用户名: 密码: 验证码:
亚洲栽培稻籼—粳遗传分化及其与地理分布的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
籼-粳分化代表亚洲栽培稻(Oryza sativa L.)遗传分化中主要的分化类型,长期以来也是栽培稻遗传分化及其利用研究的焦点。由于籼稻和粳稻之间在形态、生理、遗传以及对应的生境存在一系列差异,有些极端分化的籼稻和粳稻类型在杂交时存在显著的生殖隔离,因此,栽培稻被划分为籼稻亚种(O.sativa L. subsp. indica Kato)和粳稻亚种(O. sativa L. subsp. japonica Kato)。本研究首次采用高效精确鉴定籼-粳分化的插入-缺失分子标记(Insertion/Deletion, InDel),系统阐明栽培品种的籼-粳遗传分化,并定量地确定籼-粳遗传分化的程度。本研究根据不同类型栽培稻品种的地域适应性,分析其地理分布规律,并分析海拔和纬度怎样影响这一分布,为进一步理解籼稻和粳稻种植区的划分提供依据;同时,籼稻和粳稻类型的精确鉴定,为其在育种中的合理应用提供科学依据,特别是籼-粳杂种优势的利用和在分子辅助育种中有效地选择亲本的种质资源提供依据。本研究的主要结果如下:
     1.栽培稻品种沿着海拔梯度的籼-粳分化及其分布:采用34对能够特异区分籼粳的InDel分子标记,分析了来自中国云南省的203份亚洲栽培稻品种和14份野生稻种,海拔梯度在450m到2350m之间。研究结果表明:(1)云南栽培稻品种发生了显著的遗传分化,分成籼稻和粳稻两大类群,其中只有极少数的栽培稻和几乎所有的野生稻种表现为中间类型,没有发生分化;(2)籼稻适应区几乎覆盖了所有的采样区域,而粳稻更适应于海拔高于1400m的区域,表明籼稻对海拔具有很宽的适应范围,而粳稻则更适应于高海拔地区;(3)云南的栽培稻品种未出现大量的中间类型,表明在云南分化程度较高的籼稻和粳稻可能由其它地方引种而来,因此云南可能不是栽培稻的起源中心之一,而是栽培稻的遗传多样性中心之一。
     2.栽培稻品种沿纬度梯度的籼-粳分化及其分布:采用34对InDel分子标记,对分布于亚洲南纬3°到北纬45°的纬度区间内的387个品种以及5个不同来源的非洲栽培稻品种和52个野生稻种群作为研究材料进行实验分析。结果表明:(1)亚洲栽培稻聚类为两个相对独立的群体,表明亚洲栽培稻发生了显著的遗传分化,而非洲栽培稻和野生稻则没有相应的遗传分化;(2)籼稻和粳稻沿纬度梯度的地理分布呈现不同的模式:籼稻在南纬2°到北纬40°的广大范围内具有广泛的适应性;粳稻则明显集中分布在高于北纬15°的地区;大部分的中间类型则分布在低于北纬27°的地区;(3)对取样区间的栽培稻类型的种植比例和各纬度梯度30年年均温的相关分析表明:籼稻的分布对温度变化不敏感,粳稻的分布则对温差变化反应敏感;同样中间类型对温度变化反应敏感。因此,栽培稻沿着不同纬度梯度的籼-粳遗传分化以及地理分布与其所在环境的生态因子——温度紧密相关。
     3.为了进一步了解能够特异区分籼-粳的InDel分子标记与籼-粳遗传分化功能基因的关系,本文分析了与InDel分子标记紧密连锁的基因序列,发现有50条基因序列具有一定的功能结构域。比对日本晴和93-11中获得序列结果发现:(1)与标记R2M10紧密相邻的基因序列存在90个变异;(2)与标记R4M43紧密相邻的基因序列存在19个变异;(3)与标记R8M46紧密相邻的基因序列存在18个变异;(4)与标记R3M10紧密相邻的基因序列存在1个变异,在420bp位置日本晴有一个缺失突变,93-1l在此位置插入碱基T,造成蛋白序列发生移码突变,且93-11中该基因在609bp位置提前终止。深入研究这些基因序列并进行进一步验证其功能,将有助于深入了解栽培稻籼-粳遗传分化过程中所受到的选择作用,为栽培稻籼-粳分化的起源和形成机理提供生物信息学和分子生物学支持。
Indica-japonica variation represents the most significant genetic differentiation in Asian cultivated rice, and it has also been the focus of how to use genetic differentiation of cultivated rice. Based on the differentiation in characteristics of morphology, physiology, genetics and their habitat, especially when significant differentiated varieties shows obvious reproductive isolation and sterility in F1 hybrids, Asian cultivated rice was classified into two sub-species Oryza sativa L. subsp. indica Kato and subsp. japonica Kato. In this study Insertion/Deletion molecular markers (InDel) was first used in indica-japonica genetic differentiation of cultivated rice and identification of the degree of indica-japonica differentiation. Based on that indica rice and japonica rice adapt to different environmental conditions we analyzed the differentiation and distribution patterns of cultivated rice along altitude and latitude gradients, and also accurately identified the type of rice. In order to exploring the difference in genome of typical indica and typical japonica, we analyzed gene sequence which is located near to the InDel molecular markers. This research will facilitate indica-japonica differentiation theoretical research, strategic utilization and conservation of rice germplasm, and provide scientific data for introducing different type of rice to certain place to achieve better agronomic characteristics. The mainly results of this study are:
     1. In this study, we analyzed 203 varieties and 14 wild accessions of rice collected from localities across an altitude gradient between 450 and 2,350 m above sea level in Yunnan, China, applying the "InDel molecular index" developed recently. Results from PCA of the InDel data demonstrated significant genetic differentiation of rice varieties from Yunnan into indica and japonica types. A few cultivars and nearly all wild rice accessions showed only moderate or no differentiation. Further analyses demonstrated a clear distribution pattern of the rice varieties in the mountainous region:indica varieties were grown across the entire altitude gradient in the sampling areas, but most japonica varieties were found above 1,400 m. These results clearly indicated that indica rice could be cultivated in areas at much higher altitudes than those categorized by the traditional methods. The knowledge opens a new dimension for introducing indica rice varieties to mountainous regions at higher altitudes and for selecting rice germplasm in these regions. In addition, the pattern of significant indica-japonica differentiation in rice varieties from Yunnan suggested the exotic origin of cultivated rice, which did not support the hypothesis that Yunnan is a part of the center of origin of rice, although it is certainly one of the centers of genetic diversity for rice.
     2. Asian cultivated rice has significantly differentiated into indica and japonica subspecies that have extensive distribution worldwide. To determine genetic differentiation of Asian cultivated rice across a latitudinal gradient, a total of 387 Asian cultivated rice varieties, five African rice varieties, and 52 wild rice accessions collected from a wide range of Asian countries and other regions were analyzed applying the InDel molecular index. The principal component analysis classified Asian cultivated rice into two distinct groups, which demonstrated significant molecular genetic differentiation of Asia cultivated rice, while all wild rice and African cultivated rice showed no evident differentiation. The results clearly indicated that Asian cultivated rice has differentiated profoundly since its domestication and during its adaptation to various environments, contrasting with wild rice and African rice. Analysis of the geographic distribution indicated a clear pattern for the different types of rice, in which indica rice varieties were found across a wide range of latitudes from -2°S to 40°N and japonica varieties were mostly focused in the high latitude areas greater than 15°N. Most intermediate types of rice originated in regions at latitudes lower than 27°N. Correlation patterns between rice types and temperature along the latitude gradients suggested that indica rice was considerably less sensitive to temperature along the latitude ranges, but japonica rice was highly sensitive to the temperature at different latitudes. The molecular genetic intermediate type of rice was also sensitive to temperature. We conclude that the distribution pattern of different types of Asian rice across large latitudinal ranges is the consequence of their adaptation in relation to ecological factors of the environment, especially temperature. This has an important implication in breeding of hybrid rice by selecting properly differentiated indica and japonica parents.
     3. In order to understand the indica-japonica differentiation information in genome which linked with InDel molecular marker and to learn the molecular mechanism of indica-japonica differentiation, in this study we analyzed sequence approached closely to 34 InDel molecular markers and found:there are 50 sequences have functional domain which means these sequence could be real gene. Based on the PCR we get these sequences separately from typical indica and typical japonica. Further alignment of sequencing result showed that there are molecular variation between the sequence from typical indica 93-11 and typical japonica niponbare:Near the molecular marker R2M10, the sequences from 93-11 and niponbare have 90 bases change; R4M43, there are 19 bases change; R8M46, there are 18 variation in sequence; R3M10, there is one variation in sequence, there is one deletion mutation in japonica at the position of 420bp which make one shift mutation in related protein sequence; it was a termination beforehand in indica at the position of 609bp. Understanding these predicted gene sequences and further analysis of their domain and function, will help us to understand the selection process of indica-japonica variation. This study has very important implication in indicating the origin, differentiation and dimension of indica-japonica variation, and also in providing the genetic information for the mechanism of indica-japonica variation.
引文
[1]Silvertown J, Charlesworth D.李博,董慧琴,陆建忠译.简明植物种群生物学[M].北京:高等教育出版社.2002,18-44.
    [2]蔡星星,刘晶,仇吟秋,赵伟,宋志平,卢宝荣.籼稻93-11和粳稻日本晴DNA插入缺失差异片段解释的水稻籼-粳分化[J].复旦学报.2006,43(3):309-315.
    [3]陈家宽,杨继.植物进化生物学[M].武汉:武汉大学出版社.1994.
    [4]陈文炳.亚洲栽培稻起源分化的遗传学研究[J].上海农业学报.1999,15(3):42-48.
    [5]陈升,张启发.分子标记辅助选择改良杂交水稻的白叶枯病抗性[J].华中农业大学学报.2000,19(3):183-189.
    [6]陈亮,梁春阳,孙传清,王象坤.AFLP和RFLP标记检测水稻亲本遗传多样性比较研究[J].中国农业科学.2002,35(6):589-595.
    [7]程侃声.籼、粳、陆稻的鉴别[J].植物学报.1976,14(1):38-40.
    [8]程侃声.亚洲栽培稻起源的活物考古[J].稻作起源研究.1994,4(1):112-118.
    [9]程侃声,王象坤,卢义宣,罗军,黄迺威,刘光荣,王象坤.云南稻种资源的综合研究与利用2.亚洲栽培稻分类的再认识[J].作物学报.1984,10(4):271-279.
    [10]丁颖.中国古代籼粳稻种之栽培及分布与现在的稻种分类法预报[J].中山大学农艺专刊.1949,6(4):1-11.
    [11]丁颖.中国水稻栽培学[M].北京:农业出版社.1961.
    [12]渡部忠世,尹绍亭译.稻米之路[M].昆明:云南人民出版社.1982,7-19.
    [13]甘德欣,黄璜,蒋廷杰.中国栽培稻稻起源与进化研究进展[J].作物研究.2002,1(5):213-216.
    [14]郭龙彪,程式华,钱前.水稻基因组测序和分析的研究进展[J].中国水稻科学.2004,18(6):557-562.
    [15]管彦波.云南稻作源流史[M].北京:民族出版社.2005.
    [16]黄燕红,才宏伟,王象坤.亚洲栽培稻分散起源的研究[J].植物遗传资源学报.2003,4(3):185-190.
    [17]季羡林,裴安平,熊建华.长江流域的稻作文化[M].武汉:湖北教育出版社.2004,63-101.
    [18]李文雄,Dan Graur.生物多样性译丛(三)[M].中国生物多样性委员会主编.北京:科学出版社.1997,16-27.
    [19]李根蟠,卢勋.中国南方少数民族原始农业形态[M].北京:农业出版社.1987,142-156.
    [20]李自超,张洪亮,曾亚文,申时全,孙传清,王象坤.云南稻种资源表型遗传多样性的研究[J].作物学报.2001,27(6):832-837.
    [21]卢宝荣.稻种遗传资源多样性的开发利用及保护[J].生物多样性.1998,6(1):63-72.
    [22]卢宝荣,蔡星星,金鑫.籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义[J].自然科学进展.2009,19(6):628-638.
    [23]卢宝荣,葛颂,桑涛,陈家宽,洪德元.稻属分类的现状及存在问题[J].植物分类学报.2001,39(4):373-388.
    [24]卢纹岱.SPSS for Windows统计分析[M].北京:电子工业出版社.2002.
    [25]钱前,程式华.水稻遗传学和功能基因组学[M].北京:科学出版社.2006.
    [26]孙传清,毛龙,王振山.中国普通野生稻和栽培稻基因组的随机扩增多态性DNA (RAPD)初步分析[J].中国水稻科学. 1995,9(1):1-6.
    [27]孙传清,王象坤,李自超.从普通野生稻DNA的籼粳分化侃亚洲栽培稻的起源与演化[J].农业考古.1998,(1):21-29.
    [28]孙传清,王象坤,吉村淳,土井一行,岩田伸夫.普通野生稻和亚洲栽培稻核基因组的RFLP分析[J].中国农业科学.1997,4(30):37-44.
    [29]汤圣祥,佐藤洋一郎,俞为洁.河姆渡碳化稻中普遍野生稻谷粒的发现[J].农业考古.1994,(3):88-91.
    [30]王象坤,孙传清.中国栽培稻起源与进化[M].北京:中国农业大学出版社.1992.
    [31]王象坤,李任华,孙传清,李自超,才宏伟,孙新立.亚洲栽培稻的亚种及亚种间杂交稻的认定与分类[J].科学通报.1997,42(24):2596-2602.
    [32]王象坤,孙传清,才宏伟,张居中.中国稻作起源与演化[J].群学通报.1998,43(22):2354-2363.
    [33]王一平,魏兴华,华蕾,袁筱萍,余汉勇,徐群,汤圣祥.不同地理来源旱稻种质资源的遗传多样性分析[J].作物学报.2007,12(33):2034-2040.
    [34]王松文,刘霞,王勇,徐才国,施利利,张欣,丁得亮.RFLP揭示的籼-粳基因组多态性[J].中国农业科学.2006,39(5):1038-1043.
    [35]夏寒冰,卢宝荣.共显性分子标记基因型数据转换为二元型数据的处理软件及其在研究种质资源遗传多样性中的意义[J].植物遗传资源学报.2009,10(1):97-102.
    [36]肖国樱,袁隆平.爪哇稻及其亚种间杂种优势的研究[M].北京:科学出版社,2009.
    [37]徐祥浩,王焕校,王国昌.云南省思茅地区籼、粳稻垂直分布调查报告[J].植物学报.1974,16(3):208-222.
    [38]严文明.中国稻作农业的起源[J].农业考古.1982(2):50-61.
    [39]严文明.再论中国稻作农业的起源[J].农业考古.1989(2):72-83.
    [40]杨振玉,高勇,赵迎春,魏耀林,华泽田,张忠旭,高日玲.水稻籼粳亚种间杂种优势利用研究进展[J].作物学报.1996,4(22):422-429.
    [41]杨忠义,苏艳,曹永生,邹菊,刘晓利,奎丽梅,卢义宣.云南稻种资源多样性的生态地理分布研究[J].植物遗传资源学报.2008,9(4):475-479.
    [42]游修龄.中国稻作史.[M].北京:农业出版社.1995,6-12.
    [43]曾世雄,卢庄文,杨秀青.水稻品种间杂种一代及其与亲本关系的研究[J].作物学报.1979,5(3):23-33.
    [44]曾亚文,李自超,杨忠义,申时全,张洪亮,王象坤.云南地方稻种籼粳亚种的生态群分类及其地理生态分布[J].作物学报.2001,27(1):15-20.
    [45]张媛媛,曹桂兰,韩龙植.中国不同地理来源籼稻地方品种的亲缘关系研究[J].作物学报.2007.33(5):757-762.
    [46]赵松乔.中国农业(种植业)的历史发展和地理分布[J].地理研究.1991,10(1):1-11.
    [47]赵伟,夏寒冰,章淑杰,蔡星星,卢宝荣.籼-粳稻特异插入/缺失分子标记揭示的稻属植物遗传分化[J].复旦学报(自然科学版).2008,47(3):281-287.
    [48]庄杰云,钱惠荣,林鸿宣,陆军,程式华,应存山,罗利军,朱旭东,董凤高,闵绍楷,孙宗修,郑康乐.应用RFLP标记研究亚洲栽培稻的起源与分化[J].中国水稻科学.1995,9(3):135-140.
    [49]朱明雨,王云月,朱有勇,卢宝荣.云南地方水稻品种遗传多样性分析及其保护意义[J].华中农业大学学报.2004,23(2):187-191.
    [50]周拾禄.中国是稻之原产地[J].中国稻作.1948,5:53-54.
    [5l]朱作峰,孙传清,付永彩,张培江,王象坤.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性[J].中国农业科学.2002,35(12):1437-1441.
    [52]张桂权,卢永根.栽培稻杂种不育性的遗传研究Ⅱ.F1花粉不育性的基因模式[J].遗传学报.1993,20(3):222-228.
    [53]Ashikari M, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production[J]. Science 309(5735):741-745.
    [54]Chang TT (1976) The origin, evolution, cultivation, dissemination and diversification of Asian and Africa rices[J]. Euphytica 25(1):435-441.
    [55]Chang TT (1984) Conservation of rice genetic resources:Luxury or necessity[J]. Science 224(4646):251-256.
    [56]Chang TT (1985) Crop history and genetic conservation:Rice-a case study[J]. Iowa State Journal of Research 59:425-455.
    [57]Chang TT, Oka HI (1976) Genetic variousness in the climatic adaption of rice cultivars. In:Huke R (ed) Proceedings of the Symposium on climate and rice[M]. International Rice Research Institute, Los Banos, Philippines, pp87-111.
    [58]Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data[J]. Genetics 131(2):479-491.
    [59]Fageria NK, Baligar VC (2003) Upland rice and allelopathy[J]. Communications in Soil Science and Plant Analysis 34:1311-1329.
    [60]Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates:recent archaeobotanical insights from the Old World[J]. Annals of Botany 100(5):903-924.
    [61]Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of lower Yangtze region[J]. Antiquity 81:316-331.
    [62]Fuller DQ, Qin L, Zheng YF, Zhao ZJ, Chen XG, Hosoya LA, Sun GP (2009) The domestication process and domestication rate in rice:spikelet bases from the lower Yangtze[J]. Science 323(5921):1607-1610.
    [63]Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L.[J]. Genetics 169(3):1631-1638.
    [64]Gao LZ, Hideki I (2008) Non-independent domestication of the two rice subspecies, Oryza sativa subsp. indica and subsp. japonica, demonstrated by multilocus microsatellites[J]. Genetics 179 (2):965-976.
    [65]Glaszmann JC (1987) Isoenzymes and classification of Asian rice varieties[J]. Theoretical and Applied Genetics 74(1):21-30.
    [66]Hassan SM, Aidy IR, Bastawisi AO, Draz AE (1998) Weed management In rice using allelopathic rice varieties in Egypt. In:Olofsdotter M (ed) Allelopathy in Rice[M]. IRRI (in press). pp51-60.
    [67]Huke R (1976) Geography and climate of rice. In:Huke R (ed) Proceedings of the Symposium on Climate and Rice[M]. International Rice Research Institute, Los Banos, Philippines. pp 31-50.
    [68]Ikehashi H (2009) Why are There Indica Type and Japonica Type in Rice?——History of the Studies and a View for Origin of Two Types[J]. Rice Science 16(1):1-13.
    [69]Jackson MT (1997) Conservation of rice genetic resources:the role of the international rice genebank at IRRI[J]. Plant Moecuar Biology 35(1-2):61-67.
    [70]Jin L, Su B (2000) Natives or immigrants:Modern human origin in East Asia[J]. Nature Reviews Genetics 1:126-133.
    [71]Kato S, Kosaka H, Hara S (1928) On the affinity of rice varieties as shown by fertility of hybrid plants[J]. Bulletin of the Faculty of Agriculture Kyushu University 3:132-147.
    [72]Khush GS (1997) Origin, dispersal, cultivation and variation of rice[J]. Plant Moecuar Biology 35(1-2):24-34.
    [73]Khush GS (2001) Green revolution:the way forward[J]. Nature Reviews Genetics 2:815-822.
    [74]Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology 59(1):1-6.
    [75]Khush GS, Aquino RC (1994) Breeding tropical japonicas for hybrid rice production. In:Virmani SS (ed) Hybrid Rice Technology:New Developments and Future Prospects[M]. Manila, Philippines, International Rice Research Institute, pp 33-36.
    [76]Khush GS, Brar DS, Bennett J (1998a) Apomixis in rice and prospects for its use in heterosis breeding. In:Virmani SS(ed). Advances in hybrid rice technology[M]. Los Banos (Philippines):International Rice Research Institute. pp 297-298.
    [77]Khush GS, Aquino RC, Virmani SS, and Bharaj TS (1998b) Using tropical japonica germplasm to enhance heterosis in rice. In:Virmani SS(ed). Advances in Hybrid Rice Technology[M]. Los Banos, Philippines, International Rice Research Institute, pp 59-66.
    [78]Li CB, Zhou AL, Sang T (2006) Rice Domestication by Reducing Shattering[J] Science 311(5769):1936-1939
    [79]Li H, Huang Y, Mustavich LF, Zhang F, Tan JZ, Wang LE, Qian J, Gao MH, Jin L (2007) Y chromosomes of prehistoric people along the Yangtze River[J]. Human Genetics 122(3-4):383-388.
    [80]Li ZQ Hideki I (2008) Nonindependent Domestication of the Two Rice Subspecies, Oryza sativa ssp. indica and ssp. japonica, Demonstrated by Multilocus Microsatellites[J]. Genetics 179(2):965-976.
    [81]Liu QP, Xue QZ (2006) Genome Sequencing and Identification of Gene Function in Rice[J]. Acta Genetica Sinica 33 (8):669-677.
    [82]Londo JP, Chiang YC, Hung KH, Cheng TY, Schaal B (2006) Phylogeography of Asian wild rice reveals multiple independent domestications of cultivated rice, Oryza sativa[J]. Proceedings of the National Academy of Sciences 103(25): 9578-9583.
    [83]Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences[J]. Bioscience 55(8):669-678.
    [84]Lu BR, Zhu YY, Wang YY (2002a) The current status and perspectives of on-farm conservation of crop genetic diversity[J]. Biodiversity Science 10(4):409-415.
    [85]Lu BR, Zheng KL, Qian HR, Zhuang J (2002b) Genetic differentiation of wild relatives of rice as referred by the RFLP analysis[J]. Theoretical and Applied Genetics 106(1):101-106.
    [86]Masood MS, Nishikawa T, Fukuoka S, Peter KN, Tsudzuki T, Kadowaki K (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome:first genome wide comparative sequence analysis of wild and cultivated rice[J]. Gene 340(1):133-139.
    [87]Morishima H, Gadrinab LU (1987) Are the Asian common wild-rices differentiated into the indica and japonica types? In:Hsieh SC (ed) Crop Exploration and Utilization of Genetic Resources[M]. Taichung District Agriculture Improvement Station, Taiwan.pp11-20.
    [88]Morishima H, Oka HI (1981) Phylogenetic differentiation of cultivated rice. XXII. Numerable evaluation of the indica-japonica differentiation[J]. Japanese Journal of Breeding 31(4):402-413.
    [89]Morishima H, Sano Y, Oka HI (1992) Evolutionary studies in cultivated rice and its wild relatives. In:Futuyama D and Antonovics J (ed). Oxford Surveys in Evolutionary Biology[M]. Oxford University Press, Inc. New York, USA.
    [90]Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics 89(3):583-590.
    [91]Nei M (1987) Molecular evolutionary genetics[M]. Columbia University Press, New York.
    [92]Normile D (1997) Archaeology:Yangtze seen as earliest rice site[J]. Science 275:309-310.
    [93]Oka HI (1974) Analysis of genes controlling F1 sterility in rice by the use of isogenic lines[J].Genetics 77:521-534.
    [94]Oka HI (1988) Origin of Cultivated Rice, Development in crop species[M] Japan Scientific Societies Press. Tokyo.
    [95]Oka HI, Chang WT (1959) The impact of cultivation on populations of wild rice, Oryza stiva f. spontanea[J]. Phyton 13:105-117.
    [96]Oka HI, Chang WT (1961) Hybrid swarms between wild and cultivated rice species, Oryza perennis and O. sativa[J]. Evolution 15(4):418-430.
    [97]Oka HI, Chang WT (1963) Rice varieties intermediate between wild and cultivated forms and the origin of the Japonica type[J]. Botany Bulletin Academics Sinica 3:109-131.
    [98]Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD (2006) Selection under domestication:evidence for a sweep in the rice waxy genomic region[J]. Genetics 173:975-983.
    [99]Peakall R, Smouse PE (2006) GENALEX 6:genetic analysis in excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes 6(1):288-295.
    [100]Peng S, Laza RC; Khush GS, Sanico AL, Visperas RM, Garcia FV (1998) Transpiration efficiencies of indica and improved tropical japonica rice grown under irrigated conditions[J]. Euphytica 103(1):103-108.
    [101]Peng S, Laza RC, Visperas RM, Khush GS, Virk P, Zhu DF (2004) Rice: progress in breaking the yield ceiling. Proceedings of the 4th International Crop Science Congress[M]. September26-October 1,2004 Brisbane, Australia, Published on CD. www.cropscience.org.au.
    [102]Rohlf FJ (1994) NTSYS-pc, numerical taxonomy and multivariate analysis system. Ver.1.80. Exeter Software, New York.
    [103]Sano R, Morishima H (1992) Indica-japonica differentiation of rice cultivars viewed from variations in key characters and isozymes, with special reference to landraces from the Himalayan hilly areas[J]. Theoretical and Applied Genetics 84(3-4):266-274.
    [104]Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species[J]. Genome 33(2):209-218.
    [105]Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci[J]. Japanese Journal of Genetics 57(1):25-57.
    [106]Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology 135:1198-1205.
    [107]Song ZP, Li B, Chen JK, Lu BR (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China[J]. Plant Species Biology 20(2): 83-92.
    [108]Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetic 39:623-630.
    [109]Sun CQ, Wang XK, Yoshimura A (2002) Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics 104(8):1335-1345.
    [110]Tu M, Lu BR, Zhu YY (2007) Abundant within-varietal genetic diversity in rice germplasm from Yunnan Province of China revealed by SSR fingerprints[J]. Biochemical Genetics 45(11-12):789-801.
    [111]Vaughan DA, Balazs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication [J]. Annals of Botany 100(5):893-901.
    [112]Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution[J]. Plant Science 174(4):394-408.
    [113]Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus[J]. Current Opinion in Plant Biology 6(2):139-146.
    [114]Virk PS, Khush GS, Peng S (2004) Breeding to enhance yield potential of rice at IRRI:the ideotype approach[J]. International rice research notes 29(1):5-9.
    [115]Virmani SS (1994) Prospects of hybrid rice in the tropics and sub-tropics. In: Virmani SS (ed) Hybrid rice technology:new developments and future prospects [M]. Manila (Philippines):International Rice Research Institute. pp 7-10.
    [116]Virmani SS (1998) Hybrid rice research and development in the tropics. In: Virmani SS, Siddiq EA, Muralidharan K (eds) Advances in hybrid rice technology [M]. Los Banos (Philippines):International Rice Research Institute. pp 35-49.
    [117]Virmani SS, Kumar I (2004) Development and use of hybrid rice technology to increase rice productivity in the tropics[J]. International rice research notes 29(1):10-19.
    [118]Wang YH, Li JY (2006) Genes controlling plant architecture[J]. Current Opinoin in Biotechnology 17(2):123-129.
    [119]Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs[J]. Theoretical and Applied Genetics 83(5):565-581.
    [120]Wei XJ, Jiang L, Xu JF, Liu X, Liu SJ, Zhai HQ, Wan JM (2009) The distribution of japonica rice cultivars in the lower region of the Yangtze river valley is determined by its photoperiod-sensitivity and heading date genotypes[J]. Journal of Integrative Plant Biology 51(10):922-932.
    [121]Xiong ZY, Zhang SJ, Wang YY, Ford-Lloyd BV, Tu M, Jin X, Wu Y, Yan HX, Yang X, Liu P, Lu BR (2010) Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel molecular markers[J]. Genetic Resource and Crop Evolution online:DOI 10.1007/s10722-009-9528-x.
    [122]Yamanaka S, Nakamura I, Nakai H, Sato YI (2003) Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon[J]. Genetic Resources and Crop Evolution 50(5):529-538.
    [123]Yamanaka S, Nakamura I, Watanabe KN, Sato YI (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice[J]. Theoretical and Applied Genetics 108(7):1200-1204.
    [124]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences 95(4):1663-1668.
    [125]Yamanouchi U, Yano M, Lin HX, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences 99(11):7530-7535.
    [126]Yu LX, Nguyen HT (1994) Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.)[J]. Theoretical and Applied Genetics 87(6):668-672.
    [127]Zeng Y, Zhang H, Li Z, Shen SQ, Sun JL, Wang MX, Liao DQ, Liu X, Wang XK, Xiao FH, Wen GS (2007) Evaluation of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China[J]. Breeding Science 57(2):91-99.
    [128]Zhang QF, Saghai-Maroof MA, Lu TY, Shen BZ (1992) Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis[J]. Theoretical and Applied Genetics 83(4):495-499.
    [129]Zheng YF, Sun GP, Chen XG (2007) Characteristics of the short rachillae ofrice from archaeological sites dating to 7000 years ago[J]. Chinese Science Bulletin 52(12):1654-1660.
    [130]Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000) Genetic diversity and disease control in rice[J]. Nature 406:718-722.
    [131]Zhu YY, Wang YY, Chen HR, Lu BR (2003) Conserving traditional rice varieties through management for crop diversity[J]. Bioscience 53(2):158-162.
    [132]Zhu MY, Wang YY, Zhu YY, Lu BR (2004) Estimating genetic diversity of rice landraces from Yunnan by SSR assay and its implication for conservation[J]. Acta Botanica Sinica 46(12):1458-1467.
    [133]Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China[J]. Nature 449:459-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700