用户名: 密码: 验证码:
基于智能信息处理的PHEV控制策略与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日趋严重的能源紧缺与环境污染问题已经向传统内燃机汽车提出了挑战,发展新型节能环保车已是大势所趋。并联式混合动力汽车(Parallel Hybrid Electric Vehicle:PHEV)是实现新能源汽车产业化的重点车型;能量控制策略是影响PHEV动力性能、经济性能和排放性能的重大关键技术,变速箱关键零部件的振动特性和故障诊断是影响PHEV整车性能和舒适性的关键技术,这两方面的研究对发展PHEV具有十分重要的理论意义与应用价值。
     PHEV能量控制策略研究的主要内容包括:发动机和驱动电机性能优化与控制、电池组荷电状态估计以及各组成单元之间的能量分配等。现行的PHEV发动机性能研究主要以燃油经济性为优化与控制目标,采用的方法是根据发动机的万有特性,利用多项式拟合方法确定发动机的最佳经济运行线或最佳动力运行线,使发动机沿其中一条曲线工作;而对发动机的经济性和排放性两者同时进行优化与控制,由于发动机的排放性能复杂,相关的研究则较少。能量控制策略方面的研究,主要有以车速和转矩等为主要参数的控制策略、以燃油经济性和排放性以及电池组的荷电状态等为控制变量的能量控制策略,基于智能信息处理的能量优化控制策略则研究较少,或局限于理论研究,缺乏实际应用。基于电池组电压、电流和内阻等变量的电池组荷电状态估计,由于PHEV影响因素多、车辆工况复杂等原因,预测方法需要进一步改进且预测精度需要进一步提高。
     由于PHEV存在动力耦合和能量再生分配,虽然变速箱结构与传统内燃机汽车相同,但其工况更复杂,振动噪声特性差异很大。研究PHEV变速箱及其关键零部件的振动噪声特性,利用振动故障诊断技术分析和诊断变速箱的运行状况,对提高PHEV整车动力性能和改善舒适性具有十分重要的作用。国内外在机械故障诊断方面有大量研究见诸文献,但对PHEV振动特性分析和故障诊断则缺乏深入的研究。
     基于上述背景,本文以智能信息处理理论和方法为主线,主要完成了两个方面的研究工作:将神经网络、模糊控制应用于PHEV能量总成控制,将小波分析、粗集理论应用于PHEV变速箱关键零部件的振动故障诊断。论文主要创新点如下:
     1.在长丰猎豹混合动力轻型越野车(型号:CJY6470PHEV)发动机特性实验的基础上,建立了发动机万有特性的神经网络模型,并对神经网络模型的结构和参数进行了优化设计;将神经网络与网格插值方法融合,在发动机万有特性模型中进行数据挖掘,利用多项式和样条函数等数值计算方法获得了CJY6470PHEV发动机的最优运行特性及其与电子节气门之间的数值关系,通过调整节气门开启角改变发动机的功率和转矩,实现了对发动机特性的优化控制。
     2.基于系统层次的控制器结构设计与分析方法,设计了CJY6470PHEV能量总成控制系统,提出了节气门开启角及行驶挡位的优化控制方法,确定了CJY6470PHEV能量分配的全混合控制策略,建立了各组成单元的数学模型,分析了车辆行驶的功率、扭矩与汽油发动机、交流感应电机驱动系统的功率、扭矩以及镍氢动力电池组荷电状态之间的关系;基于PHEV中发动机驱动系统和电机驱动系统产生和消耗的能量应处于一种动态平衡状态的思想,提出了动力电池组荷电状态估计的能量平衡方法;实现了发动机在最优工况下的运行控制、能量在发动机和电机之间的合理分配以及对电池组荷电状态的控制。
     3.基于对模糊逻辑的基本理论以及PHEV中人机相互影响的特点和各驱动系统之间的能量分配策略的分析,设计了CJY6470PHEV模糊逻辑能量总成控制系统,建立了能量回馈制动模型和正常行驶模型,确定了T-S(Takagi-Sugeno:T-S)模糊控制中输入量和输出量之间的函数关系;简化了控制系统结构,实现了各组成单元特性的优化与能量的匹配。
     4.将基于粗集理论的振动故障诊断方法应用于PHEV变速箱滚动轴承的故障诊断,分析了属性约简引起的信息丢失问题和冗余信息的互补性,提出了基于信息互补的粗集诊断新方法,利用多个约简的互补性进行了PHEV变速箱滚动轴承的故障诊断,得到了与工程实际更加吻合的结果。
     5.分析了小波变换方法进行PHEV变速箱滚动轴承故障诊断时的局限性,也分析了常用特征参数对故障的不敏感性,提出了基于小波变换的能量特征提取和基于粗集理论的诊断规则获取新方法,在不能确定故障特征频率的情况下,该方法具有更高的诊断准确率。
The challenge for the traditional gas-engine vehicle has been faced due to the shortage of the energy and the environment pollution. Thus, it is necessary to develop the new energy-saving and environment-friendly vehicles in future, and the Parallel Hybrid Electric Vehicle (PHEV) has become the preferred model to realize the industrialization of the new energy auto. Energy control strategy is the key technique to determine the power performance, economical performance and emission performance. And the vibration and fault diagnosis is the key to the drive comfort. The researches on these two aspects have a very important theoretical meaning and application value to the development of new energy vehicles.
     The main contents of PHEV energy control strategy studies include:the engine and drive motor performance optimization and control, the battery packs state of charge (SOC) estimation, as well as the energy distribution between the various constituent units. The present studies, aiming to the optimization of the engine performance, are to determine the optimum economical routine or optimum power performance routine using polynomial fit technique according to the universal characteristics of the engine. However, it is noted that only one routine can be determined for the optimization of the engine performance based on this method. Due to the complexity of emission performance, there are quite a few studies on the optimization of both fuel economy and the less emissions of engine. Furthermore, the present studies on PHEV energy control strategy mainly include:control through some parameters such as velocity and torque, control along with fuel economy or emissions, as well as control through some variables such as the battery packs SOC. However, there are quite a few studies on PHEV energy optimization and control based on intelligent information processing. Due to the limitation of theory, it lacks of practical application. The accuracy of estimation of SOC based on battery voltage, current and resistance needs to be further improved because of more factors and more complex working conditions of vehicles.
     Because of Parallel hybrid electric vehicle (PHEV) taking on dynamic coupling and regenerative braking energy distribution, although the transmission of PHEV is the same as the traditional internal combustion engine vehicles, there are more complex working conditions and more difference in vibration and noise characteristics. It is very important to study the vibration and noise characteristics of PHEV transmission and to monitor the transmission operating using vibration fault diagnosis technology so as to enhance vehicle dynamic performance and improve comfort. There have been a large number of researches on mechanical fault diagnosis at home and abroad, whereas it lacks of in-depth research on PHEV vibration analysis and fault diagnosis.
     As analysis previously, based on the intelligent information processing theory and methods, there are two aspects completed in this paper:neural network and fuzzy logic are applied to PHEV energy management, wavelet transform and rough set theory are applied to the vibration fault diagnosis of PHEV transmission and its key components. The main research contents and innovations are as follows:
     1. The researches on the engine numerical modeling method. Based on CJY6470PHEV engine experiments, the engine model of universal characteristics is established using the neural network method. And the structure and parameters of the neural network model are optimal designed. Integrating neural network and grid interpolation, the data mining is developed for the engine model of universal characteristic. And using numerical method such as polynomial and spline functions, the optimum operating characteristics and its numerical relation with the electronic throttle of CJY6470PHEV engine are obtained. It is concluded that the engine characteristics optimal control can be achieved by adjusting the throttle accordingly.
     2. The researches on the design method and control strategy of the PHEV energy management system. Through the design of CJY6470PHEV energy management system, the optimal relationship between the throttle angle and the vehicle shifts is obtained, and the full hybrid control strategy of the energy distribution of the CJY6470PHEV is determined, also the mathematical model of the various constituent units is established. According to the analysis of the relationship among the vehicle power and torque, the engine and the drive motor's power and torque, and the battery packs SOC, a new method based on the dynamic energy equilibrium of electric motor drive system and engine drive system is originality proposed to estimate the battery packs SOC. The results show that the HEV energy management system has the capability of making the engine run at the optimal operating conditions, and guarantee the energy reasonable distribution of the electronic motor and engine according to the formulated strategy under the permission of battery SOC.
     3. Based on the basic theory of fuzzy logic and analysis of the human-machine interaction characteristics of HEV and its energy distribution strategy, the fuzzy logic energy management system of CJY6470PHEV is developed using the T-S (Takagi-Sugeno:T-S) fuzzy control model include the energy regenerative system and the energy management system in the process of normal driving. The T-S fuzzy model adapts the variable of the system state or the function of the input variables as a suffix of the if-then fuzzy rules, which can describe both the fuzzy controller and the dynamic model of controlled object, and to determine a linear function of the input and output, so as to simplify the model of control system. The results show that this system is appropriate to control the energy distribution between the engine and the motor, and enable motor working by a high efficiency in accordance with the manner determined.
     4. Vibration fault diagnosis method based on rough set theory is applied to PHEV transmission roller bearing. According to the analysis of the information loss caused by attribute reduction and the complementary redundant information, a new diagnosis method of complementary information and rough set theory-based is proposed. In this method, malfunction diagnosis is based on the multiple complementary reductions. So that in spite of the lack of some collecting information, malfunction diagnosis can be completed using other information. Consequently, this method is more suitable for engineering practice.
     5. Based on the basic theory of wavelet transform, the limitation of using wavelet transform to the roller bearing fault diagnosis is pointed out, namely it needs to calculate fault characteristic frequency accurately. And also the insensitivity of fault diagnosing using the common parameters is analyzed. A new diagnosis method is proposed for the energy feature extraction based on wavelet transform and for the rule acquisition based on set theory. The results showed that the fault diagnosis, based on wavelet transform and rough set theory, can be more appropriate in the engineering practice and have a higher accuracy.
引文
[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002
    [2]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势.公路交通科技,2000,17(1):71~74
    [3]卢世刚,刘莎.电动汽车用动力电池的主要发展方向.新材料产业,2005(4):49~54
    [4]王银辉,刘兴华,仇淘.混合动力电动汽车的研究.内燃机,2003(3):27~31
    [5]广濑久士,丹下昭二.电动车及混合动力车的现状与展望.汽车工程,2003,25(2):204~209
    [6]Antoni Szumanowski.混合电动车辆基础.陈清泉,孙逢春编译.北京:北京理工大学出版社,2001
    [7]曹秉刚.中国电动汽车技术新进展.西安交通大学学报,2007,41(1):114~118
    [8]邓元望,王耀南,陈洁平.混合动力驱动系统及其在CFA6470HEV中的应用.农业机械学报,2006,37(10):38~41
    [9]于秀敏,曹珊,李君等.混合动力汽车控制策略的研究现状及其发展趋势.机械工程学报,2006,42(11):10~16
    [10]房立存,秦世引.并联混合动力电动汽车最优控制及实例仿真.系统仿真学报,2007,19(1):110~113,133
    [11]胡红斐,黄向东,罗玉涛等.一种混联式HEV瞬时优化监控策略的研究.中国机械工程,2006,17(6):649~653
    [12]秦大同,颜静,杨阳等.HEV再生制动过程中CVT速比控制策略.重庆大学学报(自然科学版),2007,30(1):1~5
    [13]詹讯,秦大同,杨阳等.轻度混合动力汽车再生制动控制策略与仿真研究[J].中国机械工程,2006(3):30~35.
    [14]顾福勇,张代胜,席彦擘.离合器接合过程中的汽车传动系扭转振动分析.合肥工业大学学报(自然科学版),2006,29(7):809~813
    [15]严世榕.影响汽车振动特性的几个参数研究.机械强度,2006,28(2):22~25
    [16]王耀南.智能信息处理技术.北京:高等教育出版社,2003
    [17]王耀南.智能控制系统.长沙:湖南大学出版社,1996
    [18]史忠植.高级人工智能.北京:科学出版社,2006
    [19]张智星,孙春在,[日]水谷英二.神经-模糊和软计算.西安:西安交通大学出版社,2000
    [20]C Ludwig, S Leonhardt, M Ayoubi. Measurement and Monitoring of Pressure Curves in Diesel Engines. IEEE Transactions on Control Engineering,2003, 36(5):1796~1800
    [21]F Gu, P J Jacob, A D Ball. RBF Neural Network Model for Cylinder Pressure Reconstruction in Internal Combustion Engines. IEEE Transactions on Modeling and Signal Processing for Fault Diagnosis,2007,45(10):1~11
    [22]T W Long. Computing Engine Efficiencies by Neural Nets. IEEE Transactions on Components, Packing and Manufacturing Technology,2005,28(2):1202~ 1215
    [23]S P Stevens, P J Shayler, T H Ma. Experimental Data Processing Technique to map the performance of a spark ignition engine. Journal of Automobile Engineering,2007,17(4):297~306
    [24]N G De, R Scattolini, C Siviero. Modeling the Volumetric Efficiency of IC Engines:Parametric, Non-parametric and Neural Techniques. Control Engineering Practice,1996,4(10):1405~1415
    [25]S A Nelson, Z S Filipi, D N Assanis. Use of Neural Nets for Matching Compressors with Diesel Engines. American Society of Mechanical Engineers Internal Combustion Engine Division,1996,26(3):35~42
    [26]C M Atdinson, T W Long, E L Hanzenvack. A Neural Network-based Intelligent Performance and Emissions Prediction System for On-board Diagnostics & Engine Control. American Society of Mechanical Engineers Internal Combustion Engine Division,1998,43(5):39~51
    [27]马晓青,周经纬,王俊金等.基于BP神经网络的内燃机燃烧模型.大连理工大学学报,1995,35(6):879~883
    [28]何仁,周孔亢,吴志敏.应用人工神经网络预测内燃机基本性能.机械工程学报,1996,32(6):101~104
    [29]陈晓伟.内燃机台架性能试验自动测试软件开发:[湖南大学硕士学位论文].长沙:湖南大学机械与汽车工程学院,1996
    [30]曾利权,陈晓伟,习纲.用神经网络模拟内燃机万有特性.内燃机工程,1997,18(1):61~64
    [31]Chen Xiaowei, Zhu Meilin, Li Bing, et al. Applying Neural Networks to Process Performance Curves of Internal Combustion Engine. IEEE Transactions on Engine Control,1997,1(1):429~434
    [32]高峻.车用柴油机转矩和烟度的神经网络分析研究.华中科技大学学报,2001,29(11):98~100.
    [33]J J Hopfield, D W Tank. Neural Computation of Decisions in Optimiz-ation Problems. Biological Cybernetics,1995,52(3):141~152
    [34]K S Narendra, K D Parthasarathy. Gradient Methods for Optimization of Dynamical System Containing Neural Networks. IEEE Transactions on Neural Networks,2001,10(9):252~262
    [35]胡飞,靳蕃.用神经网络解决货物调运问题.神经网络理论及应用,1994,2:243~246
    [36]S. S. Rabgwala, D. A. Dornfeld. Learning and Optimization of Machining Operations Using Computing Abilities of Neural Networks. IEEE Transactions on Neural Networks.1989,19(2):299~314
    [37]M. P. Kennedy, L.O. Chua. Neural Networks for Nonlinear Programming. IEEE Transactions on Circuit and System,1988,75(5):554~562
    [38]S. W. Shao, Y. L. Murotsu. Structural Reliability Analysis using a Neural Network. JSME Int. J. Series A,1997,40(3):242~246
    [39]M. Papadrakakis. Structural Reliability Analysis of Elastic- plastic Structures Using Neural Networks and Monte Carlo Simulation. Computer Methods in Applied Mechanics and Engineering,1996,136(1):145~163
    [40]C. P. Matthews. Comparison of Neural Networks and Cluster Analysis Techniques for the Reliability of High-speed Machinery. Proceedings of SPIE-Int. Society for Optical Engineering,1995:191~199
    [41]毛政良,张圣坤.人工神经网络在结构可靠性中的应用.上海交通大学学报,1997,31(11):86~90
    [42]余建星,徐慧,胡云昌等.基于神经网络理论的船舶结构可靠性优化设计.中国造船,1996(1):59~67
    [43]黄文培,黄洪钟,王金诺.系统可靠性冗余最优分配问题的神经网络解法.机械设计,1997(6):4~7
    [44]C. S. Cheng, Y. T. Hsu, C. C. Wu. Fault Medeling and Reliability Evaluation using Nerual Networks. IEEE Transactions on Neural Networks,1995,1(2): 427~432
    [45]S. A. Khaparde, K. Bhattacharyya. Power Reliability Evaluation Using Fuzzy Logic and Neural Networks. Intelligent System for Electric Engineering & Communications,1996,4(4):197~206
    [46]J. T. Luxhoj, H. J. Shyur. Comparison of Proportional Hazards Medels and Neural Networks for Reliability Estimation. Journal of Intelligent Manufacturing,1997,8(3):227~234
    [47]G. Subbarayan. Reliability Simulations for Solder Joints Using Stochastic Finite Element and Artificial Neural Nets Models. Journal of Electric Packaging,1996, 118(3):148~156
    [48]陈晓伟.神经网络技术在发动机增压系统可靠性与优化设计中的应用研究:[华中理工大学博士学位论文].武汉:华中理工大学能源与动力工程学院,1999
    [49]徐凯.软计算在发动机可靠性工程中的应用方法研究:[华中理工大学博士学位论文].武汉:华中理工大学能源与动力工程学院,2000
    [50]I. Tokuta, A. Keiji. Future Engine Control. IEEE Transactions on Signal Processing,2007,41(1):85~92
    [51]Ulrich Lenz, Dierk Schroeder. Transient Air-Fuel Ratio Control Using Artificial Intelligence. IEEE Transactions on Signal Processing,2006,12(8):97~102
    [52]G. V. Puskorius, L. A. Feldkamp. Automotive Engine Idle Speed Control with Recurrent Neural Networks. IEEE Transactions on Control Engineering,1993: 9(2):311~316
    [53]M. Michael, S. James, C. Dan. Adaptive Neural Network Control Method for Automotive Fuel-injection System.IEEE Transactions on Intelligence Control, 1993,1:104~109
    [54]M. Won, S. B. Choi, J. K. Hecrick. Air to Fuel Ratio Control of Spark Ignition Engines using Gaussian Network Sliding Control. IEEE Transactions on Control System.1998,6(5):678~687
    [55]A. Linde. Using Neural Networks for Air-to-fuel Ratio Estimation in Two-stroke Combustion Engines. Doktorsavhandlingar vid Chalmers Tekniska Hogskola,1997,1:101~106
    [56]U. Lenz, D. Schroeder. Transient Air-fuel Ratio Control using Artificial Intelligence. Electronic Engine Control,1997,12(36):111~122
    [57]J. R. Asik. Transient A/F Estimation and Control using a Neural Network. Electronic Engine Control,1997,12(36):123~130
    [58]R. Mueller. Engine Control using Neural Networks:a New Method in Engine Management Systems. Journal of Vehicle Design,1997,32(5):423~430
    [59]S. Marita. Optimization Control for Combustion Parameters of Petrol Engines using Neural Networks-in the Case of on-line Control. Journal of Vehicle Design,1993,14(5):552~562
    [60]顾宏中,邬静川.柴油机增压及其优化控制.上海:上海交通大学出版社,1995
    [61]梁桂森,顾宏中,邬静川.人工神经网络技术在柴油机排放控制中应用.内燃机工程,1998,19(2):71~75
    [62]杨继红.柴油机电控喷油系统模糊神经网络控制研究:[华中科技大学硕士学位论文].武汉:华中科技大学机械科学与工程学院,1999
    [63]R. J. Howlett. Condition Monitoring and Fault Diagnosis in a Domestic Car Engine Using a Neural Network. IEEE Transactions on Signal Processing,2004, 16(5):78~87
    [64]J. H. Thomas, B. Dubuisson. Diagnostic Method Using Wavelets Networks Application to Engine Knock Detection. IEEE Transactions on Signal Processing,1996,1(1):244~249
    [65]S. Leonhardt, H. Gao, V. Kecman. Real Time Supervision of Diesel Engine Injection with RBF-based Neural Networks. Proceedings of the American Control Conference,1995,1(3):2128~2132
    [66]D. W. Dong, J. J. Hopfield, K. P. Unnikrishnan. Neural Networks for Engine Fault Diagnostics. IEEE Transactions on Neural Networks for Singal Processing,1997,1(1):636~644
    [67]W. B. Ribbens, S. Bieser. Advanced Signal Processing for Misfire Detection in Automotive Engines. IEEE Transactions on Signal Processing on Acoustics, Speech, and Signal Processing,1995,1(5):2963~2966
    [68]孙乔,龙维薇,潘旭峰.神经网络技术在柴油机油料分析中的应用.小型内燃机,1996,25(2):1~4
    [69]郝强,朱梅林,唐俊.基于神经网络分析的缸套活塞组密封性判断.内燃机学报,1996,17(1):24~28
    [70]刘世元,杜润生,杨叔子.利用神经网络诊断内燃机失火故障的研究.内燃机学报,1998,17(1):67~70
    [71]L. A. Zadeh. Fuzzy Sets. Information and Control,1995,8:338~353
    [72]L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on System, Man and Cybernetics,1973, 3:28~44
    [73]L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,1978,1:3~18
    [74]L. A. Zadeh. A theory of approximate reasoning. Elsevier Machine Intelligence, 1979,9:149~154
    [75]L. A. Zadeh. Fuzzy logic-computing with words. IEEE Transactions on Fuzzy Systems,1996,4:103~111
    [76]L. A. Zadeh. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems,1997, 90:111~127
    [77]汪培庄.模糊集合论及其应用.上海:上海科学技术出版社,1983
    [78]王柯.柴油机产品质量水平的模糊评估法.武汉工学院学报,1990,12(2):75~84
    [79]郝强,朱梅林.柴油机涡轮增压系统的比较与优选.车用发动机,1993,1(4):37~42
    [80]L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Science,1975,8:199~249
    [81]Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Journal of Man-machine Studies,1975,7:1~13
    [82]E. Sanchez. Medical Diagnosis and Composite Fuzzy Relations. Advance in Fuzzy Sets and Application,1999,1(1):10~15
    [83]吴秋峰.模糊逻辑在柴油机故障诊断中应用的试验.信息与控制,1981,3:53~56
    [84]R. E. Bellman, L.A.Zadeh. Decision-Making in a Fuzzy Environment. Manage Science,1990,17:141~164
    [85]王凡.柴油机曲轴主轴承模糊随机优化设计研究.中国造船,1994,126(4):72~81
    [86]郝强,朱梅林.发动机零件的多工况多目标模糊优化设计.车用发动机,1995,4:30~34
    [87]A. Kaufmann, M. M. Gupta. Fuzzy Mathematical Models in Engineering and Management Science. Fuzzy Sets and System,1988,9(1):20~26
    [88]T. Onisawa. Fuzzy Theory in Reliability Analysis. Fuzzy Sets and System,1989, 29(2):250~261
    [89]李廷杰.模糊可靠性的概念和方法探讨.系统工程理论与实践,1989,3:26~31
    [90]李兵.发动机涡轮增压系统模糊可靠性分析方法研究:[华中理工大学博士学位论文].武汉:华中理工大学能源与动力工程学院,1999
    [91]Newland D. E. An introduction to random vibration, spectral and wavelet analysis. IEEE Transactions on Signal Processing,1993,1(1):34~39
    [92]Mallat S. G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transaction on Pattern Recognition and Machine Intelligence,1989,11(1):674~693
    [93]Burrus C. S., Gopinath R. A., Guo H. T.. Introduction to wavelets and wavelet transforms. IEEE Transactions on Signal Processing,1998,22(3):35~41
    [94]Nikolaou N. G., Antoniadis I. A.. Rolling element bearing fault diagnosis using waveet packets. NDT&E Internationa,2002,35:197~205
    [95]He Zhengjia, Zhao Jiyuan, He Yibin, et al. Wavelet transform and multiresolution signal decomposition for machinery monitoring and diagnosis. In:Processdings of IEEE International Conference on Industrial Technology. NanJing,1996,724~727
    [96]Stazewski W. J., Tomlinson G. R.. Application of the wavelet transform to fault detection in a spur gear. Mechanical Systems and Signal Processing,1994, 8(3):289~307
    [97]Geng Z., Qu L.. Vibrational diagnosis of machine parts using the wavelet packet technique. The British Journal of NDT,1994,36:11~15
    [98]Staszewski W. J.. Wavelet based compression and feature selection for vibration analysis. Journal of Sound and Vibration,1998,211:736~760
    [99]Li G. J., Ma J.. Wavelet decomposition of vibrations for detection of bearing-localized defect. NDT&E International,1997,30:142~149
    [100]Gary G. Yen, Lin Kuo. Chung. Conditional health monitoring using vibration signatures. IEEE Transactions on Decision & Control,1999,1:4493~4498
    [101]Mori K., Kasashima N., Yonhioka T. et al. Prediction of spalling on a ball bearing by applying the discrete wavelet transform to bibration signals. Wear, 1996,195:163~167
    [102]张中民,张英堂,张培林.基于小波分析的变速箱滚动轴承故障诊断方法的研究.机械科学与技术,1999,18(4):121~124
    [103]杨建国,夏松波,刘永光等.小波降噪在轴心轨迹特征提取中的应用.哈尔滨工业大学学报,1999,31(5):52~54
    [104]傅勤毅,章易程,应力军等.滚动轴承故障特征的小波提取方法.机械工程学报,2001,37(2):30~33
    [105]郑海波,李志远,陈心昭.基于连续小波变换的齿轮故障诊断方法研究.机械工程学报,2002,38(3):69~73
    [106]彭志科,何永勇,褚福磊.小波尺度谱在振动信号分析中的应用研究.机械工程学报,2002,38(3):122~126
    [107]Wang W. J., McFadden P. D.. Application of orthogonal wavelets to early gear damage detection. Mechanical Systems and Signal Processing,1995,9:497~ 507
    [108]申弢,黄树红,韩守木等.旋转机械轴心轨迹的复数小波分析.振动、测试与诊断.2000,20(4):264~268
    [109]Lin S. T., McFadden P. D.. Gear vibration analysis by B-spline wavelet-based linear transform. Mechanical Systems and Signal Processing,1997,11(4): 603~609
    [110]Dalpiaz G, Rivobla A, Rubini R. Effectiveness and sensivity of vibration processing techniques for local fault detection in gears. Mechanical Systems and Signal Processing,2001,14(3):387~412
    [111]张中民,李友荣,杨叔子.基于小波系数包络谱的滚动轴承故障诊断.振动工程学报,1998,11(1):65~69
    [112]Luo G. Y., Osypiv D., Irle M.. Real-time condition monitoring significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement. Journal of Sound and Vibration,2000,236(3): 413~430
    [113]Lou Xinshen, Kenneth A.. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing,2004,18: 1077-1095
    [114]PaYa B A, Esat I I. Artificial neural network based fault diagnostics of rotating machinery using wavelet transforming as preprocessor. Mechanical Systems and Signal Processing,1997,11(5):751~765
    [115]Chen D.. Classification of wavelet map patterrns using multi-layer neural networks for gear fault detection. Mechanical Systems and Signal Processing, 2002,16(4):695~704
    [116]Brenner M. J.. Non-stationary dynamics data analysis with wavelet-SVD filtering. Mechanical Systems and Signal Processing,2003,17(4):765~786
    [117]何永勇,褚福磊,钟秉林.进化小波网络及其在设备预测中的应用.机械工程学报,2002,38(8):80~84
    [118]訾艳阳,何正嘉,张周锁.小波分形技术及其在非平衡故障诊断中的应用.西安交通大学学报,2000,34(9):82~87
    [119]赵纪元,何正嘉,孟庆丰等.基于小波包特征提取的模糊诊断网络建立及应用.振动与冲击,1997,16(3):30~34
    [120]吴勉,邵惠.小波-分形-ARTZ神经网络在汽车发动机故障识别中的应用.机械设计与制造,2002(6):6~8
    [121]马建仓,罗磊,吴启彬.小波-人工神经网络信息融合故障诊断方法.中国机械工程,1997,8(2):38~40
    [122]彭志科,何永勇,卢青等.小波多重分形及其在振动信号分析中的应用研究.机械工程学报,2002,38(8):59~63
    [123]陈涛,屈梁生.多分辨小波网络的理论及应用.中国机械工程.1997,8(2):57~59
    [124]刘贵立,张国英.基于小波包的遗传神经网络故障诊断方法研究.机械工程学报,2000,36(9):110~112
    [125]彭志科,何永勇,卢青等.小波局部极大模方法在轴心轨迹辨识中的应用研究.机械工程学报,2002,38(7):6~10
    [126]杨占春,胡子正,、孙华.基于小波变换和神经网络的汽车安全部件故障识别.汽车技术,2001(2):34~37
    [127]李力,屈梁生.Haar小波变换在变速器齿轮故障诊断中的应用.汽车工程,2003,25(5):510~513
    [128]杨占春,胡子正,孙华.基于ITS的汽车安全行驶状况在线监测系统的研究.公路交通科技,2001,18(2):56~60
    [129]杨占春,胡子正,孙华.基于车辆运行参数的汽车安全部件故障诊断.中国机械工程,2002,13(20):1791~1794
    [130]赵吉文,冯志华,孔凡让.基于混沌理论的设备状态监测应用研究.振动工程学报,2004,17(1):78~81
    [131]庞茂,周晓军,胡宏伟等.基于解析小波变换的奇异性检测和特征提取.浙江大学学报(工学版),2006,40(11):1994~1997
    [132]吴勉,邵惠鹤.基于联合时频分析的混合神经系统在信号分类与模式识别中的应用.控制理论与应用,2001,18(8):69~74
    [133]朱福根.基于免疫机理的汽车故障检测技术研究.传感技术学报,2006,19(3):645~647,651
    [134]杨文平,陈国定,石博强.基于小波理论的复杂机械振动信号降噪分析.北京科技大学学报,2002,24(4):455~457
    [135]张梅军,何世,葛强盛.伪魏格纳分布和连续小波变换在变速箱故障诊断中的应用.解放军理工大学学报,2001,2(1):77~81
    [136]羊拯民,朱忠奎.小波包分解与神经网络相结合的变速箱齿轮故障识别.农业机械学报,2001,32(5):78~81
    [137]郑海波,陈心昭,李志远等.小波神经网络故障诊断系统的设计与应用.农业机械学报,2002,33(1):73~76
    [138]李舜酩.谐波窗方法及其在裂纹故障识别中的应用.振动工程学报,2005, 18(2):252~256
    [139]Z.Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Warsaw: Nowowiejeka,1990
    [140]王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法.中国电机工程学报,2006,26(8):137~141
    [141]赵冬梅,韩月,高曙.电网故障诊断的决策表约简新算法.电力系统自动化,2004,28(4):63~66
    [142]倪远平,周建华,李彬华等.基于粗糙集理论的电力变压器故障诊断方法研究.控制与决策,2004,19(8):943~946
    [143]李雄,李胜利,徐宗昌.基于粗糙集理论的状态监测与故障诊断.仪器仪表学报,2005,26(8):781~783
    [144]李如强,陈进,伍星.基于模糊C均值聚类和粗糙集理论的旋转机械故障诊断.信息与控制,2004,33(3):355~360
    [145]曾黄麟.基于粗集方法的智能专家系统.中国工程科学,2001,3(2):47~51
    [146]李如强,陈进,伍星.一种基于粗糙集和模式识别的旋转机械故障诊断方法.机械科学与技术,2004,23(11):1308~1312
    [147]孙海军,蒋东翔,钱立军.基于粗糙集理论的旋转机械故障诊断方法.动力工程,2004,24(1):73~77
    [148]韩祯祥,张琦,文福拴.粗糙集理论及其应用综述.控制理论与应用,1999,16(2):153~157
    [149]冯志,宋希庚,薛冬新.基于广义粗糙集理论的旋转机械故障诊断.振动与冲击,2004,23(1):47~52
    [150]黄文淘,赵学增,王伟杰等.汽轮发动机组振动故障诊断的粗糙集模型.电力系统自动化,2004,28(15):80~84,103
    [151]王庆东,陈建.不完备信息系统的粗糙集分解方法.计算机工程,2007,33(24):41~43
    [152]李凯,赵克,许威.概率粗糙集模型的机械故障诊断研究.机械科学与技术,2005,24(12):1437~1440
    [153]杨苹,刘穗生,张昊.火电厂大型设备故障诊断的数据挖掘方法.控制理论与应用,2004,21(6):927~931
    [154]郭小荟,马小平.基于粗糙集的故障诊断特征提取.计算机工程与应用,2007,43(1):221~224
    [155]徐小力,温后珍.基于粗糙集的旋转机械故障诊断方法研究-使用明析矩阵的属性值约简新方法.计算机工程与应用,2006(18):213~214
    [156]喻道远,汪文锋.基于粗糙集理论的装载机故障诊断研究.中国机械工程, 2006,17(16):1672~1674
    [157]朱张青,周川,胡维礼.基于粗集理论的一种混合智能故障诊断新方法.控制与决策,2006,21(2):233~235,240
    [158]郝丽娜,徐心和.粗糙集理论在智能故障诊断中的应用.中国机械工程,2002,13(21):1856~1858
    [159]文振华,左洪福.基于粗糙集—集成神经网络的航空发动机磨损故障诊断方法.中国机械工程,2007,21(18):2580~2584
    [160]李增芳,何勇.基于粗糙集与BP神经网络的发动机故障诊断模型.农业机械学报,2005,36(8):118~121
    [161]李如强,陈进,伍星.基于知识的模糊神经网络的旋转机械故障诊断.应用数学和力学,2006,27(1):89~97
    [162]周瑞,杨建国.基于粗糙集与支持向量机的发动机故障诊断研究.内燃机学报,2006,24(4):379~383
    [163]李千目,赵学龙,游静等.基于粗糙集支持向量机的网络故障诊断系统.计算机工程与应用,2004,29:66~68
    [164]郑小霞,钱锋.基于粗糙决策模型和蚁群算法的故障诊断.系统工程理论与实践,2007(3):140~144
    [165]王妍妍,王艳宁,王敏.基于单变量决策树的网络故障诊断方法.计算机工程与设计,2007,28(22):5414~5416
    [166]吴晓兵.基于灰色粗集模型的汽车变速箱故障诊断方法.北京理工大学学报,2000,20(5):576~580
    [167]彭强,孙宇.结构树和粗糙集相结合的车辆故障诊断系统.汽车工程,2004,26(4):481~484
    [168]白士红,李晓雷.基于粗集理论故障特征值提取模糊识别变速箱故障方法的研究.机械设计与制造,2003(4):4~5
    [169]郝丽娜,徐心和.基于粗糙集理论的规则修正方法.控制与决策,2002,17(5):614~616,620
    [170]肖健华,吴今培,樊可清.粗糙主成分分析在齿轮故障特征提取中的应用.振动工程学报,2003,16(2):166~170
    [171]曹龙汉,曹长修.基于粗糙集理论的柴油机神经网络故障诊断研究.内燃机学报,2002,20(4):357~361
    [172]张邦礼,孙颖楷,曹长修.基于粗糙集理论的内燃机气阀故障诊断研究.内燃机学报,2002,20(2):153~156
    [173]冯志鹏,宋希庚,薛冬新.基于粗糙集与神经网络集成的内燃机故障诊断.内燃机学报,2003,21(2):75~80
    [174]宋立军,胡政,杨拥民等.基于证据理论与粗糙集集成推理策略的内燃机故障诊断.内燃机学报,2007,25(1):90~95
    [175]吴义虎,禹敏,张利军等.基于神经网络的车用汽油机稳态排放特性建模研究.湖南大学学报(自然科学版),2002,29(1):67~73
    [176]Chen Xiaowei, Zhu Meilin, Li Bin. Applying Neural Networks to Process Performance Curves of Internal Combustion Engine. IEEE Transactions on Neural Network,1997,1:429~434
    [177]Deng Yuanwang, Zhu Meilin, Xiang Dong, et al. An Analysis for Effect of Cetane Number on Exhaust Emissions from Engine with the Neural Network. Fuel,2002,81(15):1963~1970
    [178]刘永长.内燃机原理.武汉:华中理工大学出版社,1997
    [179]刘峥,王建昕.汽车发动机原理教程.北京:清华大学出版社,2001
    [180]《汽车工程手册》编委会.汽车工程手册·设计篇.北京:人民交通出版社,2001
    [181]Francesco Gagliardi, Antonio Piccolo, Alfredo Vaccardo. A Fuzzy Based Control Unit for the Optimal Power Flow Management in Parallel Hybrid Electric Vehicles. EVS19,2002,1(1):876~887
    [182]Hyeoun Dong Lee, Seung Ki Sul. Fuzzy-Logic-Based Torque Control Strategy for Parallel-Type Hybrid Electric Vehicle. IEEE Transactions on Industrial Electronics,1998,45(4):625~632
    [183]Lucio Ippolito, Antonio Piccolo, Pierluigi Siano. Fuzzy Clustering Applied to Power Flow Management for Parallel Hybrid Electric Vehicles. EVS19,2002: 2(2):461~473
    [184]V. Galdi, L. Ippolito, A. Piccolo. Multiobjective Optimization for Fuel Economy and Emissions of HEV Using the Goal-Attainment Method. EVS18, 2001,1(1):200~210
    [185]《汽车工程手册》编委会.汽车工程手册·基础篇.北京:人民交通出版社,2001
    [186]王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998
    [187]丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,1998
    [188]闻新,周露,王丹力等.MATLAB神经网络应用设计.北京:科学出版社,2000
    [189]邓建中,葛仁杰,程正兴.计算方法.西安:西安交通大学出版社,1994
    [190]邓元望,王耀南,陈洁平.基于神经网络的混合电动汽车发动机特性研究. 湖南大学学报,2005,32(5):61~65
    [191]楼天顺,陈生潭,雷虎民.MATLAT程序设计语言.西安:西安电子科技大学出版社,2001
    [192]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解.北京:清华大学出版社,2004
    [193]苏金明,阮沈勇.MATLAB实用指南(下册).北京:电子工业出版社,2002
    [194]邓元望,王耀南.混合动力电动汽车分级控制技术研究.变频器世界,2004(12):33~36
    [195]Paul Bowles, Huei Peng, Xianjie Zhang. Energy Management in a Parallel Hybrid Electric Vehicle with a Continuously Variable Transmission. Proceedings of the American Control Conference,2000,1(3):55~59
    [196]Anthony M., Phillips J.. Functional Decomposition in a Vehicle Control System. Proceedings of the American Control Conference,2002,2(1):3713~3718
    [197]Rongjun Zhang, Yaobin Chen. Control of Hybrid Dynamical System for Electric Vehicles. In:Proceedings of the American Control Conference on Control System. Washington,2001,2884~2889
    [198]S. Delprat, T. M. Guerra, J. Rimaux. Optimal control of a parallel powertrain: From global optimization to real time control strategy. EVS18,2001,1(1):31~ 43
    [199]Marian B., Gorzalczany M.. On some idea of a neuro-fuzzy controller. Information Sciences,1999,1:69~87
    [200]A. Affanni, A. Bellini, C. Concari. EV Battery State of Charge:Neural network based estimation. Journal of Dynamic Systems, Measurement, and Control, 2003,2:684~688
    [201]Soonil Jeon, Sungtae Jo, Yeongil Park, et al. Multi-mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition. Journal of Dynamic Systems, Measurement, and Control,2002,124:141~149
    [202]V. Galdi, L.Ippolito, A. Piccolo, et al. A genetic-based methodology for hybrid electric vehicles sizing. Soft Computing,2001,6:451~457
    [203]Aihua Wang, Yaobin Chen, Rongjun Zhang. A Novel Design of Energy Management System for Hybrid Electric Vehicles Using Evolutionary Computation. EVS18,2001,2:1~12
    [204]Bernd M., Baumann H., Gregory W., et al. Mechatronic Design and Control of Hybrid Electric Vehicles. IEEE/ASME Transactions on Mechatronics,2000, 5(1):58~72
    [205]Deng Yuanwang, Wang Yaonan, Chen Jieping. A study on the distributed energy of the CFA6470 hybrid electric vehicle based on the methods of the MATLAB. Proceedings of the Eighth International Conference on Electrical Machines and System,2005,1:853~856
    [206]Edward Lyshevski. Diesel-Electric Drivetrains for Hybrid Electric Vehicles: New Challenging Problems in Multivariable Analysis and Control. IEEE Transactions on Control Applications,1999,1:840~845
    [207]诸静.模糊控制原理与应用.北京:机械工业出版社,2003
    [208]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002
    [209]韩峻峰,李玉惠.模糊控制技术.重庆:重庆大学出版社,2003
    [210]张建民,王涛,王忠礼.智能控制原理及应用.北京:冶金工业出版社,2003
    [211]李少远,王景成.智能控制.北京:机械工业出版社,2005
    [212]闻新,周露,李东江等.MATLAB模糊逻辑工具箱的分析与应用.北京:科学出版社,2001
    [213]楼顺天,胡昌华,张伟.基于MATLAB的系统分析与设计—模糊系统.西安:西安电子科技大学出版社,2001
    [214]Niels J. S., Mutasim A. S., Naim A. K.. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Engineering Practice, 2003,11:171~177
    [215]Naim A. K., Mutasim A.S., Niels J. S.. Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic. Mathematics and Computers in Simulation,2004,66:155~172
    [216]Gino Paganelli, Gabriele Ercole, Avra Brahma, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review,2001,22:511~518
    [217]Shengchung Tzeng, K. David, Chiachang Chen. Optimization of the dual energy-integration mechanism in a parallel-type hybrid vehicle. Applied Energy, 2005,80:225~245
    [218]Chanchiao Lin, Huei Peng, Jessy W., et al. Power Management Strategy for a Parallel Hybrid Electric Truck. IEEE Transactions on control systems technology,2003,11(6):839~849
    [219]NSK中国技术中心.汽车变速器的性能与轴承类型.轴承,2007,1:46~49
    [220]黄金陵.汽车车身设计.北京:机械工业出版社,2007
    [221]程军圣.基于Hilbert-Huang变换的旋转机械故障诊断方法研究:[湖南大学博士学位论文].长沙:湖南大学机械与汽车工程学院,2005
    [222]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用.北京:科学出版社,1996
    [223]李世玲,李治,李合生.基于小波包能量特征的滚动轴承故障监测方法.系统仿真学报,2003,15(1):76~80
    [223]曾黄麟.粗集理论及其应用.重庆:重庆大学出版社,1996
    [224]张文修,吴伟志,梁吉业等.粗糙集理论与方法.北京:科学出版社,2001
    [225]曾黄麟.粗集理论及其应用专题研究(1—4).四川轻化工学院学报,1996,8:1~4
    [226]Manish Sarkar. Rough-fuzzy function in classification. Fuzzy Sets and syetems, 2002,132:353~369
    [227]Qiang Shen, Alexios Chouchoulas. A rough-fuzzy approach for generating classification rules. Pattern Reconition,2002,35:2425~2438
    [228]Hona Jagielska, Chris Matthews, Tim Whitfort. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems. Neurocomputing,1999,24:37~54
    [229]W. Swiniarski, A. Skowron. Rough set methods in feature selection and recognition. Pattern Recongnition,2003,24:833~849
    [230]Li Jing, Qu Liangsheng. Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault diagnosis. Journal of Sound and Vibration, 2000,234(1):135~148
    [231]贾民平,杨建文.滚动轴承振动的周期平稳性分析及故障诊断.机械工程学报,2007,43(1):145~151
    [232]史东锋,鲍明,屈梁生.小波包络分析在滚动轴承诊断中的应用.中国机械工程,2000,11(12):1382~1385
    [233]程军圣,于德介,邓乾望等.连续小波变换在滚动轴承故障诊断中的应用.中国机械工程,2003,14(23):2037~2040
    [234]张军,陆森林,和卫星等.基于小波包能量法的滚动轴承故障诊断.农业机械学报,2007,38(10):178~181
    [235]Shen Lixiang, Francis E.H., Qu Liangsheng, et al. Fault Diagnosis Using Rough Sets Theory. Computers in Industry,2000,43:61~72
    [236]Z. Pawlak. Rough Sets:Theoretical Aspects of Reasoning about Data. Amsterdam:Kluwer Academic Publishers,1991
    [237]R. Slowiski. Intelligent Decision Support:Handbook of Application of Rough Sets Theory. Netherlands:Kluwer Academic Publishers,1992
    [238]R. Slowinski, J. Stefanowski. Rough-set Reasoning About Uncertain Data. Fundamenta Informaticae,1996,27(2):229~243
    [239]张邦基,于德介,杨胜.基于小波变换与粗集理论的滚动轴承故障诊断.中国机械工程,2008,19(15):1793~1795,1831
    [240]梁学章,何甲兴,王新民等.小波分析.北京:国防工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700