用户名: 密码: 验证码:
脆性岩石力学模型与流固耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着岩体工程不断向深部发展,其所处的地质和应力环境变得更为复杂,高地应力和高渗透压力条件下岩体力学问题的研究已经提上日程,如何更准确地模拟岩体的力学响应已成为地下工程的关键问题之一。鉴于此,针对锦屏Ⅱ水电站深埋引水隧洞开挖过程中遇到的两类问题:高地应力下围岩的破坏和高水压力下的突(涌)水灾害,开展了大理岩力学模型和高渗透压下的流固耦合机理研究。本文主要研究工作与成果如下:
     (1)进行了两种大理岩(T2y6和T2b)和一种砂岩的峰前和峰后循环加卸载试验,用于研究脆性岩石材料经历塑性变形时的弹塑性耦合特性、后继屈服特性和剪胀特性。针对围压对岩石变形和强度的影响,提出了考虑围压影响的塑性内变量,基于该内变量可以考虑不同应力路径下岩石的屈服过程。根据循环加卸载试验结果和定义的塑性内变量,系统地研究了弹性参数、强度参数以及剪胀参数的演化过程。
     (2)从加载速率角度研究了加荷和卸荷条件下所得强度的关系。提出用屈服接近速率(YAR)来表征加荷和卸荷状态下应力接近屈服状态的快慢,继而分析了加载和卸载条件下的屈服接近速率,并通过弹塑性细胞自动机EPCA2D的模拟试验和大理岩的实验室卸围压试验证明:卸载应力点在弹性范围内时,当卸荷速率为常规轴向加载速率的0.2-0.3倍时,卸荷和加载路径下的强度相当,即应力路径对强度没有影响。
     (3)根据T2y6和T2b大理岩以及砂岩的峰前和峰后循环加卸载试验的结果,提出了弹塑性耦合力学模型。这一模型同时考虑了岩石材料的弹塑性耦合特性、硬化-软化特性、剪胀特性以及应力状态对屈服过程的影响。对室内三轴压缩试验和加拿大Mine-By试验洞破坏区的模拟结果表明,所建力学模型可以较好地反映脆性岩石的主要力学特性以及高地应力条件下岩体开挖后的损伤破坏特征。更为重要的是,所提力学模型对卸围压应力路径下岩石的变形和强度特性也能较好地反映。
     (4)结合作者提出的弹塑性耦合力学模型,给出了连续介质条件下流固耦合分析的基本方程,建立了弹塑性条件下流固耦合分析的基本框架。针对现有文献对流固耦合方程中的流体连续性方程的形式存在的争议,采用两种思路推导了连续性方程,得到的连续性方程是等价的,同时将该方程与其他学者通过土体单元的质量守恒得到的连续性方程进行了对比,证明是一致的,从而得到了正确的连续性方程的形式。
     (5)分析了有效应力系数的物理机理及其主要影响因素,在此基础上,提出了等效孔隙连通率的概念,以此表征岩土类孔隙介质的结构和孔隙之间的连通性,基于连续介质力学和张量分析的基本原理,建立了有效应力系数张量演化的普适性理论模型,该模型在各向同性和异性条件下都是适用的。基于煤和砂岩弹性阶段的有效应力测试结果,以及大理岩和砂岩塑性条件下的有效应力测试结果,获得了弹塑性条件下岩石有效应力系数演化的规律,计算结果与试验结果吻合较好,表明本文所建立的有效应力系数普适模型和分析方法是可行的;推导了Darcy流和非Darcy流统一渗流方程,并根据层流的粘性剪应力和紊流引起的附加剪应力的比例关系,提出了非Darcy流的判据。
     (6)结合智能反演理论,将所建立的弹塑性耦合力学模型用于辅助洞2#试验洞开挖过程的模拟分析,研究了隧洞开挖过程中,围岩变形、损伤区和应力的演化规律,较好地给出了破坏区的位置和范围。根据所建立的流固耦合模型,考虑高渗透压下的非Darcy流效应,对锦屏Ⅱ水电站引水隧洞的开挖过程进行了流固耦合分析。探讨了隧洞周围的高压水对隧洞安全性的影响。根据流固耦合分析的结果,对突(涌)水的预防和治理提出了相应的建议。
As the geotechnical engineering around the world becames deeper, where the geological and stress environment has become more complex, the study of rock mechanics under the condition of high stress and high seepage pressure has been put on the agenda. In particular, how to simulate the mechanical response of rock has been one of the key issues. The failure of surrounding rock mass under high geo-stress and the occurrence of water burst under high seepage pressure are the two main problems met during the construction of diversion tunnel in Jinping II hydroelectric station. In order to solve these problems, the mechanical model and fluid-solid coupling mechanism under high seepage pressure of marble are both studied here. In sum, the main work and conclusion including:
     1. In order to study the elato-plastic character, subsequent yield character and dilation of brittle rocks, cyclic-loading experiments, both before and after the peak strength of two kinds of marble (T2y6 and T2b) and a kind of sandstone, are carried out. A plastic internal variable is defined, which takes the influence of confining pressure on yield process into consideration. Based on the results of cyclic-loading experiments and the plastic internal variable, the evolution process of elastic, strength and dilation parameters with plastic strain is studied.
     2. The relation of strength under unloading and loading conditions is studied with respect to the rate of loading. Yield approach rate (YAR) is proposed to denote the stress varying rate under loading and unloading conditions. Then, the characters of YAR under loading and unloading conditions are analyzed. The simulation by EPCA2D (Elasto-Plastic Cellular Automaton) and the unloading tests of marble indicate that if the initial unloading stress is in the elastic state, the strength under loading and unloading conditions is equal when the unloading rate is 0.2-0.3 of the loading rate.
     3. Based on the results of experiments on two kinds of marble (T2y6 and T2b) and a kind of sandstone, an elasto-plastic coupling mechanical model is proposed. The model takes the variety of elastic parameters, strength parameters and dilation parameter into consideration and can reflect the influence of stress state on the yield process. Simulation results of the traxial compression experiments and excavation process in Mine-by tunnel show that the mechanical model proposed here can capture the deformation and yield characters of brittle rock under different stress path. Especially, the deformation and yield characters in confining pressure unloading tests are also well described by the model.
     4. Combined with the elasto-plastic coupling mechanical model, the basic frame of fluid-solid coupling analyze under plastic condition is established. As different researchers disputed on the continuum equation of fluid, two methods are used to derive the continuum equation. The continuum equations deduced form the two methods are found to be equivalent. In addition, the equations are compared to the continuum equation derived by other researchers based on mass conservation law, and they are found to be coincident. Then, the right form of fluid continuum equation is proved.
     5. Physical mechanism and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed to denote the meso-scaled structure of these materials. Then a general expression describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pore is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Based on the effective stress tests of coal and sandstone under elastic deformation, and the effective stress tests of marbles and sandstone under plastic deformation, the evolution law of effective stress coefficient with strain is obtained. The simulation results agree very well with the test results.
     Unified equation of Darcy flow and non-Darcy flow is deduced. Then, the criterion of non-Darcy flow is put forward based on the contrast relationship of bond shear stress in laminar flow and additional shear stress in turbulent flow.
     6. Finally, with intelligent inversion theory, the elato-plastic coupling constitute model is used to simulate the excavation process of the 2# experiment tunnel in the assisted tunnel of Jinping II diversion tunnel. Evolution process of deformation, disturbed zone and stress are got according to the excavation step. The position and extent of failure zone is in good agreement with the field.
     Using the fluid-solid coupling method proposed here, the excavation process of the JinpingⅡdiversion tunnel is simulated which takes the high fluid pressure into consideration. The result shows that the high fluid and seepage pressure has effect on the stability of the wall rock. Based on the simulation results, suggestions are raised for the prevention and management of water burst.
引文
[1]LADE M. K. Single hardening constitutive model for frictional materials Ⅱ. Yield critirion and plastic work contours[J]. Computers and Geotechnics.1988,6(1):13-29.
    [2]KARMAN T. Festigkeitsversuche unter allseitigem Druck[J]. Zeitschrift des Vereines Deutscher Ingenieure.1911,55(42):1749-1757.
    [3]HUDSON J. A., CROUCH S. L., FAIRHURST C. Soft, stiff and servo-controlled testing machines:a review with reference to rock failure[J]. Engineering Geology.1972,6(3): 155-189.
    [4]WAWERSIK W. R., FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments [J]. International Journal of Rock Mechanics and Mining Sciences. 1970,7(4):561-575.
    [5]葛修润,周百海.对岩石峰值后区特性的新见解[J].中国矿业.1992,1(2):57-60.
    [6]陈颙,姚孝新,耿乃光.应力途径,岩石的强度和体积膨胀[J].中国科学.1979(11):1093-1100.
    [7]许东俊,耿乃光.岩体变形和破坏的各种应力路径[J].岩土力学.1986,7(2):17-25.
    [8]哈秋舲.加载岩体力学与卸荷岩体力学[J].岩土工程学报.1998,20(1):114.
    [9]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报.1993,12(4):321-327.
    [10]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报.1998,17(6):615-621.
    [11]周小平,哈秋聆,张永兴,等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报.2005,24(18):3236-3245.
    [12]陈卫忠,刘豆豆,杨建平,等.大理岩卸围压幂函数型Mohr强度特性研究[J].岩石力学与工程学报.2008,27(11):2214-2220.
    [13]张凯,周辉,邵建富,等.大理岩弹塑性耦合特性试验研究[J].岩土力学.2010,已录用.
    [14]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报.2007,26(10):2104-2109.
    [15]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [16]MOGI K. Experimental Rock Mechanics[M]. London:Taylor& Francis Group,2005.
    [17]李小春,许东俊.双剪应力强度理论的试验验证-拉西瓦花岗岩强度特性的真三轴实验研究[R].武汉:中国科学院院武汉岩土力学研究所,1990.
    [18]CHANG C, HAIMSON B. True triaxial strength and deformability of the German Continental Deep Drilling Program(KTB) deep hole amphibolite[J]. Journal of geophysical research.2000, 105(8):18999-19013.
    [19]HAIMSON B. C., CHANG C. True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in situ stress[J]. Journal of Geophysical Research.2002,107(B10):2257-2271.
    [20]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报.2006,25(8):1537-1543.
    [21]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报.2007,26(5):865-876.
    [22]杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报.2007,28(3):66-68.
    [23]葛修润,任建喜,蒲毅彬.岩石细观损伤演化规律的CT实时试验研究[J].中国科学E.2000,30(2):104-111.
    [24]FENG X. T., LI S., CHEN S. Effect of water chemical corrosion on strength and cracking characteristics of rocks-a review[J]. Key Engineering Materials.2004:1355-1360.
    [25]丁梧秀,冯夏庭.渗透环境下化学腐蚀裂隙岩石破坏过程的CT试验研究[J].岩石力学与工程学报.2008,27(9):1865-1873.
    [26]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].武汉:中国科学院研究生院,2008.
    [27]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报.1992,11(3):284-294.
    [28]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [29]MARTIN C. D., CHANDLER N. A. The progressive fracture of Lac de Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences,Pergamon Press.1994,31(6): 643-659.
    [30]SHAO J. F., JIA Y., KONDO D., et al. A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions[J]. Mechanics of Materials.2006,38(3): 218-232.
    [31]葛修润.周期荷载下岩石大型三轴试件的变形和强度特性研究[J].岩土力学.1987,8(2):11-19.
    [32]葛修润,任建喜,蒲毅彬.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报.2001,23(2):191-195.
    [33]尤明庆,苏承东.大理岩试样循环加载强化作用的试验研究[J].固体力学学报.2008,29(1):66-72.
    [34]杨春和,马洪岭,刘建峰.循环加、卸载下盐岩变形特性试验研究[J].岩土力学.2009,30(12):3562-3568.
    [35]许江,鲜学福,王鸿,等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报.2006,增1:3040-3045.
    [36]黄书领.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院研究生院,2008.
    [37]卢允德,葛修润,蒋宇,等.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报.2004,23(015):2489-2493.
    [38]李世愚,和泰名,尹祥础.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2010.
    [39]张晓春,缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展.1999,29(001):97-104.
    [40]黎立云,刘大安.多裂纹类岩体的双压实验与正交各向异性本构关系[J].中国有色金属学报.2002,12(001):165-170.
    [41]周小平,哈秋聆.考虑裂隙间相互作用情况下围压卸荷过程应力应变关系[J].力学季刊.2002,23(002):227-235.
    [42]唐辉明,晏同珍.岩体断裂力学理论与工程应用[M].武汉:中国地质大学出版社,1993.
    [43]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [44]KRAJCINOVIC D. Damage Mechanics(2nd Edition)[M]. Netherland:Elsevier Science BV, 2003.
    [45]FRANTZISKONIS G., DESAI C. S. Analysis of a strain softening constitutive model[J]. International Journal of Solids and Structures.1987,23(6):751-767.
    [46]SHAO J. F., RUDNICKI J. W. A microcrack-based continuous damage model for brittle geomaterials[J]. Mechanics of Materials.2000,32(10):607-619.
    [47]BAZANT Z. P. Mechanics of fracture and progressive cracking concrete structures [C]. Fracture Mechanics of Concrete. Martinus Nijhoff:1985.
    [48]谢和平.岩石混凝土损伤力学[M].北京:中国矿业出版社,1990.
    [49]周维垣,剡公瑞.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报.1998,20(5):54-57.
    [50]朱维申,张强勇.三维脆弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报.1999,20(2):164-170.
    [51]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1995.
    [52]哈秋舲,李建林,张永兴.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [53]HOEK E.B, BROWN E. T. Underground excavations in rock[M]. London:The Institute of Mining and Metallurgy,1980.
    [54]王仁,殷有泉.工程岩石类介质的弹塑性本构关系[J].力学学报.1981,4:317-325.
    [55]YU M. H. Advances in strength theories for materials under complex stress state in the 20th century[J]. Applied Mechanics Reviews.2002,55(3):169-218.
    [56]俞茂宏,昝月稳,范文,等.20世纪岩石强度理论的发展——纪念Mohr-Coulomb强度理论100周年[J].岩石力学与工程学报.2000,19(5):545-550.
    [57]EDELBRO C. Rock mass strength:a review[R]. Sweden:Lulea(?) University of Technology, 2003.
    [58]HOEK E., BROWN E. T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(8):1165-1186.
    [59]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报.1994:1-10.
    [60]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报.2005,24(17):3003-3010.
    [61]高红,郑颖人,冯夏庭.岩土材料能量屈服准则研究[J].岩石力学与工程学报.2007, 26(12):2437-2443.
    [62]黄书岭,冯夏庭,张传庆.脆性岩石广义多轴应变能强度准则及试验验证[J].岩石力学与工程学报.2008,27(1):124-134.
    [63]范文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学.2004,21(5):16-24.
    [64]张培文,陈祖煜.剪胀角对求解边坡稳定的安全系数的影响[J].岩土力学.2004,25(11):1757-1760.
    [65]杨小礼,眭志荣.应力剪胀对浅埋隧道稳定性系数的影响[J].中南大学学报:自然科学版.2008,39(1):190-195.
    [66]邓楚键,郑颖人,王凯,等.有关岩土材料剪胀的讨论[J].岩土工程学报.2009,31(7):1110-1114.
    [67]HANSEN B. Line ruptures regarded as narrow rupture zones. Basic equations based on kinematic considerations[C].Proceedings, Conference on Earth Pressure Problems, Brussels. 1958.
    [68]VERMEER P. A., De BORST R. Non-associated plasticity for soils, concrete and rock [J]. Concrete and Rock Heron.1984,29(3):1-64.
    [69]LADANYI B., DON N. Study of strains in rock associated with brittle failure [C].Proceedings of the Canadian Rock Mechanics Symposium. Ottawa,1970.
    [70]MICHELIS P. N. Work-softening and hardening behaviour of granular rocks [J]. Rock Mechanics and Rock Engineering.1981,14(3):187-200.
    [71]ALEJANO L. R., ALONSO E. Considerations of the dilatancy angle in rocks and rock masses [J]. International Journal of Rock Mechanics and Mining Sciences.2005,42(4):481-507.
    [72]ZHAO X. G., CAI M. A mobilized dilation angle model for rocks [J]. International Journal of Rock Mechanics and Mining Sciences.2010,47(3):368-384.
    [73]陈益峰,周创兵,盛永清.应变敏感的裂隙及裂隙岩体水力传导特性研究[J].岩石力学与工程学报.2006,25(012):2441-2452.
    [74]PALMER A. C., MAIER G., DRUCKER D. C. relations and convexity of yield surfaces for unstable materials or structural elements [J]. Journal of Applied Mechanics.1967,34: 464-470.
    [75]殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报.1982,1:63-70.
    [76]HUECKEL T. Coupling of elastic and plastic deformations of bulk solids [J]. Meccanica.1976, 11(4):227-235.
    [77]CHIARELLI A. S., SHAO J. F., HOTEIT N. Modeling of elastoplastic damage behavior of a claystone [J]. International Journal of Plasticity.2003,19(1):23-45.
    [78]HAN D. J., CHEN W. F. Strain-space plasticity formulation for hardening-softening materials with elastoplastic coupling [J]. International Journal of Solids and Structures.1986,22(8): 935-950.
    [79]殷有泉.岩石的塑性,损伤及其本构表述[J].地质科学.1995,30(1):63-70.
    [80]郭小明.岩土介质弹塑性耦合问题的数学规划模型[J].东南大学学报.1994,24(5): 101-105.
    [81]赵冰,李宁,盛国刚.考虑弹塑性耦合的单轴压缩岩样梯度塑性分析[J].西北农林科技大学学报(自然科学版).2005,33(9):137-140.
    [82]张承柱,刘信声.应变空间表述的混凝土弹塑性耦合本构模型[J].清华大学学报(自然科学版).1996,36(3):59-64.
    [83]曹伟,宋玉普.混凝土弹塑性耦合疲劳本构模型[J].混凝土.2003,159:7-9.
    [84]HOBBS B. E., ORD A. Numerical simulation of shear band formation in a frictional-dilational material [J]. Archive of Applied Mechanics (Ingenieur Archiv).1989,59(3):209-220.
    [85]窦林名,何学秋.煤岩冲击破坏模型及声电前兆判据研究[J].中国矿业大学学报.2004,33(5):504-508.
    [86]朱训国,杨庆,栾茂田.脆性围岩中锚杆的应力分布及岩石剪涨角的影响[J].金属矿山.2007(8):11-15.
    [87]HAJIABDOLMAJID V. Mobilization of strength in brittle failure of rock[D]. Kingston, Canada:Department of Mining Engineering, Queen's University,2001.
    [88]MARTIN C. D. The strength of massive Lac du Bonnet granite around underground openings [D]. Canada:Department of Civil and Geological Engineering, University of Manitoba.1994.
    [89]PELLI F., KAISER P. K., MORGENSTERN N. R. An interpretation of ground movements recorded during construction of the Donkin-Morien tunnel [J]. Canadian Geotechnical Journal. 1991,28(2):239-254.
    [90]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学与工程学报.2008,27(1):144-152.
    [91]郑宏.岩土力学中的几类非线性问题[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [92]刘文政.脆塑性结构极限载荷的计算与工程应用[D].北京:清华大学,1989.
    [93]LOMIZE G. M. Flow in fractured rocks [M]. Moscow:Gosenergoizdat,1951.
    [94]LOUIS C. Rock hydraulics in rock mechanics [M]. New York:Verlay,1974.
    [95]WILSON C. R., WITHERSPOON P. A. An investigation of laminar flow in fractured porous rocks [R]. California:University of California, Berkeley,1970.
    [96]田开铭.裂隙水交叉流的水力特性[J].地质学报.1986(2):202-213.
    [97]速宝玉,詹美礼.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报.1995,17(5):19-24.
    [98]LOUIS C. Rock hydraulics[M]. Rock mechanics, L Muller, New York:Springer Wien,1974, 299-382.
    [99]GALE J. E. The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships[C].Issues in Rock Mechanics:Proceedings of the 23rd US Symposium on Rock Mechanics. Rotterdam:Balkema.1982.
    [100]TSANG Y. W., TSANG C. F. Channel model of flow through fractured media[R]. Geotechnical Support and Topical Studies for Nuclear Waste Geologic Repositories.1986.
    [101]ESAKI T., HOJO H., KIMURA T., et al. Shear-flow coupling test on rock joints[C].Proceedings of the 7th International Congress on Rock Mechanics. Rotterdam:AA Balkema.1991.
    [102]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,14(2):28-32.
    [103]李广平,陶振宇.法向应力作用下单裂隙渗流规律的研究[J].武汉水利电力大学学报.1993,26(002):167-173.
    [104]耿克勤,陈凤翔.岩体裂隙渗流水力特性的实验研究[J].清华大学学报:自然科学版.1996,36(1):102-106.
    [105]刘亚晨,蔡永庆,刘泉生,等.岩体裂隙结构面的温度—应力—水力耦合本构关系[J].岩土工程学报.2001,23(2):196-200.
    [106]刘才华,陈从新,付少兰.充填砂裂隙在剪切位移作用下渗流规律的实验研究[J].岩石力学与工程学报.2002,21(10):1457-1461.
    [107]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学.1997,18(4):59-62.
    [108]郑少河,赵阳升.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报.1999,18(2).
    [109]ZHANG S., COX S. F., PATERSON M. S. The influence of room temperature deformation on porosity and permeability in calcite aggregates [J]. Journal of Geophysical Research.1994, 99(8):15761-15775.
    [110]ZHU W., WONG T. The transition from brittle faulting to cataclastic flow:Permeability evolution[J]. Journal of Geophysical Research-Solid Earth.,102(B2):3027-3041.
    [111]ZOBACK M. D., BYERLEE J. D. The effect of microcrack dilatancy on the permeability of Westerly granite[J]. Journal of Geophysical Research.1975,80:752-755.
    [112]LI XIAO CHUN. Permeability change in sandstones under compressive stress conditions [D]. Ibaraki Prefecture:Ibaraki university,2001.
    [113]陈祖安,伍向阳.岩石渗透率随静水压力变化的关系研究[J].岩石力学与工程学报.1995,6(2):155-159.
    [114]李世平,李玉寿.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报.1995,17(2):13-19.
    [115]ZHU W., DAVID C., WONG T. The transition from brittle faulting to cataclastic flow: Permeability evolution[J]. Journal of Geophysical Research-Solid Earth.1997,102(B2). 3027-3041.
    [116]韩宝平,毛琼.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报.2000,8(1):127-128.
    [117]ZHANG J. C., BAI M., ROEGIERS J. C., et al. Experimental determination of stress-permeability relationship[C].Paciffic Rock 2000.2000.
    [118]缪协兴,陈占清,茅献彪,等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报.2003,35(6):660-667
    [119]李玉寿,马占国,贺耀龙,等.煤系地层岩石渗透特性试验研究[J].实验力学.2006(2):129-134.
    [120]黄远智,王恩志.低渗透岩石渗透率对有效应力敏感系数的试验研究[J].岩石力学与工程学报.2007,26(002):410-414.
    [121]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [122]胡大伟,周辉,谢守益,等.峰后大理岩非线性渗流特征及机制研究[J].岩石力学与工程学报.2009,28(3):451-458.
    [123]KARAMI H. Experimental investigation of poroelastic behaviour of a brittle rock[D]. Lille, Frence:University of Lille I,1998.
    [124]赵阳升.煤岩流体力学[M].北京:煤炭出版社,2002.
    [125]王媛,徐志英.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,19(2):177-181.
    [126]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质.1995,22(6):30-35.
    [127]BARTON N., BANDIS S., BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1985,22(3):121-140.
    [128]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学.1996,17(4):1-7.
    [129]GANGI ANTHONY F. Variation of whole and fractured porous rock permeability with confining pressure[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1978,15(5):249-257.
    [130]WALSH J. B., GROSENBAUGH M. A. A New Model for Analyzing the Effect of Fractures on Compressibility[J]. Journal of Geophysis Research.1979,84(B7):3532-3536.
    [131]TSANG Y. W., WITHERSPOON P. A. Hydromechanical behavior of a deformable rock fracture subject to normal stress[J]. Journal of Geophysis Research.1981,86(B10): 9287-9298.
    [132]盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,19(2):92-98.
    [133]SNOW D. T. Rock fracture spacings, openings, and porosities[J]. J. Soil Mech. Found. Div,Proc. Am. Soc. Civil Eng.1968,94:73-91.
    [134]ODA M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research.1986,22(13):1845-1856.
    [135]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报.1988,1:8-13.
    [136]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报.1994,13(4):299-308.
    [137]常晓林.岩体稳定渗流与应力状态的耦合分析及其工程应用初探[C].第一届全国计算岩土力学研讨会论文集,成都:西南交通大学出版社,1987.
    [138]陈胜宏,王鸿儒.节理面渗流性质的探讨[J].武汉水利电力学院学报.1989,22(1):53-60.
    [139]段小宁,刘继山.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报.1992,32(6):712-717.
    [140]王媛.裂隙岩体渗流及其与应力的全耦合分析[D].南京:河海大学,1995.
    [141]SNOW D. T. A parallel plate model of fractured permeable media[D]. Berkeley:University of California, Berkeley,1965.
    [142]WITTKE W. Rock Mechanics[M]. Berlin:Springer,1990.
    [143]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质.1992,19(1):12-14.
    [144]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文地质工程地质.2000,27(2):30-33.
    [145]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报.1996,15(4):338-344.
    [146]BARENBLATT G. I., ZHELTOV I. P., KOCHINA I. N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics.1960,24(5):1286-1303.
    [147]WARREN J. E., ROOT P. J. The behavior of naturally fractured reservoirs[J]. Old SPE Journal.1963,3(3):245-255.
    [148]DUGUID J.O., LEE P. C. Y. Flow in fractured porous media[J]. Water Resources Research. 1977,7(5):823-931.
    [149]NOORISHAD J., AYATOLLAHI M. S., WITHERSPOON P. A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts.1982,19:185-193.
    [150]杨天鸿,唐春安,徐涛.岩石破裂过程的渗流特性——理论,模型与应用[M].北京:科学出版社,2004.
    [151]SOULEY M., HOMAND F., PEPA S., et al. Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences.2001,38(2):297-310.
    [152]MAHNKEN R., KOHLMEIER M. Finite element simulation for rock salt with dilatancy boundary coupled to fluid permeation[J]. Computer Methods in Applied Mechanics and Engineering.2001,190(32-33):4259-4278.
    [153]WANG J. A., PARK H. D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering geology.2002,63:291-300.
    [154]盛金昌,速宝玉,王媛.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报.2000,19(3):304-309.
    [155]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报.2000,19(5):573-576.
    [156]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学.2000,21(1):64-67.
    [157]NOGHABAI K. Discrete versus smeared versus element-embedded crack models on ring problem[J]. Journal of Engineering Mechanics.1999,125(3):307-315.
    [158]JEFFREY R. G., MILLS K. W. Hydraulic fracturing applied to inducing longwall coal mine goaf falls[C].Pacific Rock 2000. Balkema, Rotterdam:Breeds& Doe,2000.
    [159]BRUNO M. S., NAKAGAWA F. M. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1991,28:261-273.
    [160]VANDAMME L., ROEGIERS J. C. Poroelasticity in hydraulic fracturing simulators[J]. Journal of Petroleum Technology.1990,42(9):1199-1203.
    [161]杨延毅,周维垣.裂隙岩体的渗流—损伤耦合分析模型及其工程应用[J].水利学报. 1991(5):19-27.
    [162]朱珍德,孙钧.裂隙岩体非稳定渗流场与耦合损伤分析模型[J].水文地质工程地质.1999,26(2):35-42.
    [163]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报.2001,20(2):156-159.
    [164]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩土工程学报.2007,29(8):1135-1142.
    [165]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [166]J Bear.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [167]周创兵,陈益峰,姜清辉,等.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [168]NOORISHAD J., AYATOLLAHI M. S., WITHERSPOON P. A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts.1982,19(4):185-193.
    [169]WITHERSPOON P. A. Investigations at Berkeley on fracture flow in rocks:From the parallel plate model to chaotic systems[J]. Geophysical monograph.2000,122:1-58.
    [170]RUTQVIST J., BORGESSON L., CHIJIMATSU M., et al. Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine-comparison of field results to predictions of four finite element codes [J]. International Journal of Rock Mechanics and Mining Sciences.2001,38(1):129-142.
    [171]赵阳升.煤体-瓦斯耦合数学模型及数值算法[J].岩石力学与工程学报.1994,13(3):229-239.
    [172]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社.1995.
    [173]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报.1998,17(4):400-406.
    [174]梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J].阜新矿业学院学报.1997,16(2):129-133.
    [175]MAIER G., HUECKEL T. Nonassociated and coupled flow rules of elastoplasticity for rock-like Materials[J]. International Journal of Rock Mechanics and Mining Sciences.1979, 16:77-92.
    [176]LAU JSO, CHANDLER N. A. Innovative laboratory testing[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(8):1427-1445.
    [177]BERRY J. Some kinetic considerations of the Griffith criterion for fracture--I Equations of motion at constant force[J]. Journal of Mechanics Physics of Solids.1960,8:194-206.
    [178]COOK N. G. W. The failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences.1965,2:389-403.
    [179]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [180]聂德新.岩质高边坡岩体变形参数及松弛带厚度研究[J].地球科学进展.2004,19(3):472-477.
    [181]张传庆,周辉,冯夏庭,等.基于屈服接近度的围岩安全性随机分析[J].岩石力学与工程学报.2007,26(2):292-299.
    [182]EBERHARDT E., STEAD D., STIMPSON B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences.1999,36(3):361-380.
    [183]ITASCA CONSULTING GROUP INC. FLAC3D(Version 3.1)user's manual[M]. USA: ITASCA Consulting Group, Inc.,2006.
    [184]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报.2003,22(10):1581-1585.
    [185]苏承东,杨圣奇.循环加卸载下岩样变形与强度特性试验[J].河海大学学报(自然科学版).2006,34(6):667-671.
    [186]HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research.1969, 74:5343-5348.
    [187]SCHOLZ C. H. The mechanics of earthquakes and faulting[M]. Cambridge:Cambridge University Press,1990.
    [188]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报.2008,27(11):2205-2213.
    [189]周济芳,李建林,陈兴周.卸荷岩体力学特性研究的试验条件[J].三峡大学学报:自然科学版.2004,26(6):514-516.
    [190]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报.1998,17(1):24-29.
    [191]杨仕教,曾晟,王和龙.加载速率对石灰岩力学效应的试验研究[J].岩土工程学报.2005,27(7):786-788.
    [192]袁瑞甫,李元辉,赵兴东,等.围压卸荷对矿柱破坏模式影响分析[J].矿业研究与开发.2006,26(2):24-26.
    [193]张传庆.基于破坏接近度的岩石工程安全性评价方法的研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [194]周辉,张传庆,冯夏庭,等.隧道及地下工程围岩的屈服接近度分析[J].岩石力学与工程学报.2005,24(17):3083-3087.
    [195]FENG XIA-TING, PAN PENG-ZHI, ZHOU HUI. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(7):1091-1108.
    [196]PAN PENG-ZHI, FENG XIA-TING, HUDSON J. A. Numerical simulations of Class I and Class Ⅱ uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(7):1109-1117.
    [197]潘鹏志,周辉,冯夏庭.加载条件对不同尺寸岩石单轴压缩破裂过程的影响研究[J].岩石力学与工程学报.2008,27(A02):3636-3642.
    [198]吴刚.裂隙岩体模型的卸荷破坏试验研究[J].工程力学.1997,A03:529-534.
    [199]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报.2000,22(2):238-242.
    [200]ZHOU H.; JIA Y., SHAO J. F. A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences.2008, 45(8):1237-1251.
    [201]杨小林,员小有.爆破损伤岩石力学特性的试验研究[J].岩石力学与工程学报.2001,20(4):436-439.
    [202]陈智纯,缪协兴.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术.1994,22(8):34-36.
    [203]ELLIOTT G. M., BROWN E. T. Yield of a soft, high porosity rock[J]. Geotechnique.1985, 35(4):413-423.
    [204]鄢建华,黄宝德,汤雷.岩石类材料峰后本构关系研究进展[J].地质灾害与环境保护.2003,14(4):58-62.
    [205]孙钧.岩土力学与地下工程结构分析计算的若干进展[J].力学季刊.2005,26(3):329-338.
    [206]冯夏庭,江权,苏国韶.高应力下硬岩地下工程的稳定性智能分析与动态优化[J].岩石力学与工程学报.2008,27(7):1341-1352.
    [207]RUDNICKI J. W., RICE J. R. Conditions for the localization of deformation in pressure-sensitive dilatant materials [J]. Journal of the Mechanics and Physics of Solids.1975, 23(6):371-394.
    [208]BAZOANT Z. P. Instability, ductility, and size effect in strain-softening concrete[J]. Journal of the Engineering Mechanics Division.1976,102(2):331-344.
    [209]潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究[J].岩石力学与工程学报.2002,21(2):215-218.
    [210]MAIER G. On elastic-plastic structures with associated stress-strain relations allowing for work softening[J]. Meccanica.1967,2(1):55-64.
    [211]DRUCKER D. C., PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics.1952,10(2):157-165.
    [212]ROWE P. W. The relation between the shear strength of sands in triaxial compression, plane strain, and direct shear[J]. Geotechnique.1969,19(1):75-86.
    [213]MOHAMAD-HUSSEIN A., SHAO J. F. Modelling of elastoplastic behaviour with non-local damage in concrete under compression[J]. Computers& Structures.2007,85(23-24): 1757-1768.
    [214]陈海军.巨型地下洞室群围岩稳定性数值分析[D].博士后出站报告.上海:同济大学,2005.
    [215]READ R. S.20 years of excavation response studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(8): 1251-1275.
    [216]SHAO J. F., RUDNICKI J. W. A microcrack-based continuous damage model for brittle geomaterials[J]. Mechanics of Materials.2000,32(10):607-619.
    [217]MARTIN C. D. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal.1997,34(5): 698-725.
    [218]CAI M., KAISER P. K. Assessment of excavation damaged zone using a micromechanics model [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research.2005,20(4):301-310.
    [219]TERZAGHI V. K. Die Berechnung der durchassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen[J]. Sitzungsber.Akad.Wiss.Wien Math Naturwiss. 1923,132(2A):105-126.
    [220]BIOT M. A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics. 1941,12(2):155-164.
    [221]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报.2004,23(8):1291-1295.
    [222]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报.1999,18(6):397-401.
    [223]何翔.岩体渗流—应力耦合的随机有限元方法[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [224]颜凡全.应用弹塑性流固耦合理论研究套损的影响因素地应力及流体压力[D].大庆:大庆石油学院,2005.
    [225]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2001.
    [226]谢守益,徐卫亚,贾贇,等.饱和多孔白垩岩的孔隙力学性质研究[J].岩石力学与工程学报.2007,26(4):804-810.
    [227]COUSSY OLIVIER. Poromechanics[M]. New York:John Wiley& Sons Ltd,2004.
    [228]CHENG A. H. D. Material coefficients of anisotropic poroelasticity[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(2):199-205.
    [229]BIOT M. A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics.1955,26(2):182-185.
    [230]BIOT M. A. The Elastic Coefficients of the Theory of Consolidation[J]. ASME Journal of applied Mechanics.1957,24:594-601.
    [231]丁洲祥.连续介质固结理论及其工程应用[D].杭州:浙江大学,2005.
    [232]MUSHKELISHVILLI N. I. Some basic problems of the mathematical theory of elasticity[M]. Groeninger,Metherlands:Noordhoff,1963.
    [233]VERRUIJT A. Generation and dissipation of pore water pressure[C]. Finite Elements in Geomechanics, G Gudehus, London:John Wiley& Sons,1977,293-317.
    [234]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [235]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [236]VERRUIJT A. Elastic storage of aquifers[M]. Flow Through Porous Media, Wiest De, Jm Roger, New York:Academic Press,1969,331-376.
    [237]WANG H. F. Theory of linear poroelasticity[M]. Princeton, NJ:Princeton University Press, 2000.
    [238]黄文熙.土的工程性质[M].北京:水利水电出版社,1983.
    [239]SHAO J. F. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics of Materials.1998,30(1):41-53.
    [240]MORDECAI M., MORRIS L. H., ENG C. An investigation into the changes of permeability occurring in a sandstone when failed under triaxial stress conditions[C].The 12th US Symposium on Rock Mechanics (USRMS).1970.
    [241]TANG C. A., THAM L. G., LEE P. K. K., et al. Coupled analysis of flow, stress and damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences.2002, 39(4):477-489.
    [242]孙明贵,黄先伍,李天珍,等.石灰岩应力-应变全过程的非Darcy流渗透特性[J].岩石力学与工程学报.2006,25(3):484-491.
    [243]胡大伟,周辉,谢守益,等.峰后大理岩非线性渗流特征及机制研究[J].岩石力学与工程学报.2009,28(3):451-458.
    [244]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [245]张立强,许江,蒋长宝,等.砂岩在循环载荷下不同饱和度时的变形特征[J].中国矿业.2006,15(10):109-112.
    [246]席道瑛,杜赞,易良坤,等.液体对岩石非线性弹性行为的影响[J].岩石力学与工程学报.2009,28(4):687-696.
    [247]朱合华,周治国,邓涛.饱水对致密岩石声学参数影响的试验研究[J].岩石力学于工程学报.2005,24(5):823-828.
    [248]WALSH J. B. Effect of pore pressure and confining pressure on fracture permeability[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanic Abstract.1981, 18(3):429-435.
    [249]KRANZ R. L., FRANKEL A. D., ENGELDER T., et al. The permeability of whole and jointed barre granite[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts.1979,16:225-234.
    [250]LADE P. V., BOER DE R. The concept of effective stress for soil, concrete and rock[J]. Geotechnique.1997,47(1):61-78.
    [251]AMOS NUR, BYERLEE J. D. An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids[J]. Journal of Geophysical Research.1971, vol.76(26):6414-6419.
    [252]SHAO J. F., LU Y. F., LYDZBA D. Damage modeling of saturated rocks in drained and undrained conditions [J]. Journal of Engineering Mechanics, ASCE.2004,130(6):733-740.
    [253]BART M., SHAO J.F., LYDZBA D. Coupled hydromechanical modeling of rock fractures under normal stress[J]. Canadian Geotechnical Journal.2004,41(4):686-697.
    [254]KARAMI H. Experimental investigation of poroelastic behaviour of a brittle rock[D]. Lille: University of Lille I,1998.
    [255]Y BERNABE. The effective pressure law for permeability in Chelmsford granite and Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences.1986,23(3): 267-275.
    [256]孙培德.Sun模型及其应用[M].杭州:浙江大学出版社,2002.
    [257]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环保.1999,2:16-19.
    [258]赵阳升.煤岩流体力学[M].北京:煤炭出版社,1993.
    [259]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报.1995,17(3):26-31.
    [260]冯增朝,海吴,赵阳升.裂隙岩体有效应力规律数值试验研究[J].太原理工大学学报.2003,34(6):713-715.
    [261]杨成祥.材料非线性模型的进化识别方法研究[D].沈阳:东北大学,2001.
    [262]LU YING-FA. Modelisation de l'endommagement anisotrope des roches saturees[D]. University des Sciences et Technologies de Lille,2002.
    [263]王学滨,马剑,刘杰,等.基于梯度塑性本构理论的岩样侧向变形分析(Ⅰ):基本理论及本构参数对侧向变形的影响[J].岩土力学.2004,25(6):904-908.
    [264]陈卫忠,杨建平,伍国军,等.低渗透介质渗透性试验研究[J].岩石力学与工程学报.2008,27(2):236-243.
    [265]薛芸,石京平,贺承祖.低速非达西流动机制分析[J].石油勘探与开发.2001,28(5):102-104.
    [266]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.
    [267]李炜,徐孝平.水力学[M].武汉:武汉水利电力大学出版社,2000.
    [268]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [269]THAUVIN F., MOHANTY K. Modeling of non-Darcy flow through porous media[C].Proceeding of SPE Symposium on Reservor Simulation. Nethelands:Kluwer Academic Publishers,1997.
    [270]PHANIKUMAR M. S., MAHAJAN R. L. Non-Darcy natural convection in high porosity metal foams[J]. International Journal of Heat and Mass Transfer.2002,45(18):3781-3793.
    [271]孙明贵,李天珍,黄先伍,等.破碎岩石非Darcy流的渗透特性试验研究[J].安徽理工大学学报(自然科学版).2003,23(2):11-13.
    [272]COMSOL AB. COMSOL Multiphysics User's guide[M]. Los Angeles:COMSOL, Inc.,2007.
    [273]吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报.2005,24(10):1697-1702.
    [274]吴世勇,王鸽,徐劲松,等.锦屏二级水电站TBM选型及施工关键技术研究[J].岩石力学与工程学报.2008,27(10):2000-2009.
    [275]冯夏庭,周辉,张传庆.雅砻江锦屏二级水电站招标设计阶段引水隧洞围岩稳定性及结构设计研究报告[R].武汉:中国科学院武汉岩土力学研究所,2006.
    [276]杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学.2005,22(4):112-118.
    [277]陈炳瑞,冯夏庭,丁秀丽,等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报.2005,24(4):553-558.
    [278]吴世勇,王坚,王鸽.锦屏水电站辅助洞工程地下水及治理对策[J].岩石力学与工程学报. 2007,26(10):1959-1967.
    [279]姚纬明,任旭华.锦屏二级水电站(一期)长探洞渗流反分析研究[J].水力发电.1999(5):9-11.
    [280]任旭华,束加庆,单治钢,等.锦屏二级水电站隧洞群施工期地下水运移、影响及控制研究[J].岩石力学与工程学报.2009,28(增1):2891-2897.
    [281]张继勋,任旭华,姜弘道,等.锦屏二级水电站引水隧洞主要工程地质问题分析[J].水利水电科技进展.2006,26(6):66-70.
    [282]吴世勇,任旭华,陈祥荣,等.锦屏二级水电站引水隧洞围岩稳定分析及支护设计[J].岩石力学与工程学报.2005,24(20):3777-3782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700