
    9. Azagra J S , Goergen M , Gilbart E , et al . Laparoscopic anatomical ( hepatic ) left Iateral segmentectomy2technicalaspect s [ J ] .Surg Endosc , 1996 ; 10 (7) : 758.
    10. Rogula T , Gagner M1 Current status of t he laparoscopic approach to liver resection [J ] . J Long Term Eff Med Implant s , 2004 ; 14 (1) : 23.
    11. Cherqui D , Soubrane O , Husson E , et al . Laparoscopic living donor hepatectomy for liver t ransplantation in children [ J ] .Lancet , 2002 ; 359 (9304) : 392.
    12. Cherqui D. Laparoscop ic liver resection [J ] . Br J Surg , 2003 ,90 (6) : 6442646.
    13. Li ZH , Chen M , Liu J K, et aI1 Endoscopic sphincterotomy in t he t reatment of cholangiopancreatic diseases [J ] . World J Gast roenterol , 2005 ; 1 1 (17) : 2678.
    14. LesurtelM , Chequi D , Laurent A , et al . Laparoscop ic Versus openleft lateral hepatic lobectomy : a case cont rol study1Am Coll Surg , 2003 , 1 96 (2) : 2362242.
    15. Laurent A , Cherqui D , LesurtelM , et al . Laparoscop ic liver resectionfor subcap sular hepatocellular carcinoma comp licating chronic liver disease [ J ] . Arch Surg , 2003 ,138 ( 7 ) : 7632769.
    16. Li ZH , Chen M , Liu J K, et al . Endoscopic sphincterotmy in t he t reatment of cholangiopancreatic diseases [J ] . World J Gast roenterol , 2005 ; 11 (17) : 2678.
    17. Nugent N , Doyle M , Mealy K1Low incidence of reIained common bile duct stones using a selective poIicy of biliary imaging [J ] . Surgeon , 2005 ; 3 (5) : 352.
    18. Garg PK, Tandon RK, Ahuja V , etal1 Predictors of unsuccessful mechanical lit hot ripsy and endoscopic clearance of large bile duct stones [J ] . Gast rointest Endosc , 2004 ; 59 (6) : 601.
    19. Ohara S , OnoyamaH , Tomita M , et al . Primary and experimental study of a new t reatment for hepatolit hiasis by injection of resin in t he int rahepatic bile duct [ J ] . Nippon Geka Gakkai Zasshi , 1 995 , 96 (8) : 563.
    20. Terao R , Honda K, Hatano E , et al . Suppression of proliferative cholangitis in a rat model wit h direct adenovirus2mediated retinoblastoma gene t ransfer to t he biliary t ract [J ] . Hepatology , 1998 , 28 (3) : 6052612.
    21.黄志强肝内胆管结石治疗的现状与展望中国普外基础与临床杂志2001年3月第8卷第2期65-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700