用户名: 密码: 验证码:
基于RBF网络的北方温室温湿度控制机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室环境模型是温室结构设计与环境控制的重要基础,由于温室系统是一个具有强耦合、大惯性、非线性的复杂大系统,采用机理分析法,难以建立其准确的数学模型,致使温室环境控制效果不理想、生产能耗大。神经网络建模能更灵活地获得温室系统的参数和非线性。目前我国对温室环境建模与控制的研究多数集中在南方地区,而研究北方温室环境建模与控制的较少,北方温室加热能耗大,制约北方温室的发展,尤其在春秋季节昼夜温差大,控制变量耦合强,建模和控制难度大。因此,本文针对北方温室环境的控制机理进行了深入研究。主要研究内容如下:
     由于机理法难以建立准确的温室环境模型,而RBF网络具有结构简单、能逼近任意非线性过程的特性,因此,本文将RBF网络结构与优化算法相结合,采用了不同的算法学习与优化网络结构和参数,建立了北方温室环境模型。OLS算法具有计算量小、运算速度快、能够找到较小的网络结构的特点,在设计网络结构时,选择的隐中心与样本的正交化顺序有关,因此,不能找到最优的网络结构。
     RBF网络性能只与所选的隐中心有关,而与隐中心的选择顺序无关。因此,可以将隐中心的选择看作为组合优化问题,进化策略在搜索过程中主要采用选择和变异操作,适合于隐中心的寻优,本文采用进化策略在整个样本集中搜索最优的隐节点数和隐中心,建立了温室环境RBF网络模型。
     如果样本中包含较强的噪声数据,网络模型可能会过多地拟合噪声数据,影响网络的泛化性能,正则化方法是改善网络泛化性能的有效方法,而正则化系数需要优化确定;基于OLS算法和ES算法的网络模型都是在扩展常数确定的情况下,进行网络结构的设计,而扩展常数的优劣也直接影响着网络的性能。因此,本文采用粒子群算法全局优化正则化系数和扩展常数,正则化OLS算法利用所得优化结果设计网络结构。
     RBF网络的输出层为线性层,通常采用线性最小二乘法求其回归系数,但是,如果温室系统输入变量间有较高程度的相关性,或出于计算成本考虑而样本点容量不充足,将会使网络模型的回归系数误差增加,模型精度降低。PLS算法能够对输入信息进行筛选和重组,有效地解决变量间的多重相关性或样本点不充足问题。因此,本文采用了PLS回归算法提取输入变量的主成分,主成分间是直交互补的,利用主成分进行网络模型的回归,主成分提取和隐中心分级确定。
     北方温室生产的能耗制约着温室农业的发展,目前,温室温度控制通常强调控制精度,而忽视了生产能耗。利用作物的积温特性,可以大量减少生产能耗。作物的积温控制受湿度控制的影响较大,本文根据蝴蝶兰的生活习性和积温控制原则,研究并制定了北方温室春季环境的积温控制策略,为北方温室环境的优化调控及节能生产奠定理论基础。
     针对传统控制理论和现代控制理论在温室环境控制应用中存在的问题,本文根据所得的温室环境模型和积温控制策略,完成了北方温室环境神经网络控制器的设计,控制器根据温度和湿度的偏差,调节各执行设备,采用正交最小二乘法加快网络学习速度,妥善解决了湿度等影响因素对积温控制的影响。
     通过对北方温室温湿度模型和控制器的研究,为北方温室农业的健康发展和可持续生产,提供了理论和技术基础。
Greenhouse environment models are the important basis of greenhouse structural design and environmental control. Greenhouse is a complex system with characteristics of strong coupling, long delay and nonlinear. Therefore, mechanism analysis methods difficultly established its models. This caused high-energy consumption for greenhouse production and unsatisfactory control effect. Neural network (NN) modeling technology can flexibilly acquire parameters and nonlinear characteristics of greenhouse. Now research objects on greenhouse environmental model and control mostly lay in southern region of china. Similar study on northern greenhouse was deficient. High-energy consumption for northern greenhouse production restricts its development, temperature difference between day and night in spring and autumn is great, variables strongly couple each other, modeling and control for it is very difficult. Environmental control mechanism of northern greenhouse was furtherlly studied in this dissertation. Main topics are as follows:
     According to the problem that mechanism analysis methods difficultilly establish accurate model of greenhouse. Because radial basis function NN (RBFNN) has such characteristics that simpler structure and approximating any nonlinear procedure. RBFNN structure and different optimal algorithms were combined to learn and optimize NN structure and parameters, northern greenhouse models were established in this dissertation. OLS algorithm has such characteristics that smaller coumputing amount, quicker operation speed and designing simpler NN structure. When OLS algorithm designs structure of NN, hidden centers selected are related to orthogonalized order. Therefore, it can not establish the simplest structure of NN.
     In fact, RBFNN performances are only related to hidden centers selected, not related to its'order. Hence, selection of hidden centers is thought as combination optimization problem. ES mainly use selection and variation operation during evolutionary, this is fit for optimizing hidden unit centers. ES algorithm was applied to search the optimal hidden centers and its number in sample set. RBFNN model of northern greenhouse was established.
     If stronger noise data were included in sample set, NN may overfit these data to decrease its generalization. Regularizing method is an effective measure to improve NN generalization. But regularizing factor must be optimized. NN models based on OLS and ES algorithm were designed after spreads of RBF were assumed. Accuracy of spreads influences NN performance. Therefore, PSO algorithm was used to optimize regularizing factor and spreads, ROLS algorithm used optimal results to design model structure in this dissertation.
     The output layer of RBFNN is linear layer, its output weights are usually acquired by linear least squares algorithm. However, greenhouse is a large-scale system with multiple input-output. If strong correlation among input variables exists, or data quantity is deficient for calculating cost, this will increase error of model regression coefficients, and decrease model accuracy. PLS algorithm can select and recombine the input information, effectively resolve the problems mentioned above. Hence, PLS algorithm was applied to extract principal components from the input variables. These components are orthogonal and complementary. The model was regressed by these components. These principal components and hidden centers were hierarchically determined.
     The development of northern greenhouse was restricted by energy consumption for production. Now control accuracy of temperature in greenhouse was usually emphasized, but energy consumption was ignored. Large mount of energy is saved by means of the characteristics of integrating temperature. Humidity control greatly restricts application of integrating temperature control. According to growing habit of phalaenopsis aphrodite and control scheme of integrating temperature, integrating temperature control schemes of northern greenhouse environment during spring were studied in this dissertation. These lay theoretical basis for controlling greenhouse environment and energy-saving production.
     In accordance with the problems of traditional and modern control theory applied on greenhouse environment control, according to the model and control schemes acquired in this dissertation, NN controller was designed to regulate the temperature and humidity in northern greenhouse. NN controller regulates all actuators according to the bias of temperature and humidity. OLS algorithm was applied to accelerate NN learing. The effect of humidity on integrating temperature control was perfectly resolved.
     Environmental model and controller of northern greenhouse are studied in this dissertation. These research results provide theoretical and technical basis for healthy development and sustainable production of greenhouse agriculture in northern region.
引文
[1]胥芳,张立彬,陈教料,等.玻璃温室小气候温湿度动态模型的建立与仿真[J].农业机械学报.2005,36(11):102~106.
    [2]王定成.温室环境的支持向量机回归建模[J].农业机械学报.2004,35(5):106~109.
    [3]宫赤坤,毛罕罕.温室夏季温湿度遗传模糊神经网络控制[J].农业工程学报.2000,16(4):106~109.
    [4]Takakura T.. Predicting air temperature in the greenhouse Ⅰ and Ⅱ[J]. J.Meteor.Soc.Jap.1967,45:440~452.
    [5]Kindelan M.. Dynamic Modeling of Greenhouse Environment[J].Transaction of the ASAE. 1980,23(6):.1232~1239.
    [6]Ferreira P.M., Faria E.A., Eruano A.. Neural network models in greenhouse air temperature prediction[J]. Neurocomputing.2002,43:51~75.
    [7]Jones,P., Jones J.W., Allen L.H., et al. Dynamic computer control of closed environmental plant chambers:Design and verification[J]. Trans. ASAE.1984,27:879~888.
    [8]董乔雪,王一鸣.温室计算机分布式自动控制系统的开发[J].农业工程学报.2002,18(4):94~97.
    [9]Chao K., Gates R.S., Sigrimis N.. Fuzzy logic controller design for staged heating and ventilating system[J]. Transactions of ASAE.2000,43(6):1885~1894.
    [10]朱伟兴,毛罕罕,李萍萍,等.遗传优化模糊控制器在温室控制系统中的应用[J].农业机械学报.2002,33(3):76~79.
    [11]李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报.2004,20(3):217~221.
    [12]吴春艳,赵新平,郭文利.日光温室作物热环境模拟及分析[J].农业工程学报.2007,23(4):190-195.王纪章,李萍萍,毛罕罕,等.基于模型的温室环境调控技术研究[J].沈阳农业大学学报.2006,37(3):463~466.
    [13]顾寄南,毛罕罕,李萍萍.温室系统综合动态模型的研究[J].农业工程学报.2001,17(4):79~82.
    [14]王纪章,李萍萍,毛罕罕,等.基于模型的温室环境调控技术研究[J].沈阳农业大学学报.2006,37(3):463~466.
    [15]李小芳.日光温室的热环境数学模拟及其结构优化[D].中国农业大学博士论文.2005:33~37.
    [16]李树海,马承伟.温室环境模型的回顾与展望[J].农业工程学报.2002,18(S1):57-62.
    [17]Bot G.P.A.. Greenhouse climate from physical processes to dynamic model[D]. Agricultural University of Wagenigen,doctor dissertation.1983:240.
    [18]Korner O., Baller M.J.E.. Daily temperature integration:a simulation study to quantify energy consumption[J]. Biosystems engeering.2004,87(3):67~77.
    [19]Joao Isrgel Bernardo, Marcello Silverio, Silvio Miyadaira Amancio, et.al. Analytical modeling in greenhouse for simulation and optimized multivariable control[C]. Computers in Agriculture and Natural Resources,4th World Congress Conference, Orlando, Florida USA,2006. ASABE Publication:612-617.
    [20]Beshada E., Qiang Zhang. Optimizing the Design of Solar Energy Greenhouses[C]. CSBE/SCGAB 2006 Annual Conference, Can. Soc.Bioengineering,2006:108-121.
    [21]Tantau H.J.. Greenhouse climate control using mathematical models[J]. Acta Horticluture. 1985,174:449-459.
    [22]Kempkes F.L.K.,Bakker J.C.,Van De Break N.J.. Control and modeling of vertical temperature distribution in greenhouse corp[J]. Acta Horticulturae.1998,456:363~370.
    [23]Baille, M., Romero-Aranda, R., Baille, A.. Stomatal conductance of rose whole plants in greenhouse conditions[J]. Analysis and modelling.1996J:463~472.
    [24]Huber, L., Gillespie, T.J.. Modeling leaf wetness in relation to plant disease epidemiology [J]. Annual Review of Plant Phytopathology.1992,30:553-577.
    [25]Willits D.H.. The effect of shade cloth temperature on the cooling efficiency of shade cloths in greenhouses[C].2002 ASAE Annual International Meeting/CIGR XVth World Congress, Chicago, Illinois, USA,2002:1~12.
    [26]Kempkes F.L.K., Van De Break N.J.. Heating system position and vertical microclimate distribution in chrysanthemum greenhouse [J]. Agricultural and Forest meteorology.2000, 104(2):133-142.
    [27]Borhan M.S., Xiuming Hao, Yun Zhang, et al. Microclimate prediction in a greenhouse using back-propagation neural network(BPNN) model [C].2006 ASABE Annual International Meeting, Potland Oregon,2006:4~23.
    [28]Seginer I.,Boulard T.,Bailey B.J.. Neural network models of the greenhouse climate [J]. Agric Engng Res.1994,59:203~216.
    [29]Shichao Ou, Chen Liancheng, Guo Jianhua, et al. Application of artificial neural network model in greenhouse plantation environments[C].2003 ASAE Annual International Meeting Presentation, Las Vegas, Nevada, USA,2003:1~6.
    [30]Blasco X., Martinez M., Herrero J.M., et al. Model-based predictive control of greenhouse climate for reducing energy and water consumption[J]. Computers and Electronics in Agriculture.2007,55:49~70.
    [31]Coelho J.P., Boaventura Cunhua J. and de Moura Oliveira P.B.. Solar radiation prediction methods applied to improve greenhouse climate control[C].2002 ASAE World Congress, Iguacu Falls, Brazil,2002. eds.F.S.Zazueta and J.Xin Publication:154~160.
    [32]Gates R.S.,Chao K., Sigrimis N.. Identifying design parameters for fuzzy control of staged ventilation control systems[J]. Computers and Electronics in Agriculture. 2001,31:61-74.
    [33]Sigrimis N., Rerras N.. a linear model for greenhouse control[J]. Transaction of the ASAE. 1996,39(1):253-261.
    [34]Aaslyng J.M., Lund J.B., Ehler N., et al. Intelli grow:a greenhouse component-based climate control system[J]. Environment Modeling&Software.2003,18:657-666.
    [35]王万良,李敏,李勤学,等.温室环境的模糊逻辑网络建模与智能控制[J].机电工程.2000,17(2):63~66.
    [36]杨彬.温室温、湿度智能控制系统的研究[D].甘肃农业大学硕士论文.2006:15~18.
    [37]辛本胜,乔晓军,滕光辉.日光温室环境预测模型构建[J].农机化研究.2006(4):96~100.
    [38]Kittas C., Boulard T., Papadakis G. Natural ventilation of greenhouse with ridge and side operation:sensitivity to temperature and wind effects[J]. ASAE.1997,40(2):415-425.
    [39]Boulard T., Lamrani M.A., Roy J.C., et al. Natural ventilation by thermal effect in a one-half scale model mono-span greenhouse[J]. ASAE.1998,41(3):773-781.
    [40]Tantau H.J.. Model for greenhouse climate control[J]. Acta Horticultural 1989,245:434-449.
    [41]Korner O., Challa H., Van Oteghem R.J.C.. Modeling temperature effects on crop photosynthesis at high radiation in a solar greenhouse[J]. Acta Horticulturae.2003, 593:137-144.
    [42]戴剑锋,罗卫红,李永秀.基于小气候模型的温室能耗预测系统研究[J].中国农业科学.2006,39(11):2313~2318.
    [43]杜辉.模糊自适应Smith预估器在温室控制中的应用研究[J].计算机仿真.2006,21(6):150~154.
    [44]汪小旵,丁为民,罗红卫,等.利用神经网络对江淮地区梅雨季节现代化温室小气候的模拟与分析[J].农业工程学报.2004,20(2):235~238.
    [45]李秀梅,赵春江,乔晓军,等.基于改进遗传算法的温湿度模糊神经网络控制器[J].农业工程学报.2004,20(1):259~262.
    [46]彭捍东,张敏.温室环境神经网络建模与自适应模糊控制算法的研究[J].曲阜师范大学学报(自然科学版).2004,30(3):11~13.
    [47]潘兰芳.温室环境的建模与控制[D].浙江工业大学硕士论文.2000:35~41.
    [48]徐健,马宾.基于神经网络的智能厂房温湿度模糊控制系统的研究[J].微计算机信息.2006,22(1):76~77.
    [49]杜尚丰,李迎霞,陈亮,等.温室环境神经网络建模[J].计算机测量与控制.2006,14(7):887~889.
    [50]Pasgianos G.D., Arvanitis K.G., Polycarpou P. et al. A nonlinear feedback technique for greenhouse environmental control[J]. Computers and Electronics in Agriculture. 2003,40:153~177.
    [51]余泳昌,胡建东,毛鹏军.现代化温室环境参数的模糊控制[J].农业工程学报.2002,18(2):72~75.
    [52]陶杰,沈长生,秦昌友,等.一种小型温室集散控制系统的设计[J].安徽农业科学.2009,37(33):16539~16541.
    [53]余朝刚,应义斌,王剑平.带前馈的比例积分(PI)控制方法在温室热水加温系统中的应用[J].农业工程学报.2004,20(4):227~229.
    [54]张保华,李士宁,滕文星,等.基于无线传感器网络的温室测控系统的研究设计[J].微电子学与计算机.2008,25(5):154~160.
    [55]郑世旺.单片机控制系统在植物温室中的应用研究[J].河南科学.2005,23(1):130~132.
    [56]Caponetto R., Fortuna L., Nunnari G., et al. Soft computing for greenhouse climate control[J]. IEEE Transactions on fuzzy systems.2000,8(6):753~761.
    [57]Rodrigo Castafieda-Miranda, Eusebio Ventura-Ramos Jr, Rebeca del Rocio Peniche-Vera, et al. Fuzzy greenhouse climate control system based on a field programmable gate array[J]. Biosystem Engineering.2006,94(2):165~177.
    [58]Lafont F., Balmat J.F.. Optimized fuzzy control of a greenhouse[J]. Fuzzy Sets and Systems.2002,1289 (1):47~59.
    [59]王振宇,成立.基于模糊控制的温室调节装置的研究[J].浙江大学学报(农业与生命科学版).2006,32(2):195~199.
    [60]钟应善,杨家强,邓劲莲.温室温度和湿度的多变量模糊控制技术[J].农业机械学报.2001,22(3):75~78.
    [61]杨卫中,王一鸣,李海健.温室温度模糊控制参数在线自整定算法[J].农业机械学报.2005,36(9):79~82.
    [62]高亮,任振辉,李雅静,等.基于模糊控制技术的温室温度控制节点设计[J].河北农业大学学报.2004,27(3):101~105.
    [63]李秀华.温室环境下多变量模糊控制系统[J].辽宁工程技术大学学报.2006,25(4):582~584.
    [64]曾一凡,付文斌,陈养彬.温室自动控制系统中模糊控制器的设计[J].农机化研究.2004,(5):161~163.
    [65]陈健,姜宇,杨国辉.基于分级模糊模型的温室环境控制方法[J].林业科学.2006,42(5):104~109.
    [66]赵斌,王克奇,匡丽红.我国温室环境的模糊控制技术应用现状[J].自动化仪表.2008,29(5):1~4.
    [67]Jose Boaventura Cunha. Real-time adaptive control for greenhouse heating, cooling and CO2 enrichment[C]. Computers in Agriculture and Natural Resources 4th World Congress Conference, Orlando, Florida USA,2006. ASABE Publication:116~121.
    [68]Setiawan Albert L., Albright Ouis D., Phelan Richard M.. Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control[J]. Computers and Electronics in Agriculture.2000,26(3):283~302.
    [69]Arvanitis K.G., Paraskevopoulos P.N., Vernardos A.A.. Multirate adaptive temperature control of greenhouses[J]. Computers and Electronics in Agriculture.2000,26:303~320.
    [70]Teitel M., Segal I., Shklyar A., et al. A comparison between pipe and heating method for greenhouse[J]. Journal of agricultural engineering research.1999,72(3):256~273.
    [71]Kuznetsov A.G., Clarke D.W.. The performance of generalized predictive control with interval constraints[J]. Eur.J.Control.1996,(2):260~277.
    [72]Coelho J.P., Moura Oliveira P.B.,Boaventura Cunha J.. Greenhouse air temperature predictive control using the particle swarm optimization algorithm [J]. Computures and Electronics in Agriculture.2005,49:330~344.
    [73]宫赤坤,毛罕罕.温室夏季温湿度遗传模糊神经网络控制[J].农业工程学报.2000,16(4):106~109.
    [74]任振辉,张曙光,谢景新.日光温室环境参数温室智能化检测管理系统的研制[J].农业工程学报.2001,17(2):107~110.
    [75]龙利平,张侃谕.温室加热实时专家控制系统研究[J].控制系统.2003,(3):25~26.
    [76]王耀林.国内外设施农业现状及发展趋势[J].中国农业科学.2001,34:46~51.
    [77]李慧,刘毅.温室控制技术的发展方向[J].林业机械与木工设备.2004,32(5):4~7.
    [78]Sigrimis N. Anastasiou A., Rerras N.. Energy saving in greenhouses using temperature integration:a simulation survey[J]. Computer and Electronics in Agriculture.2000,26:321-341.
    [79]Korner O., Challa H. Design for an improved temperature integration concept in greenhouse cultivation[J]. Computer and Electronics in Agriculture.2003,39:39~59.
    [80]Bot G.P.A.. Developments in indoor sustainable plant production with emphasis on energy saving[J].Computers and Electronics in Agriculture.2001,30:151~165.
    [81]Cockshull K.E., Hand D.W., Langton F.A.. The effects of day and night temperature on flower initiation and development in chrysanthemum[J]. Acta Horticulturae.1981,125: 101-110.
    [82]Hurd R.G., Graves C.J.. The influence of different temperature patterns having the same integral on the earliness and yield of tomatoes[J]. Acta Horticulturae.1984,148:547~554.
    [83]Bakker J.C., De Zwart H.F.. Minimumbuis ondermijnt temperatuurintegratie (minimum pipe temperature undermines temperature integration) [J]. Vakblad voor de Bloemisterij. 1999,48:28-29.
    [84]Mortensen, L.M.. Effect of relative humidity on growth and flowering of some greenhouse plants[J].Scientia Horticulturae.1986,29:301~307.
    [85]Hand D.W., Langton F.A., Hannah M.A. et al. Effects of humidity on the growth and flowering of cut-flower chrysanthemums (Dendranthema grandiflora Tzvelev) [J]. Journal of Horticultural Science.1996,71:227~234.
    [86]Bakker J.C.. Analysis of humidity effects on growth and production of glasshouse fruit vegetables[D]. Wageningen:Wageningen Agricultural University, doctor dissertation. 1991:155.
    [87]Gislerφd H.R., Nelson P.E.. The interaction of relative humidity and carbon dioxide enrichment in the growth of Chrysanthemum x morifolium Ramat[J]. Scientia Horticulturae.1989,38:305~313.
    [88]Slack G., Hand D. W.. The effect of day and night temperatures on the growth, development and yield of glasshouse cucumbers[J]. Journal of Horticultural Science. 1983,58:567~573.
    [89]De Koning'A. N. M.. More efficient use of base load heating with a temperature integrating control program. Effect on development, growth and production of tomato [J]. Acta Horticulturae.1988,229:233-237.
    [90]De Koning A. N. M..Long term temperature integration of tomato growth and development under alternating temperature regimes[J]. Scientia Horticulturae.1990,45:117-127.
    [91]Bakker J. C., Van Uffelen J. A. M.. The effect of diurnal temperature regimes on growth and yield of glasshouse sweet pepper[J]. Netherlands Journal of Agricultural Science. 1988,36:201~208.
    [92]Buwalda F., Rijsdjk A. A., Vogelezang J. V. M.. A energy efficient heating strategy for cut rose production based on crop tolerance to temperature fluctuations[J]. Acta Horticulturae. 1999,507:117-125.
    [93]Bailey B. J.. Wind dependent control of greenhouse temperature [J]. Acta Horticulturae. 1985,174:381-385.
    [94]Lacroix R., Kok R.. Simulation-based control of enclosed eco systems—A case study: Determination of greenhouse heating setpoints[J]. Canadian Agricultural Engineering. 1999,41(3):175-183.
    [95]Rijsdijk A. A.. Temperature integration on a 24-hour base:a more efficient climate control strategy[J]. Acta Horticulturae.2000,519:163~169.
    [96]Holder R., Cock shull K... Effects of humidity on the growth and yield of glasshouse tomatoes[J]. Journal of Horticultural Science.1990,65:31~39.
    [97]薛大伟,方茂庭,钱前.有效积温在水稻生产中的应用[J].中国稻米.2004,(4):47~48.
    [98]陈晴,孙忠富.基于作物积温理论的温室节能控制策略探讨[J].农业工程学报.2005, 21(3):158~161.
    [99]伍德林,毛罕罕,李萍萍.基于经济最优目标的温室环境控制策略[J].农业机械学报.2007,38(2):115~119.
    [100]潘强.华北连栋塑料温室节能对策与实践[J].农业工程学报.1999,15(2):155~159.
    [101]周强.现代化温室的果菜栽培环境控制[J].上海农业学报.1998,14(S1):25~32.
    [102]侯加林.温室番茄生长发育模拟模型的研究[D].中国农业大学博士论文.2005:40.
    [103]齐维强.积温对日光温室番茄生长发育效应的研究以及模型初探[D].西北农林科技大学硕士论文.2004:60~63.
    [104]张娟,张杰,王珊珊.基于遗传算法和RBF网络的番茄生长模型辨识[J].控制与决策.2005,20(6):682~685.
    [105]齐维强,贺超兴,张志斌,等.温室番茄繁殖器官消长动态与有效积温的关系研究[J].陕西农业科学.2004,(2):20~22.
    [106]伍德林,毛罕罕,李萍萍.我国设施园艺作物生长模型研究进展[J].长江蔬菜.2007,(2):36~40.
    [107]谢祝捷,陈春宏,赵京音.自控温室黄瓜生长发育动态及基于有效积温的发育模型研究[J].上海农业学报.2007,23(2):46~49.
    [108]高志民,王莲英.有效积温与牡丹催花研究初报[J].中国园林.2002,(2):86~89.
    [109]潘强.华北连栋塑料温室节能对策与实践[J].农业工程学报.1999,15(2):155~159.
    [110]Hans-Juergen Tantau. Energy saving potential of greenhouse climate control[J]. Mathematics and computers in simulation.1998,48:93~101.
    [111]Bailey B. J., Seginer I.. Optimum control of greenhouse heating[J].Acta Horticulturae. 1989,245:512~518.
    [112]Liebig H. P.. Temperature integration by cohlrabi growth[J]. Acta Horticulturae.1988, 230:371~380.
    [113]潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2004:1~23.
    [114]高隽.人工神经网络原理及仿真实例[M].北京:高等教育出版社,2003:45~59,77~84.
    [115]何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社,2000:1~57.
    [116]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005:45~48..
    [117]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002:12~65.
    [118]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:357~365.
    [119]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2008:95~98,21.
    [120]魏海坤,徐嗣鑫,宋文忠.RBF网学习的进化优选算法[J].控制理论与应用.2000,17(4):604~608.
    [121]魏海坤,徐嗣鑫,宋文忠,等.最小RBF网设计的进化优选算法及其在动力配煤过程状 态预测建模中的应用[J].中国电机工程学报.2001,21(1):63~72.
    [122]赵斌,王克奇,匡丽红.温室环境进化RBF网络控制模型的研究[J].中国农学通报.2010.8:341~344.
    [123]Chen S., Chng E.S., Alkadhimi K.. Regularized orthogonal least squares algorithm for constructing radial basis function networks[J]. Int.J.Contr..1996,64(5):829~837.
    [124]Chen S., Wu Y., Luk B.L.. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks [J]. IEEE Trans. Neural Networks.1999,10(5):1239~1243.
    [125]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社.2006:97~102.
    [126]蒋国兴.偏最小二乘回归方法(PLS)在短期气候预测中的应用研究[D].南京信息工程大学硕士论文.2007:12~15.
    [127]尹力,刘强,王惠文.偏最小二乘相关算法在系统建模中的两类典型应用[J].系统仿真学报.2003,15(1):135~138.
    [128]秦浩,林志娟,陈景武.偏最小二乘回归原理、分析步骤及程序[J].数理医药学杂志.2007,20(4):450~451.
    [129]尹建川,东昉,侯建军,等.基于分级偏最小二乘回归的径向基函数神经网络[J].大连海事大学学报.2007,33(3):113~117.
    [130]蔡自兴.人工智能控制[M].北京:高等教育出版社,2006:213~216.
    [131]丁为民,汪小旵,李毅念,等.温室环境控制与温室模拟模型研究现状分析[J].农业机械学报.2009,40(5):162~168.
    [132]王庆祝,林宏举,刘海涛,等.基于主从结构的温室群测控系统[J].农业机械学报.2008,39(9):192~198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700