用户名: 密码: 验证码:
大型地下洞室群地震响应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部大开发战略的实施,一大批大型水利水电工程已经或即将在我国西部营建。这些大型水利水电工程大部分处在西部地质构造复杂的高山峡谷地区,多数有大型或超大型地下洞室群作为主要水工建筑物。这些大型地下洞室群所处的区域活断层多、规模大、活动强度高,大部分地区地震基本烈度在Ⅶ度或Ⅶ度以上,局部地区强震重复发震周期短。调查表明,在强震作用下地下洞室群等地下结构也常遭破,因此,研究大型地下洞室群在地震荷载作用下的地震响应特征和动力稳定性,是工程设计中亟待解决的问题。本文以大渡河大岗山水电站为依托工程,根据三角级数叠加法合成了基岩场地非平稳人工地震动,结合动态力学特性试验,利用有限差分程序FLAC3D,在研究了大岗山水电站基岩场地地震动传播特性的基础上,对大岗山水电站大型地下洞室群地震响应的数值模型、地震动输入、响应特征、影响因素、损伤区演化规律和分布特征等进行了系统研究,主要研究工作与特点表现在以下几个方面:
     (1)根据大岗山水电站区域地震地质和近场地震地质情况,确定了对坝址有重大影响的断裂带,划分了潜在震源区,利用烈度衰减关系,计算得到了不同超越概率水平下的坝址场地峰值加速度。选取和大岗山地质条件相近的攀枝花地震记录为样本,研究了其频谱特性,以其地震动卓越频率为基础,利用三角级数叠加法合成了基岩场地非平稳人工地震动。经过基线校正和高频滤波,最终得到了用于数值分析的地震波。
     (2)对研究区的花岗岩试样进行不同应变率和围压下静态和动态压缩试验,系统分析动弹性模量、泊松比和强度随应变率和围压的变化规律。研究表明,花岗岩的弹性模量随应变速率的增加而增加,并且其增加幅度随围压的提高有减小的趋势。花岗岩的抗压强度随应变速率的增加而增加。编制了弹性模量随应变速率变化数值实现程序。基于大岗山花岗岩静力三轴测试全过程应力-应变曲线和损伤力学分析,发现脆性岩石在不同围压下均以侧向损伤为主,达到临界破坏时,损伤值稳定在0.7-0.8左右,说明了裂纹应变在侧向的发展是导致脆性岩石损伤破坏的主要原因。根据损伤理论建立了岩石动力损伤与静力损伤之间的关系,考虑动态强度与初始弹性模量的率相关性,进而建立了基于静力损伤本构理论的岩石动力损伤本构方程。
     (3)实际地震记录表明,地震动加速度具有深度衰减效应。本文基于动力有限差分方法研究了高山峡谷地形地震动的传播特性。结果表明,输入地震动向地表传播过程中具有加速度放大作用,换言之,沿地表向地下方向具有衰减效应;峰值加速度对场地深度衰减没有影响;模型底部衰减系数随阻尼比和坡比增加而增大;当地震波的卓越频率接近计算模型自振频率时,场地的衰减程度增大;和实测结果相比,水平峰值加速度随场地深度的衰减趋势大体是相似的;利用FLAC3D软件模拟场地的地震动传播特性是可行的。
     (4)充分研究了大岗山水电站近场区的地质条件,概化出了大型地下洞室群的数值模型,利用有限差分程序FLAC3D研究了洞室群的地震响应特征,总结了地震作用下围岩加速度、速度、位移和应力的传播特性。研究表明,监测点的加速度时程、速度时程、相对位移时程和应力时程与输入地震动加速度时程包络线形状相似,存在着滞后效应。如果不考虑深度衰减效应,各种工况下主厂房顶拱和底板的水平相对位移偏大39%。
     (5)系统研究了地应力场、弹性模量、阻尼比、地震动峰值加速度和频谱特性对主厂房拱顶和底板最大水平相对位移的影响。研究表明,地应力和弹性模量对该位移影响非常小;阻尼比有较大影响,随着阻尼比的增大,该位移逐渐降低;峰值加速度有显著影响,随着峰值加速度的增大,该位移呈线性增加;不同频谱特性地震波作用下最大相对位移差别很大,考虑深度衰减效应后,差别有所降低,但仍很显著。初步分析表明,当地震波的卓越频率接近地下洞室群模型自振频率时,主厂房拱顶和底板最大水平相对位移会增大,而当地震波的卓越频率偏离地下洞室群模型自振频率时,该位移则减小。
     (6)不同频谱地震动作用下,随着输入加速度强度由弱变强,损伤区主要从洞室边墙中部逐步向纵深扩展,在输入地震动强度达到最大值时,损伤区面积也很快达到最大,其后一直保持不变。如果不考虑深度衰减效应,围岩损伤区面积会偏大约32%。初步分析表明,当地震波的卓越频率接近地下洞室群模型自振频率时,围岩损伤区最大面积会增大,而当地震波的卓越频率偏离地下洞室群模型自振频率时,围岩损伤区最大面积则减小。
Seismic investigation shows that the underground caverns always suffer some damage under earthquake. The dynamic mechanical tests of granite samples from Dagangshan hydropower station are conducted, and then the seismic propagation in the rock field is simulated by the software FALC3D. Considering the depth attenuation effect, the underground caverns of Dagangshan hydropower station is modeled and simulated to explore its seismic response and damage evolution. The main achievements are summarized as follows:
     (1)The important fault zones and potential seismic source zones are determined due to seismic geological condition of Dagangshan hydropower station region, and then the peak accelerations under various exceedance probabilities are obtained according to the intensity attenuation relation. Based on the dominant frequency of Panzhihua seismic records, some nonstationary artificial seismic motions are simulated by trigonometric series superposition method.
     (2)The static and dynamic compression tests of granite samples are conducted to find some changes of dynamic elastic modulus and Passion rate with strain rate and ambient pressure. The test results show that the dynamic elastic modulus of granite sample increases with strain rate, and the compression strength also increases with strain rate. Then the relation between dynamic elastic modulus and strain rate within some given domain are programmed. The full stress-strain of Dagangshan granite under static triaxis test and the damage mechanics analysis show that the brittle rock mainly suffers lateral damage, with damage value 0.7-0.8 near the critical fail. Assuming the linear relation between dynamic damage and static damage, the dynamic damage constitutive function is established.
     (3)The seismic propagation of mountain& gorge terrain is simulated by FLAC3D. Both the actual seismic records and the numerical simulation shows that the seismic accerlation increases as the earthquake propagates from rock field bottom to top. In other words, the seismic records demonstrate depth attenuation downward and and slope amplification. The attenuation index of model bottom decreases gradually with damping rate and slope ratio; the peak acceleration has no influence on the depth attenuation; the depth attenuation will get intense if the dominant frequency of input seismic motion approaches the natural vibration frequency of the field model. The simulation results basically fit actual seismic records, and it is feasible for FLAC3D to simulate the seismic propagation of rock field.
     (4) The underground caverns of Dagangshan hydropower station are numerically modeled according to geological conditions, and then the seismic response of the caverns is simulated by FLAC3D. The simulation results show that the acceleration time history, velocity time history, relative displacement time history and stress time history of the monitoring points are similar with and leg behind slightly that of the input seismic motion. The relative horizontal displacement will increase by about 32% without considering the depth attenuation effect.
     (5)The simulation results show that geostress field and elastic modulus have little influence on the maximum horizontal relative displacement between vault and floor of underground caverns; this maximum displacement increases with damping rate; the peak acceleration has great influence on this maximum displacement, the two indicating a good linear increase relation; seismic motions with different frequency spectra, even considering the depth attenuation, have notable influence on this maximum displacement. The maximum horizontal relative displacement between vault and floor of underground caverns will increase if the dominant frequency of input seismic motion approaches the natural vibration frequency of underground caverns, and vice versa.
     (6)The damage zone extends deeply from the middle of the cavern wall. The damage zone gets maximum area soon after the input seismic motion reaches the peak acceleration, and then maintain stable subsequently. The maximum damage area will increase by about 32% without considering the depth attenuation effect.The maximum damage area will increase if the dominant frequency of input seismic motion approaches the natural vibration frequency of underground caverns, and vice versa.
引文
[1]钱钢粮,严秉忠.中国水力资源及主要特大型水电站规划设想[J].西北水电,2008(3):4-8
    [2]国家地震局震害防御司.中国历史强震目录[M].地震出版社,1995
    [3]G. Lanzano, E. Bilotta, G. Russo. Tunnels under seismic loading:a review of damage case histories and protection methods[C]. Mitigation of the earthquake effects in towns and in industrial regional districts,2008
    [4]潘昌实.隧道地震灾害综述[J].隧道及地下工程,1990,11(2):1-9.
    [5]潘昌实.隧道及地下结构物抗震问题的研究概述[J].世界隧道,1996,32(5):7-16.
    [6]杨春田.日本阪神地震地铁工程的震害分析[J].工程抗震,1996,6(2):40-42.
    [7]W.L. Wang, T.T. Wang, J.J. Su. Assessment of damage in mountain tunnels due to the Taiwan Chii-Chi earthquake [J]. Tunnelling and underground space technology.2001(16):133-150.
    [8]左双英,肖明.映秀湾水电站大型地下洞室群三维非线性损伤地震响应数值分析[J].水力发电学报,2009,28(5):127-133.
    [9]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2009,16(6):742-750.
    [10]Wang Zhengzheng, Gaobo. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Science in China Series E:Technogilcal Science, 2009,52(2):546-558.
    [11]Youssef M.A. Hashash, Jeffrey J. Hook, Birger Schmidt, et al. Seismic design and analysis of underground structures [J]. Tunnelling and underground space technology,2001,16 (4):247-293
    [12]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [13]杨伟林.厚软场地的地震动特征及设计反应谱研究[J].防灾减灾工程学报,2004,24(4):406-410.
    [14]肖文海.大型河谷场地地震动特征研究[硕士学位论文][D].哈尔滨:中国地震局工程力学研究所,2009.
    [15]刘洪兵,朱睎.地震中地形放大效应的观测和研究进展[J].世界地震工程,1999,15(3):20-25.
    [16]Ashford S.A, Sitar N. Analysis of topographic ampliation of inclined shear waves in a steep coastal bluff[J]. Bull, Seis, Soc, Am.1997,87:692-700
    [17]苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析[J].遥感学报,2008,12(6):936-962.
    [18]姚凯,卢大伟,刘旭宙.利用汶川余震流动观测资料探讨地形对峰值加速度的影响[J].西北地震学报,2009,31(1):46-50.
    [19]Gelebi M. Topographic and geological amplication determined from strong-motion and aftershock records of 3 March 1985 earthquake[J]. Bull. Seis. Soc. Arm.1988:1147-1167.
    [20]陈厚群,李敏,张艳红.地震危险性分析和地震动输入机制研究[J].水力发电,2001,(8):48-50.
    [21]江权,冯夏庭,陈国庆.高地应力条件下大型地下洞室群稳定性综合研究[J].岩石力学与工程学报,2008,27(增2):3768-3777.
    [22]崔思严.地下厂房洞室群岩柱厚度、洞跨与洞高的统计相关分析[J].四川水力发电,2006,5:95-98
    [23]陈厚群.坝址地震动输入机制探讨[J].水力学报,2006,37(12):1417-1423
    [24]冯德益.深井观测地震波典型记录与分析应用[M].北京:地震出版社,1990.
    [25]胡进军.地下地震动参数研究[硕士学位论文][D].哈尔滨:中国地震局工程力学研究所,2003.
    [26]胡进军,谢礼立.地下地震动频谱特点研究[J].地震工程与工程振动,2004,24(4):1-8.
    [27]徐龙军,谢礼立.地下工程设计地震动加速度幅值变化研究[J].世界地震工程,2009,25(2):54-59.
    [28]Hu J, Xie L. Variation of Earthquake GroundMotion with Depth [J]. Acta Seismological Sinica, 2005,18(1):72-81.
    [29]H.Komada, Y.Sawada, S.Aoyama. Hosokura矿地下深部地震动特性[R].东京:中央电力研究院,U88074,1989
    [30]R.Nozaki, H.Komada, S.Hibino.竖井岩石空洞地下地震动特性[R].东京:中央电力研究院,U90074,1989
    [31]胡进军,谢礼立.地震动幅值沿深度变化研究[J].地震学报,2005,27(1):68-78.
    [32]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,2003.
    [33]陈厚群,李敏,张艳红.300 m级高拱坝抗震技术研究——地震危险性分析和地震输入机制研究成果汇编[R].北京:中国水利水电科学研究院,1996.
    [34]Clough, R.W. and Penzien, J.(著),王光远等(译).结构动力学[M].北京:科学出版社,1983.
    [35]李英民,赖明,白绍良.从结构抗震设计理论看地震动输入[J].工程力学,2002(增刊):549-554.
    [36]钟菊芳.重大工程场地地震动输入参数研究[博士学位论文][D].河海大学,2006.
    [37]王绍博,李斌,徐海云.关于工程场地地震安全性评价中设计地震动反应谱的讨论[J].震灾防御技术,2006,1(4):302-308.
    [38]Mendoza MJ, Auvinet G. The Mexico earthquake of September 19,1985-behavior of building foundation in Mexico City[J]. Earthquake Spectra,1988,4 (4):835-853.
    [39]陈跃庆,吕西林,侯建国,等.不同土性地基中地震波传递的振动台模型试验研究[J].武汉大学学报,2005,38(2):49-53.
    [40]卢华喜.不同频谱特性地震动输入下的场地地震反应[J].华东交通大学学报,2007,24(1):22-26.
    [41]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5.
    [42]Cnote, J.P. Effects of eahrtquake frequency nonstationary on inelastic structural response[A]. Proceedings of the 10th World Conference on Earthquake Engineering[C],1992,7:3654-3651.
    [43]俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社,1988.
    [44]Medeot, R. New design approaches based on energy concepts and related seismic hardware[A]. Proceedings of the 12th World Conference on Earthquake Engineering[C], Auckland,2000.
    [45]Amin, M. and Ang, A.H-S. Nonstationary stochastic model of earthquake motions[J]. Journal of Engineering Mechanism Division. American Society of Civil Engineering.1968,94(2):559-583.
    [46]Basu, B. and Gupta, V.K. Nonstationary seismic response of MDOF systems by wavelet transform[J]. Earthquake Engineering and Structural Dynamics.1997,26:1243-1258.
    [47]Bolotin, V.V. Statistical theory of the aseismic design of structure[A]. Proceedings of the 2th World Conference on Earthquake Engineering[C], Tokyo, Japan.1960,2:1365-1374.
    [48]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[R].地震工程研究报告集第一集,北京:科学出版社,1982.
    [49]Shinozuka, M. and Sato, Y. Simulation of nonstationary random process[J]. Journal of Engineering Mechanism Division. American Society of Civil Engineering.1967,93(1):11-40.
    [50]Iyengar, R.N. and Iyengar, K.T. A nonstaionary random process model for earthquake accelerogram[J]. Bulletin of the Seismological Society of America.1969,59(3):1163-1188
    [51]霍俊荣,胡聿贤,冯启民.地面运动时程强度包络函数的研究[J].地震工程与工程振动,1991,11(1):1-12.
    [52]金星,廖振鹏.地震动强度包线函数的理论研究[J].地震学报,1994,16(4):519-525.
    [53]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998,18(4):76-80.
    [54]Scanlan, R.H. and Sachs, K. Earthquake time histories and response spectral[J]. Journal of the Engineering Michanics Division. American Society of Civil Engineering.1974,100(4):635-655.
    [55]高玉峰,张建.地震危险性分析研究[M].北京:科学出版社,2007.
    [56]Saragoni, G.R. and Hart, G.C. Simulation of artificial earthquake[J]. Earthquake Engineering and Structural Dynamics,1974,2(3):249-267
    [57]胡聿贤,何讯.考虑相位谱的人造地震动反应谱拟合[M].北京:地震出版社,1989.
    [58]朱昱,冯启民.相位差谱的分布特征和人造地震波[J].地震工程与工程振动,1992,12(1):37-44.
    [59]张翠然,陈厚群.工程地震动模拟研究综述[J].世界地震工程,2008,24(2):150-157.
    [60]Nigam N C. Phase properties of a class of random process[J]. Earthquake Engineering and Structural Dynamics,1982,11(10):711-717.
    [61]Yokoyama T, TheofanopoulosN, WatabeM. Distribution of phase differences in relation to the earthquake magnitude, distance to the fault and local soil conditions[C]. Transactions of the 9th International Conference on StructuralMechanics in Reactor Technology,1987, K1:43-48.
    [62]Boore D M. Phase derivatives and simulation of strong ground motions[J]. Bulletin of the Seismological Society ofAmerica,2003,93 (3):1132-1143
    [63]金星.重大工程场地设计地震动与地震动场的研究[博士学位论文][D].哈尔滨:国家地震局工程力学研究所,1992.
    [64]Shrikhande, Gup ta V K. On the characterization of the phase spectrum for strongmotion synthesis[J]. Journal of Earthquake Engineering,2001,5(4):465-482.
    [65]郑永来,杨林德,李文艺,等.地下结构抗震[M].上海:同济大学出版社,2005
    [66]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002.
    [67]王树仁,何满潮,武崇福,等.复杂工程条件下边坡工程稳定性研究[M].科学出版社,2007.
    [68]王水林,李春光,史贵才.小湾水电站地下厂房洞室群弹脆塑性分析[J].岩石力学与工程学报,2005,24(24):4449-4454.
    [69]Hibbitt, Karlsson and Sorensen, Inc.. ABAQUS theory manual and analysis user's manual[R]. Pawtucket, USA:Hibbitt, Karlsson and Sorensen, Inc.,2002.
    [70]LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, ASCE,1969,95(4):859-877.
    [71]CLAYTON R, ENGQUIST B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [72]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,(6):556-564.
    [73]吴鸿庆,任侠.结构有限元分析[M].北京:中国铁道出版社,2000
    [74]沈建文,廖振鹏.地震小区划的基岩地震输入[M].北京:地震出版社,1989
    [75]胡晓,张艳红.溪洛渡地下发电机组地震动参数选择研究[J].水力发电学报,2009,28(4):71-74.
    [76]李海波,朱莅,吕涛,等.考虑地震动空间非一致性的岩体地下洞室群地震反应分析[J].西北地震学报,2009,31(2):1757-1766.
    [77]王恒知,石玉成,卢育霞.人工拟合地震动时程参数对场地反应的影响分析[J].岩石力学与工程学报,2008,27(9):126-130.
    [78]刘红帅.岩质边坡地震稳定性分析方法研究[博士学位论文][D].哈尔滨:中国地震局工程力学研究所,2006.
    [79]郑颖人,沈珠江,,龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [80]孔亮,王燕昌,郑颖人.土体动本构模型研究评述[J].宁夏大学学报(自然科学版),2002,22(1):17-22.
    [81]李亮,赵成刚.饱和土体动力本构模型研究进展[J].世界地震工程,2004,20(1):138-148
    [82]陈学良,金星,陶夏新.考虑试验阻尼效应的一种土体动力双型抛物线本构模型[J].岩土力学,2008,29(8):2102-2110.
    [83]李夕兵,王卫华,马春德.不同频率载荷作用下的岩石节理本构模型[J].岩石力学与工程学报,2007,26(2):248-253.
    [84]戚承志,苗启松,钱七虎.考虑强度-应变率依赖性的岩石弹塑性动力模型[J].世界地震工程,2002,18(3):52-56.
    [85]戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177-181.
    [86]朱明礼,朱珍德,李刚,等.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177-181.
    [87]葛修润,蒋宇,卢允德,等.循环荷载作用下花岗岩动力特性试验研究[J].岩石力学与工程学报,2009,28(12):2520-2526.
    [88]李宁,陈文玲,张平.动荷作用下裂隙岩体介质的变形性质[J].岩石力学与工程学报,2001,20(1):74-78.
    [89]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109-118.
    [90]马春德,李夕兵,史雁平.用低周疲劳加载实现中等应变速率下岩石动态破坏的新方法[J].矿业研究与开发,2004,24(1):11-13.
    [91]M. K. Jafari, F. Pellet, M. Boulon. Experimental Study of Mechanical Behaviour of Rock Joints Under Cyclic Loading[J]. Rock Mechanics and Rock Engineering,2004,37(1):3-23.
    [92]吴绵拔,刘远惠.中等应变速率对岩石力学特性的影响[J].岩土力学,1980,(1):51-58.
    [93]Olsson W.A. The compressive strength of Tuff as a function of strain rate from 10-6 to 103/sec[J]. Int. J. Rock Mech. Min,1991,28(1):115-118.
    [94]于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报,1992,14(3):71-77.
    [95]高文学等.岩石动态损伤特性的实验研究[J].北京工业大学学报,2001,27(1):108-111.
    [96]单仁亮,陈石林,李宝强.花岗岩单轴冲击全程本构特性的实验研究[J].爆炸与冲击,2000,20(1):32-38.
    [97]Li HB, Zhao J and Li TJ. Micromechanical modelling of mechanical properties of granite under dynamic uniaxial compressive loads[J]. Int. J. Rock Mech. Min. Sci.2000,37:923-935.
    [98]李海波.花岗岩材料在动态压应力作用下力学特性的实验和模型研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,1999
    [99]李海波,赵坚,等.三轴情况下花岗岩动态力学特性的实验研究[J].爆炸与冲击,2004,24(5):470-474.
    [100]Cai Jungang. Effects of parallel fractures on wave attenuation in rocks rocks[D]. Nanyang technological university.
    [101]Homand F., Belem T., Souley M. Friction and degradation of rock joint surfaces under shear loads[J]. Int. J. Numer. Anal Meth. Geomech.2001,25:973-999.
    [102]Houston R.W., Dowding C.H. Joint asperity degradation during cyclic shear[J]. Int. J. Rock Mech. Min. Sci.1990,27(2):87-96.
    [103]Jing L, Stephansson O, Nordlund E. Study of rock joints under cyclic loading conditions[J]. Rock Mech. Rock Eng.1993,26(3):215-232.
    [104]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [105]杨桂通,张善元.弹性动力学[M].中国铁道出版社,1988.
    [106]徐芝纶.弹性力学力学简明教程[M].北京:高等教育出版社,1980.
    [107]刘佑荣,唐辉明.岩体力学[M].北京:中国地质大学出版社,1999.
    [108]张传庆,周辉,冯夏庭.统一弹塑性本构模型在FLAC3D中的计算格式[J].岩土力学,2008,29(3):596-602.
    [109]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [110]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2006.
    [111]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [112]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63-66
    [113]王明年,崔光耀,林国进.汶川地震灾区公路隧道震害调查及初步分析[J].西南公路,2009(4):41-46
    [114]张蔑.隧道震害综述-铁道工程建设科技动态报告文集[R].中国铁道出版社,1993.
    [115]高峰.地下结构动力分析若干问题研究[博士学位论文][D].西南交通大学,2003.
    [116]车爱兰,岩檐敞广,葛修润.关于地铁地震响应的模型振动试验及数值分析[J].岩土力学,2006,27(8):1293-1298
    [117]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):1-7.
    [118]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].三峡大学学报,2002(6):493-496.
    [119]杨林德,王国波,郑永来.地铁车站结构振动台试验及地震响应的三维数值模拟[J].岩石力学与工程学报,2007,26(8):1538-1545.
    [120]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报,2006,32(9):798-801.
    [121]陈国兴,左熹,庄海洋.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程振动,2008,28(1):157-164.
    [122]张雄.计算动力学[M].北京:清华大学出版社,2007.
    [123]祁生文.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [124]曹炳政,罗奇峰,马硕,等.神户大开地铁车站的地震反应分析[J].地震工程与工程振动,2002,22(4):102-107.
    [125]Huo H, Bobet, A. Seismic design of cut and cover rectangular tunnels-evaluation of observed behavior of Dakai station during Kobe earthquake,1995[A], Proceedings of the 1th World Forum of Chinese Schloars in Geotechnical Engineering[C]. Shanghai, China,2003:456-466.
    [126]庄海洋,陈国兴,胡晓明,等.两层双柱岛式地铁车站结构水平向非线性地震反应分析[J].岩石力学与工程学报,2006,(s1):3074-3079.
    [127]黄胜,陈卫忠,杨建平,等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报,2009,28(3):483-490.
    [128]杨超,杨林德,季倩倩.软土地铁车站地震响应数值计算方法的研究[J].地下空间,2006,2(1):87-91.
    [129]杨林德,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [130]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494-498.
    [131]赵宝友.大型岩体洞室地震响应及减震措施研究[博士学位论文][D].大连理工大学,2009.
    [132]李海波,马行东,李俊如,等.地震荷载作用下地下岩体洞室位移特征的影响因素分析[J].岩土工程学报,2006,28(3):358-362.
    [133]吕涛.地震作用下岩体地下洞室响应及安全评价方法研究[博士学位论文][D].中国科学院武汉岩土力学研究所,2008.
    [134]王如宾,徐卫亚,石崇等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2009,28(3):568-575
    [135]李小军,卢 滔.水电站地下厂房洞室群地震反应显式有限元分析[J].水力发电学报,2009,28(5):1877-1882.
    [136]隋斌,朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J].岩土工程学报,2008,30(12):1877-1882.
    [137]陶连金,张倬元,傅小敏等.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报,1998(1):33-41.
    [138]金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001(2):26-30.
    [139]梁庆国,韩文峰,谌文武,等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003(S2):2783-2788.
    [140]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2002.
    [141]朱泽奇.坚硬裂隙岩体开挖扰动区形成机理研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2008.
    [142]周维垣,等.高等岩石力学[M].北京:中国水利水电出版社,1989.
    [143]徐明远.MATLAB仿真在信号处理中的应用[M].西安:西安电子科技大学出版社,2007.
    [144]孙静.岩土动剪切模量阻尼试验及应用研究[博士学位论文][D].哈尔滨:中国地震局工程力学研究所,2006.
    [145]鞠庆海,吴绵拔.岩石材料的三轴压缩动力特性的实验研究[J].岩土工程学报,1993,15(3):72-80.
    [146]朱泽奇,盛谦,张占荣.脆性岩石侧向变型特征及损伤机理研究[J].岩土力学,2008,29(8):2137-2143.
    [147]Y Fujii, T Kiyama, Y Ishijima.'Condition insensitive damage indicator'for brittle rock[J] International Journal of Rock Mechanics and Mining Sciences,1997,34:3-4.
    [148]李海波,赵坚,等.三轴情况下花岗岩动态力学特性的实验研究[J].爆炸与冲击,2004,24(5):470-474.
    [149]Brace W F, Martin R J. A test of the law of effective stress for crystalline rock of low porosity[J]. International Journal of Rock Mechanics and Mining Science,1968,5:415-426.
    [150]Dowding C. H., Rozen A. Damage to rock tunnels from earthquake shaking[J]. J. Geotech. Eng. Div.,ASCE 104 (GT2),1978:175-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700