用户名: 密码: 验证码:
多维多点地震激励的大跨度空间结构磁流变阻尼器半主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国已经建成了许多规模宏大的大跨度空间建筑。由于自由度庞大、空间受力复杂等特点,大跨度空间结构的抗震安全性越来越受到工程界和学术界的高度关注。磁流变(MR)阻尼器是一种新型半主动控制装置,在土木工程结构的振动控制中得到了广泛的应用研究,然而针对大跨度空间结构振动控制的应用研究还鲜见报道。本文针对大跨度空间结构特点,深入研究了基于MR阻尼器的半主动控制算法,并系统研究了应用MR阻尼器对多维多点地震激励的大跨度空间结构的半主动控制,从而建立了多维多点地震激励的大跨度空间结构基于MR阻尼器的智能半主动控制体系。论文主要研究工作和创新成果如下:
     (1)研究了多维地震激励的大跨度空间结构的MR阻尼器半主动控制。将MR阻尼器半主动控制系统应用到三维空间结构中,推导了线性二次型调节器(LQR)空间最优控制力的表达式,并由此建立了空间结构的LQR半主动控制算法。数值模拟分析了一个安装有MR阻尼器半主动控制系统的平板网架结构在多维地震激励下的控制效果。研究表明,基于MR阻尼器的半主动控制系统对多维地震激励下的大跨度空间结构具有较为理想的控制效果,可以有效地降低大跨度空间结构的位移和加速度反应。
     (2)研究了MR阻尼器基于信赖域的瞬时最优半主动控制算法。从磁流变阻尼器的性能出发,利用精细积分法将半主动控制问题描述成带有约束的最小值优化问题,提出了一种基于信赖域的瞬时最优半主动控制算法。通过一三层框架结构的数值模拟以及在dSPACE平台上一悬臂梁的模型试验对该控制算法的有效性进行了验证。研究表明,所提出的基于信赖域的瞬时最优半主动控制算法在结构均方根值反应的控制上有更好的控制效果;且当结构中采用多个阻尼器时的控制效果较传统控制算法更具优越性。同时发现,半主动控制器时间步长的选取对该控制算法的控制效果有很大的影响。
     (3)研究了多维多点地震激励的大跨度空间结构基于信赖域的MR阻尼器瞬时最优半主动控制。建立了多维多点激励下大跨度空间结构振动控制方程,将基于信赖域的瞬时最优半主动控制算法应用于多维多点激励的大跨度空间结构振动控制。针对大跨度空间结构地震反应的特点,数值模拟分析了应用该信赖域瞬时最优半主动控制算法对一致激励或具有不同视波速的行波激励的大跨度空间结构地震反应的控制效果。研究表明,在多维多点地震激励下,所建立的半主动控制系统可以有效地控制大跨度空间结构的地震反应;且所提出的基于信赖域的瞬时最优半主动控制算法具有更好的稳定性和更优越的控制效果。
     (4)研究了不同激励下大跨度空间结构基于小波包分解的MR阻尼器模态半主动控制。针对大跨度空间结构自由度庞大、频率密集的特点,引入小波包分解方法对结构的地震反应信号进行分解,通过比较不同频段的小波包能量,确定结构主要参振振型,设计模态控制器,从而改进了传统的模态半主动控制算法。其中所设计的Kalman滤波估计器可大幅度减小控制方程的维数和控制系统所需的传感器数目,从而提高了半主动控制系统的效率和实用性。数值仿真分析了应用基于小波包分解的模态半主动控制算法对竖向地震激励的某体育场挑篷结构和一受多维多点地震激励的大跨度空间结构的半主动控制效果。研究表明,所提出的基于小波包分解的模态半主动控制算法能有效地提高传统模态控制算法的控制效果,且对不同的地震激励有更好的适应性。另外,与所提出的基于信赖域的瞬时最优半主动控制算法相比,基于小波包分解的模态半主动控制算法具有更好的控制效率和实用性。
In recent years, lots of long-span building structures have been constructed in China. Because of the huge degree-of-freedom and its complex spatial characteristic, their safety under earthquake excitation has received more and more attention. Magnetorheological (MR) damper have been widely used in the field of civil engineering structures to protect them from earthquake and high winds. However, few efforts have been devoted to the application of MR damper to long-span spatial structures. In this dissertation, MR damper-based semi-active control system is introduced to long-span spatial structure for seismic protection. The main work and achievement are as follows:
     (1) The feasibility of the application of semi-active control system on long-span spatial structure is first studied. The expression of linear quadratic regulator (LQR) optimal control force in three-dimensional cases is deduced. Numerical simulation is performed on a seismic excited lattice structure installed with MR damper. The results show that both the displacement and acceleration responses of the spatial structure can be reduced greatly by the semi-active control system.
     (2) Based on the dynamic characteristic of MR damper, a semi-active control problem is described as a constrained optimization problem by using precise integration method. And a trust-region based instantaneous optimal semi-active control (TIOC) algorithm for magnetorheological (MR) dampers is proposed. The effectiveness of the semi-active control algorithm is verified through a numerical example of a seismic excited three-story frame and a control experiment on an MR damper controlled cantilever beam. Both simulation and experimental results indicate the better control effectiveness of the proposed controller on reducing the root-mean-square responses, and the superiority of the proposed controller during multi-dampers situation is also demonstrated. It is found that the time interval of the controller may greatly affect the control effectiveness of the semi-active controller.
     (3) By using trust-region based instantaneous optimal semi-active control algorithm, the semi-active control of long-span spatial structure is studied. The basic control equation of long-span spatial structure under multi-dimensional and multi-point excitation is first set up. Then the effectiveness of the TIOC controller is evaluated though a numerical example of a long-span spatial structure under both multi-dimensional uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semiactive control systems have the potential for mitigating the responses of full-scale long-span spatial structures under earthquake hazards. The superiority and stability of the proposed TIOC controller is demonstrated by comparing the control effectiveness with that of the traditional semi-active controller in different cases.
     (4) Because of the huge degrees-of-freedom and the close-spaced natural frequencies of long-span spatial structure, a novel modal controller incorporated with wavelet packet transform (WPT) is proposed. In the proposed control system, the WPT method is utilized to decompose the acceleration measurement and select those modes containing most of the WPT energy component as the dominant modes. Then, a modal controller is designed to control these dominant modes. A Kalman-filter observer, which estimates the full controlled modal states from local accelerometer outputs, is designed for reducing the number of required sensors and the dimension of control equation and rendering the controller to be more applicable to spatial structures with a large number of degrees of freedom (DOFs). The effectiveness of the semi-active controller is demonstrated through two numerical examples: An MRF-04K damper controlled stadium roof structure subjected to vertical excitation, and a long-span spatial structure subjected to multi-dimensional and multi-point earthquake excitation. Simulation results show that the control effectiveness of the traditional modal controller can be improved by WPT-based modal controller. And comparing to TIOC controller, WPT modal controller can be more efficient and more practical in real project application.
引文
[1] Tarics A G. Base isolation: a new strategy for earthquake protection of buildings. Journal of Architectural and Planning Research. 1987, 4 (1): 64-76.
    [2] Talbot J P. Base isolated buildings: modelling for the prediction of isolation performance. Acoustics Bulletin. 2004, 29 (6): 26-31.
    [3] Xu Z, Agrawal A K, Yang J N. Semi-active and passive control of the phase I linear base-isolated benchmark building model. 2006, 13 (2-3): 626-648.
    [4] Choi K M, Jung H J, Lee H J, et al. Seismic protection of base-isolated building with nonlinear isolation system using smart passive control strategy. Structural Control and Health Monitoring. 2008, 15 (5): 785-796.
    [5] Shook D A, Roschke P N, Ozbulut O E. Superelastic semi-active damping of a base-isolated structure. Structural Control and Health Monitoring. 2008, 15 (5): 746-768.
    [6]周海俊,孙利民.摩擦型阻尼器的斜拉索减振试验研究.同济大学学报自然科学版. 2006, 34 (7): 864-868.
    [7] Jangid R S, Bhaskararao A V. Harmonic response of adjacent structures connected with a friction damper. Journal of Sound and Vibration. 2006, 292 (3-5): 710-725.
    [8] Boroschek, Ruben L, Farias G, et al. Effect of SMA braces in a steel frame building. Journal of Earthquake Engineering. 2007, 11 (3): 326-342.
    [9] Whittaker A S, Aiken I D. Passive energy dissipation systems for earthquake-resistant design. Structural Engineering in Natural Hazards Mitigation. 1993: 712-717,.
    [10]黄斌,刘晖.智能TMD对高层建筑风振响应的抑制.振动与冲击. 2003, 22 (4): 58-61.
    [11] Ghosh A, Basu B. A closed-form optimal tuning criterion for TMD in damped structures. Structural Control and Health Monitoring. 2007, 14 (4): 681-692.
    [12] Li, H N, Ni, X L. Optimization of non-uniformly distributed multiple tuned mass damper. Journal of Sound and Vibration. 2007, 308 (1-2): 80-97.
    [13] Tait M J, Isyumov N, El D A. Performance of tuned liquid dampers. 2008, 134 (5): 417-427.
    [14] Min K W, Kim H S, Lee S H, et al. Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building. Engineering Structures. 2005, 27 (7): 1101-1112.
    [15] Du H, Boffa, J, Zhang N. Active seismic response control of tall Buildings basedon reduced order model. Proceedings of the American Control Conference, 2006, v 2006: 1132-1137.
    [16] Samali B, Al-Dawod M, Kwok K C, et al. Active control of cross wind response of 76-story tall building using a fuzzy controller. Journal of Engineering Mechanics. 2004, 130 (4): 492-498.
    [17] Bani-Hani K A. Vibration control of wind-induced response of tall buildings with an active tuned mass damper using neural networks. Structural Control and Health Monitoring. 2007, 14 (1): 83-108.
    [18]徐幼麟,张文首.地震作用下智能相邻建筑的主动锚索控制.世界地震工程. 2001, 17 (1): 15-29.
    [19] Bani-Hani K A, Alawneh M R. Prestressed active post-tensioned tendons control for bridges under moving loads. Structural Control and Health Monitoring. 2007, 14 (3), 357-383.
    [20] Nagarajaiah S, Mao Y Q, Saharabudhe S. Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system. Structural Engineering and Mechanics. 2006, 24 (3): 375-393.
    [21]张延年,李宏男.耦合地震作用下的MRD与LRB混合控制结构动力分析.工程力学. 2008, 25 (4): 26-31.
    [22] Park K S, Jung H J, Spencer Jr. B F, et al. Hybrid control systems for seismic protection of a phase II benchmark cable-stayed bridge. Structural Control and Health Monitoring. 2003, 10 (3-4): 231-247.
    [23] Riley M A, Aktan H, Nagarajaiah S. Hybrid structural control for seismic safety. Analysis and Computation. 1994: 307-316.
    [24] Ricciardelli F, Pizzimenti A D, Mattei M. Passive and active mass damper control of the response of tall buildings to wind gustiness. Engineering Structures. 2003, 25 (9): 1199-1209.
    [25] Adhikari R, Yamaguchi H. Sliding mode control of buildings with ATMD. Earthquake Engineering and Structural Dynamics. 1997, 26 (4): 409-422.
    [26] Loh C H, Chao C H. Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-storey building. Journal of Sound and Vibration. 1996, 193 (4): 773-792.
    [27] Tsai H C. Effect of tuned-mass dampers on the seismic response of base-isolated structures. International Journal of Solids and Structures. 1995, 32 (8-9): 1195-1210.
    [28]阎维明,周福霖,谭平.土木工程结构振动控制的研究进展.世界地震工程. 1997, 13 (2): 8-20.
    [29] Kobori T, Takahashi M, Nasu T. Seismic response controlled structure with activevariable stiffness system. Earthquake Engineering and Structural Dynamics. 1993, 22 (11): 925-941.
    [30] Takahashi M, Kobori T, Nasu T, et al. Active response control of buildings for large earthquakes - seismic response control system with variable structural characteristics. Smart Materials and Structures. 1998, 7 (4): 522-529.
    [31]刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报. 1999, 12 (2):166-172.
    [32]李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动. 2000, 20 (4):96-100.
    [33] Patten W N. New life for the Walnut Creek Bridge via semi-active vibration control. Newsletter of the international association for structural control. 1997, 2 (1): 4-5.
    [34]刘季,孙作玉.结构可变阻尼半主动控制.地震工程与工程振动. 1997, 17 (2): 92-97.
    [35]李惠,袁雪松,吴波.粘滞本变阻尼半主动控制器对结构抗震控制的试验研究.振动工程学报. 2002, 15 (1): 25-30.
    [36] Xu Y L, Qu W L, Ko J M. Seismic response control of frame structures using magnetorheological/electrorheological dampers. Earthquake Engineering and Structural Dynamics. 2000, 29 (5): 557-575
    [37] Ribakov Y. Gluck J. Active control of MDOF structures with supplemental electrorheological fluid dampers. Earthquake Engineering and Structural Dynamics. 1999, 28 (2): 143-156
    [38]瞿伟廉,项海帆. ER智能阻尼器对结构半主动控制的试验与分析.地震工程与工程振动. 1998, 18 (4): 111-117
    [39] McMahon S, Makris N. Large-scale ER-damper for seismic protectionof bridges. Proceedings of Structures Congress XV, Portland. 1997: 1451–1455.
    [40]李忠献,吴林林,徐龙河等.磁流变阻尼器的构造设计与阻尼器性能试验研究.地震工程与工程振动. 2003, 23 (1): 128-132.
    [41]杨光,陈祝平.振动系统中磁流变流体阻尼模型的研究.功能材料. 2007, 38 (10): 1587-1589.
    [42] Spencer B F Jr, Carlson J D, Sain M K, et al. On the current status of magnetorheological dampers: Seismic protection of full-scale structures. Proceedings of the American Control Conference, 1997, v 1: 458-462.
    [43] Christenson R E, Spencer B F Jr, Johnson E A. Coupled building control using 'smart' damping strategies. Proceedings of SPIE - The International Society for Optical Engineering. 2000, v 3985: 482-490.
    [44] Dyke S J, Spencer B F Jr, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials andStructures. 1996, 5 (5): 565-575.
    [45] Dyke S J, Spencer B F Jr, Sain M K, et al. Experimental verification of semi-active structural control strategies using acceleration feedback. Proceeding of the 3rd International. Conference on Motion and Vibration Control, Chiba, Japan. 1996: 291-296
    [46] Dyke S J, Spencer B F Jr. Seismic response control using multiple MR dampers. Proceeding of the 2nd International Workshop on Structural Control, Hong Kong. 1996: 163-173
    [47] Dyke S J, Spencer B F Jr. A comparison of semi-active control strategies for the MR damper. Proceedings. Intelligent Information Systems IIS'97. 1997: 580-584.
    [48] Jansen L M, Dyke S J. Semi-active control strategies for the MR damper: a comparative study. Journal of Engineering Mechanics. 1997, 126 (8): 795-803。
    [49] Askari M, Davaie-Markazi A H,Multi-objective optimal fuzzy logic controller for nonlinear building-MR damper system. 2008 5th International Multi-Conference on Systems, Signals and Devices, SSD'08. 2008, p 4632880
    [50] Lu K C, Loh C H, Yang J N, et al. Decentralized sliding mode control of a building using MR dampers. Smart Materials and Structures. 2008, 17 (5): p055006
    [51] Li Z X, Xu L H. Experimental study on magnetorheological damper for semi-active vibration control of civil infrastructures. Transactions of Tianjin University. 2004, 10 (1): 19-23.
    [52]徐龙河.基于MR阻尼器的半主动结构控制的理论与试验研究.天津大学博士论文,2003
    [53] Xu L H, Li Z X. Semi-active multi-step predictive control of structures using MR dampers. Earthquake Engineering and Structural Dynamics. 2008, 37 (12): 1435-1448
    [54] Ying Z G, Ni Y Q, Ko J M. Non-clipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers. Proceedings of SPIE - The International Society for Optical Engineering. 2002, v 4696: 209-218
    [55] Chang C C and Zhou L. Neural network emulation of inverse dynamics for a MR damper. Journal of Structural Engineering. 2002, 128 (2):231-239
    [56] Gu Z Q, Oyadiji S O. Application of MR damper in structural control using ANFIS method. Computers and Structures. 2008, 86 (3-5): 427-436
    [57] Johnson E A, Ramallo J C, Spencer B F Jr, et al. Intelligent base isolation systems. Proceeding of the Second World Conference on Structural Control (2WCSC), Kyoto, Japan. 1998, v1: 367-376
    [58] Spencer B F Jr, Ramallo J C, Johnson E A.“Smart”base isolation systems. Journal of Engineering Mechanics. 2002, 128 (10): 1088-1099
    [59] Spencer B F Jr, Yoshioka H, Ramallo J C. "Smart" base isolation strategies employing magnetorheological dampers. Journal of Engineering Mechanics. 2002, 128 (5): 540-551
    [60] Sahasrabudhe S and Nagarajaiah S. Semiactive control of sliding isolated buildings with MR dampers. Proceeding of 2001 Mechanics and Materials Conference, San Diego, California, USA. 2001
    [61] Christenson R E, Spencer B F Jr, Johnson E A.Coupled building control using active and mart damping strategies. Optimization and Control in Civil and Structural Engineering, Civil-Comp Press. 1999: 187-195
    [62] Ni Y Q, Liu H J, Ko J M. Experimental investigation on seismic response control of adjacent buildings using semi-active MR dampers. Proceedings of SPIE - The International Society for Optical Engineering. 2002, v 4696: 334-344
    [63]姜南,李忠献.相邻结构地震反应MR阻尼器控制的仿真分析.地震工程与工程振动. 2008, 28 (2): 131-136
    [64]姜南.应用MR阻尼器的相邻建筑地震反应半主动控制理论与试验研究.天津大学博士论文,2003
    [65] Jung H J, Spencer B F Jr, Lee I W. Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers. Journal of Structural Engineering. 2003, 129 (7): 873-883
    [66] Erkus B, Abe M, Fujino Y. Investigation of semi-active control for seismic protection of elevated highway bridges. Engineering Structures, 2002, 24 (3): 281-293
    [67] Ruangrassamee A, Jung H J, Kawashima K, et al. Semi-active control of a nonlinear coupled bridge system by the clipped optimal control algorithm. Proceeding of the US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Region, Seattle, Washington, USA. 2001: 183-198
    [68] Wang X, Gordaninejad F. Lyapunov-based control of a bridge using magneto-rheological fluid dampers. Journal of Intelligent Material Systems and Structures. 2002, 13 (7-8): 415-419
    [69] Moon S J, Bergman L A, Voulgaris P G. Sliding mode control of cable-stayed bridge subjected to seismic excitation. Journal of Engineering Mechanics. 2003, 129 (1): 71-78
    [70]史志利,张建华,李忠献.行波激励下MR阻尼器对桥梁地震反应控制效果的研究.特种结构. 2006, 23 (1): 74-77
    [71]杨孟刚,陈政清,胡建华.自锚式悬索桥磁流变阻尼器减震控制研究.土木工程学报. 2006, 39 (11): 84-89
    [72] Johnson E A, Spencer B F Jr, Fujino Y. Semiactive damping of stay cables: a preliminary study. Proceeding of the 17th International Modal AnalysisConference, Kissimmee, Florida, USA. 1999: 417-423
    [73] Johnson E A, Baker G A, Spencer B F Jr, et al. Mitigating stay cable oscillation usingsemiactive damping. Smart Structures and Materials 2000: Smart Systems for Bridges, Structures and Highways (S.C. Liu ed.), Newport Beach, California, USA. 2000, v 3988: 207-216
    [74] Johnson E A, Christenson R E, Spencer B F Jr. Semiactive damping of cables with sag. Proceeding of the International Conference on Advances in Structural Dynamics (ASD2000), Hong Kong. 2000: 327-334
    [75] Johnson E A, Baker G A, Spencer B F Jr, et al. Semiactive damping of stay cables. Journal of Engineering Mechanics. 2007, 133 (1): 1-11
    [76] Yang G, Spencer B F Jr, Carlson J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering structures. 2002, 24 (3): 309-323.
    [77] Dyke S J, Spencer B F Jr, Sain M K, et al. An experimental study of MR dampers for seismic protection. Smart Materials and Structures. 1998, 7 (5): 693-703.
    [78] Spencer B F Jr and Nagarajaiah S. State of the art of structural control. Journal of Structural Engineering. 2003, 129 (7): 845-856.
    [79]王君杰,多点多维地震动随机模型及结构的反应谱分析方法,哈尔滨:国家地震局工程力学研究所,1992
    [80]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状.同济大学学报,29(10),2001,1213-1219
    [81]屈铁军王前信.多点输入地震反应分析研究的进展.世界地震工程,1993, v1: 30-36
    [82]曹资,薛素铎,空间结构抗震理论与设计,北京:科学出版社,2005
    [83]李忠献,林伟,丁阳,行波效应对大跨度空间网格结构地震响应的影响,天津大学学报,2007,40(1):1-8
    [84]梁嘉庆,叶继红,结构跨度对非一致输入下大跨度空间网格结构地震响应的影响,空间结构,2004,10(3):13-18
    [85]薛素铎,董军辉,卞晓芳.新型SMA阻尼器在体育场挑篷结构中的减振效果分析.空间结构. 2004,10 (2): 3~7
    [86]瞿伟廉,徐幼麟. ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制.地震工程与工程振动. 2001, 21 (4): 24-31
    [87] Yamada M et al. Vibration control of large space structures using TMD system EA-I.Proceedings, 15th Asia-Pacific Conference on Structural Engineering and Construction. Cold Coast, Queesland, Australia, 1995.
    [88]范峰,沈世钊.网壳结构的粘滞阻尼减振分析与试验确究.地震工程与工程振动,2000,20 (1):105-111.
    [89] Symans M D, Constantinou, M C. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Engineering Structures. 1999, 21 (6): 469-487.
    [90]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003
    [91] Jalili-Kharaajoo M, Nikouseresht Y, Mohebbi A, et al. Application of linear quadratic regulator (LQR) in displacement control of an active mass damper. Proceedings of 2003 IEEE Conference on Control Applications. 2003, v 1: 754-759.
    [92] Pang M, Wong K K. Predictive instantaneous optimal control of inelastic structures based on ground velocity. Structural Design of Tall and Special Buildings. 2006, 15 (3): 307-324.
    [93] Duncan T E, Guo L, Pasik-Duncan B. Adaptive continuous-time linear quadratic Gaussian control. IEEE Transactions on Automatic Control. 1999, 44 (9): 1653-1662.
    [94] Lu L Y, Chung L L, Chung N H. Modal control of seismic building structures using active members. Proceedings of the American Control Conference. 1997, v 2: 893-897.
    [95]赵斌,吴敏哲.建筑结构振动控制的趋近律滑移模态方法.工程力学. 2001, 18 (3): 67-73.
    [96] Choi K M, Cho S W, Kim D O, et al. Active control for seismic response reduction using modal-fuzzy approach. International Journal of Solids and Structures. 2005, 42 (16-17): 4779-4794.
    [97] Tzou H S, Chai W K. Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang-bang control. Mechanical Systems and Signal Processing. 2007, 21 (1): 417-429.
    [98] Ni Y Q, Chen Y, Ko J M, et al. Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures. 2002, 24 (3): 295-307.
    [99] Xu Z D, Shen Y P, Guo Y Q. Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Materials and Structures. 2003, 12 (1): 80-87.
    [100]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取.地震工程与工程振动. 2001, 21 (2): 130-135.
    [101] Zhou L, Chang C C, Spencer B F Jr. Intelligent technology-based control of motion and vibration using MR dampers. Earthquake Engineering and Engineering Vibration. 2002, 1 (1): 100-110.
    [102] Liu Y, Gordaninejad F, Evrensel C A, et al. Semi-active control of a bridge using controllable magneto-rheological dampers. Proc. of SPIE Conference on Smart Materials and Structures. 2000, v 3988: 199-206.
    [103] Spencer B F Jr, Dyke S J, Sain M K, et al. Phenomenological model of a magnetorheological damper. Journal of Engineering Mechanics. 1997, 123(3): 230-238.
    [104] Chang C C, Roschke P N. Neural network modeling of a magnetorheological damper. Journal of Intelligent Material Systems and Structures. 1998, 9 (9): 755-764.
    [105] Wang D H, Liao W H. Neural network modeling and controllers for magnetorheological fluid dampers. IEEE International Conference on Fuzzy Systems. 2002, v 3: 1323-1326.
    [106] Schurter K C, Roschke P N. Neuro-fuzzy control of structures using acceleration feedback. Smart Materials and Structures. 2001, 10 (4): 770-779.
    [107]沈顺高,张微敬,朱丹等.大跨度机库结构多点输入地震反应分析.土木工程学报. 2008, 41 (2): 17-21.
    [108] Heemels W P M, Van Eijndoven S J L. Stoorvogel A A. Linear quadratic regulator problem with positive controls. International Journal of Control. 1998, 70 (4): 551-578.
    [109]李忠献,徐龙河,姜南等.基于MRF-04K阻尼器的结构减震控制模型试验研究.地震工程与工程振动. 2004, 24(1) : 148-153.
    [110] Duan Y F, Ni Y Q, Ko J M. State-derivative feedback control of cable vibration using semi-active magnetorheological dampers. Computer-Aided Civil and Infrastructure Engineering. 2005, 20 (6): 431-449.
    [111] Yang J N, Akbarpour A, Ghaemmaghami P. New optimal control algorithms for structural control. Journal of Engineering Mechanics. 1987, 113 (9): 1369-1386.
    [112] Tarantino J, Bruch Jr J C, Sloss J M. Instantaneous optimal control of seismically-excited structures using a maximum principle. Journal of Vibration and Control. 2004, 10 (8): 1099-1121.
    [113] Zhong W X. On precise integration method. Journal of Computational and Applied Mathematics. 2004, 163 (1): 59-78.
    [114] Coleman T F, Li Y. On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming. 1994, 67 (2): 189-224.
    [115] Rodriguez J F, Renaud J E, Wujek B A, et al. Trust region model management in multidisciplinary design optimization. Journal of Computational and Applied Mathematics. 2000, 124 (1-2): 139-154.
    [116]李秀领,李宏男. MR阻尼结构振动控制的仿真试验研究.系统仿真学报. 2006, 18 (5): 1343-1346.
    [117]李秀领,李宏男.框架-剪力墙偏心结构的MRD减振试验研究.东南大学学报:自然科学版. 2005, 35 (1): 27-30.
    [118] Lu Z R, Law S S. Force identification based on sensitivity in time domain. Journal of Engineering Mechanics. 2006, 132 (10): 1050-1056.
    [119]赵昕,李杰.基于反应力向量灵敏度的模型参数化方法.振动与冲击. 2002, 21 (4): 61-65.
    [120] Friswell M I, Garvey S D, Penny J E T. Model reduction using dynamic and iterated IRS techniques. Journal of Sound and Vibration. 1995, 186 (2): 311-323.
    [121]张国梁,张志杰,杜红棉等.基于NARX神经网络的冲击加速度计建模研究.弹箭与制导学报. 2008, 28 (3): 284-286.
    [122] Liang F. Bayesian neural networks for nonlinear time series forecasting. Statistics and Computing. 2005, 15 (1): 13-29.
    [123] Kiureghian A D. Coherency model for spatially varying ground motions. Earthquake Engineering and Structural Dynamics. 1996, 25 (1): 99-111.
    [124]白凤龙,李宏男,王国新.多点输入下大跨结构反应谱分析方法研究进展.地震工程与工程振动. 2008, 28 (4): 35-42.
    [125]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析.土木工程学报. 2008, 41 (2): 35-41.
    [126]杨志,韩庆华,周全智.多维多点激励下老山自行车馆屋盖结构的地震反应分析. 2007, 40 (11): 1277-1283.
    [127]全伟,李宏男.多点激励下LRB隔震桥梁地震反应分析.世界地震工程. 2007, 23 (4): 187-193.
    [128]丁阳,林伟,李忠献.大跨度空间结构多维多点非平稳随机地震反应分析.工程力学. 2007, 24 (3): 97-103.
    [129] Zhang Y H, Lin J H, Williams F W, et al. Wave passage effect of seismic ground motions on the response of multiply supported structures. Structural Engineering and Mechanics. 2005, 20 (6): 655-672.
    [130] Ohsaki M. Sensitivity of optimum designs for spatially varying ground motions. Journal of Structural Engineering. 2001, 127 (11): 1324-1329.
    [131]胡聿贤.地震工程学(第二版).北京:地震出版社,2006
    [132] Li Z X, Xu L H. Performance tests and hysteresis model of MRF-04K damper. Journal of Structural Engineering. 2005, 131 (8): 1303-1306.
    [133]李忠献,林伟,丁阳.行波效应对大跨度空间网格结构地震响应的影响.天津大学学报. 2007, 40 (1): 1-8.
    [134]任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动试验与分析.实验力学. 2006, 21 (4): 418-426.
    [135]蒋红旗,刘玉.基于ANSYS的空间网架结构静力和动力分析.钢结构. 2008, 23 (5): 22-24.
    [136] Park K S, Koh H M, Seo C W. Independent modal space fuzzy control of earthquake-excited structures. Engineering Structures. 2004, 26 (2) : 279-289.
    [137] Nagarkatti S P, Rahn C D, Dawson D M, et al. Observer-based modal control of flexible systems using distributed sensing. Proceedings of the 40th IEEE Conference on Decision and Control. 2001, v 5: 4268-4273.
    [138] Singh S P, Pruthi H S, Agarwal V P. Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration. 2003, 262 (3): 563-575.
    [139] Carvalhal R, Lopes V J, Brennan M J. An efficient modal control strategy for the active vibration control of a truss structure. Shock and Vibration. 2007, 14 (6): 393-406.
    [140] Lee H J, Jung H J, Cho S W, et al. An experimental study of semiactive modal neuro-control scheme using MR damper for building structure. Journal of Intelligent Material Systems and Structures. 2008, 19 (9): 1005-1015.
    [141] Shakib H, Fuladgar A. Effect of vertical component of earthquake on the response of pure-friction base-isolated asymmetric buildings. Engineering Structures. 2003, 25 (14): 1841-1850.
    [142] Metwally HM, Awad T, AL-Chaar NA. Vibration control of bridges deck under vertical earthquake component. Proceedings of the American Control Conference. 2000, v 5: 3570-3574.
    [143] Reyes-Salazar A, Lopez-Barraza A, Lopez-Lopez A, Haldar A. Multi-component seismic response analysis - A critical review. Journal of Earthquake Engineering. 2008, 12 (5): 779-799.
    [144]张爱林,张庆亮,王冬梅等. 2008奥运羽毛球馆新型预应力弦支穹顶结构动力特性及地震响应分析. 2008, 23 (6): 1-6.
    [145] Weber F, Feltrin G, Motavalli, et al. Measured linear-quadratic-Gaussian controlled damping. Smart Materials and Structures. 2005, 14 (6) : 1172-1183.
    [146] Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory. 1992, 38 (2): 713-718.
    [147] Adeli H, Kim H. Wavelet-hybrid feedback-least mean square algorithm for robust control of structures. Journal of Structural Engineering. 2004, 130 (1): 128-137.
    [148] Sun Z, Chang CC. Structural damage assessment based on wavelet packet transform. Journal of Structural Engineering. 2002, 128 (10): 1354-1361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700