用户名: 密码: 验证码:
高地应力条件下大型地下洞室群分步开挖稳定性及流变效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了鼓励科技创新,中国政府制定的中长期科技发展计划指出:要重点发展基础科学和前沿科技方面的研究,优先考虑能源、水资源和环境保护等领域。而对于能源和水资源的开发,具体就体现在中国西南地区正在兴建和即将要兴建的几十座世界级的大型水电工程。这些水电工程的发电系统大多采用深埋的大型地下洞室群结构,且地下洞室群工程大多处于高山峡谷的环境条件中。洞址经常处于初始高地应力场之中且地应力场受到地形和山体坡度的强烈影响。在此条件下围岩的脆性破裂现象(如边墙的劈裂裂缝、岩爆等工程事故)在洞群施工期就会明显的出现,一系列大型洞群的高边墙经常发现有陡倾角的脆性劈裂带或大裂缝,如渔子溪、二滩、拉西瓦以及瀑布沟等工程在母线洞都发现了类似的情况,因此对研究复杂条件下的地下洞群分步开挖过程中的稳定性尤为重要。其次,这些地下洞室群的长期稳定性研究也越来越受到重视,因为许多工程的变形与失稳破坏并不是瞬间就发生的,岩体的流变现象处处可见,如地层在地应力的长期作用下发生蠕滑、断裂,洞室群围岩随时间发生长期变形,有的甚至坍塌、破坏或岩层失稳,岩梁、岩板、岩柱屈曲失稳等。本文将以西部正在建设的两个典型的地下洞室群为研究背景,通过实验室试验,大型地质力学模型试验,数值模拟和理论创新,研究了复杂条件下大型地下洞室群的分步开挖稳定性及流变效应,本文的主要研究内容如下:
     (1)单轴瞬时力学特性试验及压缩蠕变试验——首先通过山东大学岩土与结构中心自行研制的三轴伺服试验机对从工程现场所取的典型的硬岩(花岗岩和大理岩)进行了单轴压缩瞬时力学特性试验研究,分析了硬岩的全应力—应变曲线的各个阶段及岩样的变形特征、强度特征和破坏规律,得到了硬岩的的基本力学参数,为下一步进行硬岩的蠕变试验和数值计算提供依据。在研究硬岩的单轴压缩蠕变过程中,研制了一套单轴压缩蠕变装置,通过该装置对锦屏一级地下洞群附近所取的大理岩进行了单轴压缩蠕变试验研究(包括干燥试件和饱水试件),得到了各试件在不同应力水平下的单轴压缩蠕变曲线,特别观察了实验过程中泊松比的变化规律,并在Nishihara模型下进行了模型参数的反演分析,为下一步进行锦屏一级地下洞群的长期稳定性研究提供试验依据。
     (2)新型岩土相似材料的研制——在进行大型地质力学模型试验之前,必须找到一种相似材料来模拟工程岩体。本文在调研了大量国内外相似材料的基础上,研制出了一种由铁精粉、重晶石粉、石英砂、石膏粉及松香酒精溶液混合压制而成的新型(IBSCM)岩土相似材料。通过实验室的单轴抗压强度试验、假三轴试验、巴西试验等经典力学试验研究了这种新型岩土相似材料在不同配比条件下的力学特性,并成功用于多个大型地质力学模型试验中,其中包括本文所研究的大型地下洞群稳定性地质力学模型试验。
     (3)大型地下洞群分步开挖稳定性研究——在进行大型地下洞群分步开挖稳定性的研究中,以大渡河流域双江口电站地下洞群为研究背景,开展了准三维大型地质力学模型试验和数值模拟研究。研制了一套具有自主知识产权的用于地下洞群稳定性研究的三维钢结构模型试验台架,并配备了全自动的液压加载系统,在台架的前后(洞室部位)设置了透明的钢化玻璃观察窗,可观察模型表面在加载过程中的裂纹扩展情况。在整个试验的测试过程中,首次将多种先进的变形测试技术用于监测围岩变形,实现了洞室群模型开挖过程中的高精度的实时测量。在锚固模拟技术中,研制了可施加预应力的微型模型锚索以及发明了埋设注浆锚杆的独特锚固技术。通过模型的超载试验,观测了洞室群围岩从产生微裂纹、起裂、扩展直至产生较大范围劈裂破坏的整个变形破坏过程,并深入研究了劈裂破坏中产生的张开位移。同时对开挖过程和超载过程进行了FLAC~(3D)数值模拟,试验测试结果、数值模拟结果和理论推导结果都进行了对比分析,分析结果对实际工程的施工过程和今后的试验工作起到了一定的指导作用。
     (4)大型地下洞群长期稳定性研究——在研究地下洞群的长期稳定性研究中,基于现场的节理岩体的地质资料及实验室单轴压缩蠕变的试验结果,建立了节理岩体的非定常损伤流变模型。首先引入一个二阶的损伤张量来描述节理岩体的几何初始损伤,其中,节理面的面积、方向、间距和密度作为影响损伤张量的主要因素;其次,以Nishihara模型作为描述岩体时效特性的基本模型,并通过对应原理将一维形式的Nishihara模型推广到三维形式:然后应用等效应变假设,将二阶的损伤张量引入到流变本构方程中;紧接着用单轴压缩蠕变试验得到的相关流变参数的非线性表达式应用到流变本构方程中;在VC++7.0的环境下,以FLAC~(3D)Version 3.0有限差分软件为开发平台,编写了上述本构关系的程序块,实现了节理岩体非定常损伤本构模型的二次开发。最后将此模型同时应用于研究四川大渡河流域双江口地下洞群和四川雅砻江流域的锦屏一级电站地下洞群的长期稳定性研究中,预测了复杂条件下大型地下洞群的长期稳定性,并与弹塑性计算的作了对比分析,为大型地下洞群的长期稳定和安全性提供了合理的评价和建议。
To encourage scientific innovation,the Chinese government has formulated a Mid- to Long-Term Plan for Development of Science and Technology(2006-2020),which highlights research in the basic science and frontier technologies,with priority given to energy,water resources and environmental protection.As for the exploitation of energy and water resources,it is concretely embodied in the several dozens of world-class hydroelectric power stations in southwestern areas of China.The underground cavern groups are mostly adopted in these projects.Moreover,these underground caverns are generally located in the high mountain-canyon areas which give rise to high in-situ stresses in vicinity of the underground cavern groups.The high in-situ stresses are also intensely influenced by the terrains and slope gradients. Under the complicated circumstances,splitting or spalling failures just like falling masses and rockburst frequently appear in the construction process,especially near the side walls of underground caverns in the actual projects just like Yuzixi Hydropower Station,Ertan Hydropower Station,Laxiwa Hydropower Station and Pubugou Hydropower Station.Therefore,it is very significant and necessary to study the stability of surrounding rock masses in the process of stepped excavations. Secondly,the long-term stability of underground cavern groups is also highlighted since the deformation and crippling failures in most projects are not completed in a short time.The rheological phenomena can be found everywhere,for instance, sliding,cracking,even collapse and other failures often occur in the rock masses due to the long-term action of high in-situ stress.In this dissertation,taking two underground cavern groups which are under construction as the engineering background,the laboratory experiments,large-scale geomechanical model test, numerical simulations and theory innovations are comprehensively applied to study the stepped-excavation and long-term stability.In this dissertation,the main investigation work focuses on the following.
     (1) Using the servo-controlled testing machine developed by Geotechnical & Structural Engineering Research Center of Shandong University,uniaxial compressive experiments are performed on the granite and marble specimens.Each stage of the complete stress-strain curve,deformation characteristics,strength characteristics and failure principles are analyzed.The physico-mechanical parameters of rock masses are also obtained,which provide the accurate parameters for the rheological tests and numerical simulations.During the study on the uniaxial compressive rheological tests of marble specimens,a newly apparatus is developed and the uniaxial compressive rheological tests are performed(including a dry specimen and a water-saturated specimen).The relationship curves between axial/circumferential strain and stress levels are obtained,and therefore the variation curves of Poisson's ratio are also obtained.According to the curves,the related rheological parameters are also obtained through inversion analyses on a basis of Nishihara model,which can provide the accurate parameters for long-term stability analyses of the actual projects.
     (2) Prior to the large-scale geomechanical model test,a newly developed analogous material is developed to simulate most rock masses.After conducting literature reviews on the analogous materials all over the world,a new analogous material called IBSCM is developed.This is made from iron mineral powder,barite powder,quartz powder and alcoholic solution with rosin.Some tests such as uniaxial compressive test,quasi triaxial test and Brazilian test have been performed to obtain the physico-mechanical parameters of the composite material under different proportional mixtures.IBSCM has been successfully applied in several large-scale geomechanical model tests including the one which will be introduced in this dissertation.
     (3) In the study on the stability of stepped excavation,taking the underground cavern group of Shuangjiangkou(SJK) Hydropower Station as an engineering background,a large-scale quasi-three geomechanical model test and numerical simulations are performed.The developed steel structure can simulate the complicated circumstances just like high in-situ stress and high overburden depth.It also can apply the true 3D loading on six surfaces of the physical model.An automatic hydraulic loading system is also developed.Transparent windows are installed in the steel frame to monitor the cracking extension on the model surfaces. During the whole physical model test,a few advanced deformation monitoring techniques are applied together firstly,which realize the accurate real-time monitoring in the process of excavations.A unique grouting technique and prestressed cables are adopted in the model test.Through the overloading test,the whole process from micro cracks,crack initiation,crack extension to wide-range failures is monitored.The opening displacements induced by splitting failures are further studied through a proposed displacement prediction formula.The results of test,numerical simulation and theoretical derivation are comparatively analyzed and some principles are obtained,which have made certain guiding significance to the actual projects and future geomechanical model test.
     (4) In the study on the long-term stability of underground cavern groups,a non-constant-parameter damage rheological constitutive model for jointed rock masses is put forward based on the in-situ geological data and uniaxial compressive rheological test results.In this constitutive model,a second-order damage tensor is applied to describe the initial geometry damage of jointed rock masses,thereinto the major influencing factors are joint plane areas,directions,spacing and density.Then, taking the Nishihara model as the basic model to study the time-dependent characteristics of rock masses,its one-dimensional constitutive equations are transformed into three-dimensional forms.The three-dimensional visco-elastic-plastic damage constitutive equations are deduced by introducing the second-order damage tensor into the rheological constitutive equations on a basis of the equivalent strain hypothesis.Next,the related parameters are substituted by the nonlinear expressions of the rheological parameters obtained from the uniaxial compressive rheological tests.Eventually,taking FLAC~(3D) Version 3.0 as the development platform,the non-constant-parameter damage rheological constitutive model for jointed rock masses are compiled in the environment of VC++7.0,which realize the secondary development of FLAC~(3D).Experimental results and this new constitutive model are applied to the engineering practice of rock mass engineering in the study on long-term stability of underground cavern groups in SJK Hydropower Station and Jinping First Stage Hydropower Station.The long-term stability of rock engineering under complicated circumstances is predicted and compared with the elasto-plastic analyses,which brings forward reasonable evaluation and suggestion for long-term stability and safety of rock engineering.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]Wen Jiabao.Science and China's modernization[J].Science,2008,322:p.649.
    [3]Sun Jun,Wang Sijing.Rock mechanics and rock engineering in China:developments and current state-of-the-art[J].Int.J.Rock Mech.Min.Sci.,2000(37):447-465.
    [4]孙钧.迎接新世纪的岩石力学若干进展[A].第五届全国岩石力学与工程大会论文集[C].上海:中国科学技术出版社,1998:1-10.
    [5]王思敬主编.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004,9.
    [6]贾若祥.西部地区水电资源开发利用的利益分配机制研究[J].中国能源,2007,29(6):5-11.
    [7]程回洲,罗锦华,邴凤山.替代能源“全攻略”-水电篇[J].中国电力企业管理,2006,8:8-11.
    [8]谢和平.深部高应力下的资源开采现状、基础科学问题与展望[M].北京:中国环境科学出版社,2002.
    [9]王学潮,马国彦.南水北调西线工程及其主要工程地址问题[J].工程地质学报,2002,10(1):38-45.
    [10]Malan DF,Basson FRP.Ultra-deep mine:the increased potential for squeezing conditions[J].Journal of South African Institute of Mining and Metallurgy,1998,98(11):353-363.
    [11]古德生.金属矿床深部开采中的科学问题[C].香山科学会议编.科学前沿与未来,第175次香山科学会议,北京:中国环境科学出版社,2002:193-201.
    [12]冯夏庭.深部大型地下工程开采与利用中的几个关键岩石力学问题[C].科学会议编.科学前沿与未来,第175次香山科学会议,北京:中国环境科学出版社,2002:202-211.
    [13]周维垣.高等岩石力学[M].北京:水利电力出版社,1989,3.
    [14]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998,10.
    [15]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999,6.
    [16]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999,12.
    [17]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999,4.
    [18]J.Slizowski,L.Lankof.Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems:rheological properties[J].Applied Energy,2003,75(1/2):137-144.
    [19]Martin P.J.Schopfer,Gernold Zulauf.Strain-dependent rheology and the memory of plasticine[J].Tectonophysics,2002,354(1/2):85-99.
    [20]Kazuhiko Miura,Yoshiaki Okui,Hideyuki Horii.Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system[J].Mechanics of Materials,2003,35(3/6):587-601.
    [21]Li Yongsheng,Xia Caichu.Time-dependent tests on intact rocks in uniaxial compression[J].Int.J.Rock.Mech.Min.Sci.and Geomech.Abstr.,2000,37(3):467-475.
    [22]Chunhe Yang,J.J.K.Daemen,Jian-Hua Yin.Experimental investigation of creep behavior of salt rock[J].Int.J.Rock.Mech.Min.Sci.,1999,36(3):233-242.
    [23]Maranini E,Brignoli M.Creep behaviour of a weak rock:experimental characterization[J]. Int.J.Rock.Mech.Min.Sci.,1999,36(1):127-138.
    [24]Chryssanthakis P,Barton N.Dynamic loading of physical and numerical models of very large underground openings,Proc.of 8th Int.Conference on Rock Mech.,1995,3:Tokyo,1313-1316.
    [25]Dasgupta B,Dham R,Lorig L J.Three dimensional discontinue analysis of the underground power house for Sardar Sarovar Project,India,Proc.of 8th Int.Conference on Rock Mechanics,1995.2:Tokyo,551-554.
    [26]Dasgupta B,Sharma M K V,Verman,et al.Design of underground caverns for Tehri Hydropower Project,India by numerical modeling.Proc.of 9th Int.Conference on Rock Mech.,1999.1.Paris,357-358.
    [27]Fan S C,Jiao Y Y,Zhao J.On modeling of incident boundary for wave propagation in jointed rock masses using discrete element method[J].Computers and Geotechnics,2004,31(1):57-66.
    [28]Johansson E J W,Kuula H.Three-dimensional back-analysis calculations of Viikinmaki underground sewage treatment plant in Helsinki.Proc.of 8th Int.Conference on Rock Mech.,1995.2:Tokyo,597-600.
    [29]Jiao Y Y,Fan S C,Zhao J.Numerical investigation of joint effect on shock wave propagation in jointed rock masses[J].Journal of Testing and Evaluation,2005,33(3),197-203.
    [30]Ramamurthy T,Gupta K K,Ghazvinian A H.Stability of underground opening from equivalent material modeling.Proc.of 8th Int.Conference on Rock Mech.,1995,3:Tokyo,1363-1366.
    [31]Syrnikov N M,Sisov I A,Osipov K G.Dissipation processes in a rock mass and the problem of long-term stability of underground construction.Proc.of 8th Int.Conference on Rock Mech.,1995.3:Tokyo,1371-1374.
    [32]邬爱清,丁秀丽,陈胜宏,等.DDA方法在复杂地质条件地下厂房围岩变形与破坏特征分析中的应用研究[J].岩石力学与工程学报,2006,25(01):1-8.
    [33]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究[J].岩石力学与工程学报,2005,24(19),3476-3481.
    [34]余卫平,汪小刚,杨健,等.地下洞室群围岩稳定性分析及其结果的可视化[J].岩石力学与工程学报,2005,24(20):3730-3736.
    [35]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [36]余卫平,耿克勤,汪小刚.某水电站地下厂房洞室群围岩稳定分析[J].岩土力学,2004,25(12):1955-1960.
    [37]Sitharam T G,Latha G M.Simulation of excavations in jointed rock mass using a practical equivalent continuum approach[J].Int.J.of Rock Mech.& Min.Science,2002,39,517-525.
    [38]Yoshida H,Horii H,Uno H.Micromechanics-based continuum theory for jointed rock mass and analysis of large-scale cavern excavation.Proc.of 8th Int.Conference on Rock Mech.,1995.2:Tokyo,689-692.
    [39]Lee Y N,Suh Y H,Kim D Y,et al.Three-dimensional behavior of large rock caverns,Proc.of 8th Int.Conference on Rock Mechanics,1995,2:Tokyo,505-508.
    [40]Stabel B,Samani F B,Masjed-Soleiman HEPP.Iran Rock Engineering Investigation,Analysis,Design and construction.Proc.of 10th Congress of the ISRM,South Africa,2003,1147-1154.
    [41]Hibino S,Motojma M.Anisotropic behavior of jointed rock mass around large-scale caverns.Proc.of 9th Int.Conference on Rock Mech.1999.1:Paris,385-388.
    [42]安红刚.大型洞室群稳定性与优化的综合集成智能方法研究[J].岩石力学与工程学报,2003,22(10):1760-1766.
    [43]王水林,李春光,史贵才,等.小湾水电站地下厂房洞室群弹脆塑性分析[J].岩石力学与工程学报,2005,24(24):4449-4454.
    [44]朱维申,李晓静,郭彦双,等.大型地下洞室群稳定性的系统性研宄[J].岩石力学与工程学报,2004,23(10),1689-1693.
    [45]朱维申,孙爱花,隋斌.以二滩为工程背景的洞室群开挖系统分析[J].地下空间与工程学报,2005,1(1),15-18.
    [46]李宁,陈蕴生,陈方方,等.地下洞室围岩稳定性评判方法新探讨[J].岩石力学与工程学报,2006,25(09),1941-1944.
    [47]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [48]朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [49]邵国建.初始地应力场对洞室稳定性的影响[J].水文地质工程地质,2003,(6):46-49.
    [50]Shi G.H.,Goodman R.E.Underground support design using block theory to determine key block bolts requirements.Proc.Symp.on Rock Mech.in Design of Tunnels,1983:81-105.
    [51]Shi G.H.Numerical Manifold Method.In:Yuzo Ohnishi,eds.Proc.of ICADD-2.The Second International Conference on Analysis of Discontinuous deformation.Kyoto,Japan,1997:1-35.
    [52]朱伯芳.有限单元法原理与应用[M].北京:水利电力出版社,1979,8.
    [53]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].北京:中国水利水电出版社,2005.
    [54]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,(18):32-36.
    [55]陈安敏,顾金才,沈俊.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):3785-3789.
    [56]Fumagalli E.Statical and geomechanical model[M].New York:Springer,1973.
    [57]Heuer R E,Hendron A J.Geo-mechanical model study of the behavior of underground openings in rock subjected to static loads(report 2)-tests on unlined openings in intact rock[R].AD Report,1971.
    [58]Hendron A J,Paul Engeling,Aiyer A K,et al.Geo-mechanical model study of the behavior of underground openings in rock subjected to static loads(report 3)-tests on lined openings in jointed and intact rock[R].AD Report,1972.
    [59]Müller L,Reik G,Fecker E,Sharma B.Importance of model studies on Geomechanics.In:Proceedings of the International Conference on Geomechanical model.Bergamo,Italy:ISRM,1979.
    [60]Fumagalli E.Geomechanical models of dam foundation.In:Proceedings of the International Colloquium on Physical Geomechanical models.Bergamo,Italy:ISRM,1979.
    [61]Barton NR.A low strength material for simulation of the mechanical properties of intact rock mechanics.In:Proceedings of the International Conference on Geomechanical model.Bergamo,Italy:ISRM,1979.
    [62]da silveira AF,Azeredo MC,Esteves Fereira MJ,Pereira da costa CA.High density and low strength materials for geomechanical models.In:Proceedings of the International Conference on Geomechanical model.Bergamo,Italy:ISRM,1979.
    [63]刘胜利,施成华,彭立敏等.小间距隧道施工期间洞室与结构的稳定性评判[J].西部探 矿工程,2003,82(3):98-111.
    [64]张兴来,钟云健.小净距并行隧道围岩稳定的分析方法及应用[J].重庆交通学院学报,2003,22(1):5-8.
    [65]黄拔洲,陈少华,秦峰.小净距隧道在京福高速公路上的实践[J].重庆大学学报(自然科学版),2003,26(10):19-22.
    [66]P.H.S.W.Kulatilake,W.He,J.Urn and H.Wang.A physical model study of jointed rock mass strength under uniaxial compressive loading[J].Int.J.Rock Mech.& Min.Sci.,1997,34:3-4,paper No.165.
    [67]Khosrow Bakhtar.Impact of joints and discontinuities on the blast-response of responding tunnels studied under physical modelling at l-g[J].Int.J.Rock Mech.& Min.Sci.,1997,34:3-4,paper No.021.
    [68]Jian Liu,Xia-Ting Feng et al.Stability assessment of the Three-gorges Dam foundation,China using physical and numerical modeling-Part Ⅰ:physical model tests[J].Int.J.Rock Mech.&Min.Sci.,2003,40:609-631.
    [69]Li Zhongkui,Liu Hui,Dai Rong,Su Xia.Application of numerical analysis principles and key technology for high fidelity simulation to 3-D physical model tests for underground caverns[J].Tunnelling and Underground Space Technology,2005,20:390-399.
    [70]R.Castro,R.Trueman and A.Halim.A study of isolated draw zones in block caving mines by means of a large 3D physical model[J].Int.J.Rock Mech.& Min.Sci.,2007,44:860-870.
    [71]Jong-ho Shin,et al.Model testing for pipe-reinforced tunnel heading in a granular soil.Tunnelling and Underground Space Technology,2008,23,241-250.
    [72]M.A.Meguid,et al.Physical modeling of tunnels in soft ground:A review.Tunnelling and Underground Space Technology,2008,23,185-198.
    [73]韩伯鲤,陈霞龄,宋一乐.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [74]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-52.
    [75]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学试验[J].水利学报,2002,33(5):31-36.
    [76]陈安敏,顾金才,沈俊.岩土工程多功能模拟实验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [77]孙晓明,何满朝,刘成禹.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870-2874.
    [78]林刚.连拱公路隧道的合理施工方法研究[D].西南交通大学硕士论文,2002.
    [79]于宁.盾构隧道预应力管片的模型试验与设计方法研究[D].同济大学博士学位论文,2004.
    [80]田尚志.近接隧道施工技术模型试验研究[D].西南交通大学硕士论文,2000.
    [81]刘洪波.广州地铁越秀公园站近接隧道施工力学行为模型试验研究[D].西南交通大学硕士论文,2001.
    [82]刘涛,沈明荣,陶履杉.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J].岩石力学与工程学报.2006,25(9):1802-1808.
    [83]申玉生,赵玉光,高红兵.连拱隧道结构内力样式的模型试验研究及有限元分析[J].现代隧道技术,2005,42(1):6-10.
    [84]王戍平.破碎围岩隧道的模拟试验研究[D].浙江大学博士学位论文,2004.
    [85]周生国,黄伦海,蒋树屏等.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报.2005,1(2):188-191.
    [86]李勇,张强勇等.八字岭分岔式隧道的三维地质力学模型试验研究[J].岩土力学,2006,27(supp.):586-590.
    [87]Li Yong,Li Xiaojing,Zhu Weishen et al.Study on a new type of analogy material for geotechnical tests and its applications[C].Advanced Materials Research,2008,V33-37:693-698.
    [88]Li Y.,Zhu W.S.,et al.Development of a new type of steel structure rack apparatus for 3D geomechanical model tests and structural integrity assessment[C].Proceedings of the International Young Scholars' Symposium on Rock Mechanics-Boundaries of Rock Mechanics Recent Advances and Challenges for the 21st Century,2008,907-911.
    [89]Li Yong,Zhu Weishen et al.Numerical simulation of a branching-out tunnel construction process using Flac3D[C].The proceedings of 42nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium,San Francisco,2008.(in press)
    [90]李勇,朱维申等.新型岩土相似材料的力学试验研究及应用[C].隧道建设(增刊),第六届海峡两岸隧道与地下工程学术与技术研讨会,2007,8:197-200.
    [91]Zhang Q.Y,Li Y.et al.The failure process analysis on a numerical model of a branching-out tunnel under lateral overload action.Advanced Materials Research,2008,V33-37:129-132.
    [92]Zhang Qiangyong,Zhu Weishen,Li Yong,et al.Development of new-type similar materials of geomechanics models test for geotechnical engineering[C].Key Engineering Materials,V326-328,1781-1784.
    [93]张强勇,李术才,李勇,王汉鹏.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(supp.2),4051-4059.
    [94]王汉鹏,李术才,张强勇,李勇,郭小红.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847.
    [95]王汉鹏,李术才,张强勇,李勇.地质力学模型试验过程中关键技术研究[J].实验科学与技术,2006,3:4-8.
    [96]王汉鹏.分岔式隧道设计施工的关键技术研究[D].山东大学博士学位论文,2007.
    [97]朱维申,李勇等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [98]Griggs,D.T.Creep of rocks[J].Journal of Geology,1939,47:225-251.
    [99]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002,5.
    [100]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出社,2001,5.
    [101]张永良,周祖辉,黄荣樽.大庆泥岩的蠕变模型及其曲线拟合[J].华东石油学院学报,1985,3:30-39.
    [102]周祖辉,黄荣樽,庄锦江.大庆泥岩的三轴蠕变试验研究[J].华东石油学院学报,1985,4:30-39.
    [103]钟时猷,马明军.软弱岩石蠕变破坏规律的探讨[J].中南矿冶学院学报,1987,18(5):494-501.
    [104]陈智纯,赵鹏.软岩流变过程中的超常现象分析[J].煤炭学报,1995,20(2):135-138.
    [105]郭志.软岩力学特性研究[J].工程地质学报,1996,4(3):79-84.
    [106]郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75-79.
    [107]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55-60.
    [108]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3): 246-251.
    [109]Liao Hongjian,Ning Chunming,Masaru Akaishi.Effect of the time-dependent behaviour on strain softening of diatomaceous soft rock[J].Metals and Materials International,1998,4(5):1093-1096.
    [110]廖红建,宁春明,俞茂宏等.软岩的强度-变形-时间之间关系的试验分析[J].岩土力学,1999,18(6):690-693.
    [111]廖红建,苏立君,殷建华.硅藻质软岩的三维粘弹塑性模型分析[J].岩土力学,2004,25(3):337-341.
    [112]Li Yongsheng,Xia Caichu.Time-dependent tests on intact rocks in uniaxial compression[J].Int.J.Rock.Mech.Min.Sci.and Geomech.Abstr.,2000,37(3):467-475.
    [113]赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报,2001,20(4):478-480.
    [114]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [115]Sun Jun.A study on 3-D nonlinear rheological behaviour of soft rocks[A].In:Edited by He-Hua Zhu,Jin-Chun Chai,Mao-Song Huang,Practice and advance in geotechnical engineering[J].Shanghai:2002,10.
    [116]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(5):77-79.
    [117]陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912.
    [118]唐礼忠,潘长良.岩石在峰值荷载变形条件下的松弛试验研究[J].岩土力学,2003,24(6):940-942.
    [119]刘光廷,胡昱,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [120]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [121]冒海军,杨春和,刘江等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程报,2004,25(10):1204-1209.
    [122]袁海平,曹平,万文等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报,2004,23(10):1575-1581.
    [123]万玲,彭向和,杨春和等.泥岩蠕变行为的试验研究及其描述[J].岩土力学,2005,26(6):924-928.
    [124]姜永东,鲜学福,熊德国等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报.2005,27(12):1478-1481.
    [125]徐卫亚,周家文,杨圣奇等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报,2006,25(S1):3093-3097.
    [126]李铀,朱维申,彭意等.某地红砂岩多轴受力状态蠕变松弛特性试验研究[J].岩土力学,2006,27(8):1248-1252.
    [127]范庆忠,高延法,崔希海等.软岩非线性蠕变模型研究[J].岩土工程学报.2007,29(4):505-509.
    [128]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
    [129]梁卫国,赵阳升.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004,23(3): 391-394.
    [130]梁卫国,赵阳升,徐素国.240℃内盐岩物理力学特性的试验研究[J].岩石力学与工程学报,2004,23(14):2365-2369.
    [131]杨吉根.略谈我国核废物盐岩处置的前景[J].华东地质学院学报,1989,12(2):55-62.
    [132]Sun R J(美).水力压裂法地下处置放射性废物[M].全惟俊,简永年译.北京:原子能出版社,1987.
    [133]王清明.关于我国盐矿水采溶洞利用问题的刍议[J].中国井矿盐,2002,33(1):17-20.
    [134]Staudtmeister K,Rokahr R B.Rock mechanical design of storage caverns for natural gas in salt rock mass[J].Int.J.Rock Mech.Min.Sci.,1997,34(3/4):646.
    [135]Cuevas C D L,Miralles L,Pukyo J J.The effect of geological parameters on radiation damage in salt rock:application to salt rock repositories[J].Nuclear Technology,1996,114(3):325-336.
    [136]N.D.Cristescu,U.Hunsche.Time effects in rock mechanics[M].New York:John Wiley and Sons,1998.
    [137]Yang Chunhe.Time-dependent behaviour of rock salt-Experimental investigation and theoretical analysis[D].University of Nevada,Reno,2000,10.
    [138]Munson D.E.,Dawson R R.Salt constitutive model using mechanism maps[A].In:Hardy H R Jr,Langer M ed.The mechanical behaviour of salt[C].Claustal-Zellerfeld:Trans Tech Publ.,1984:717-737.
    [139]Lux K H,Heuserman S.Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws[A].In:Schreiber B C,Harner H L ed.Proc.6th International Symp.on Salt.Alexandria[C],USA:The Salt Institute,1983,1:417-435.
    [140]Yang Chunhe,Daemen J.J.K.,Yin Jianhua.Experimental investigation of creep behaviour of salt rock[J].Int.J.Rock Mech.Mine Sci.,1998,36(2):233-242.
    [141]Yang Chunhe,Bai Shiwei.Analysis of stress relaxation behaviour of salt rock[A].In:Proceedings of the 37th U.S.Rock Mechanics Symposium[C].New York:John Willey & Sons,1999,935-938.
    [142]Haupt M.A constitutive law for rock salt based on creep and relaxation tests[J].Rock Mechanics and Rock Engineering,1991,24:179-206.
    [143]周时光,阳友奎,李晓东.岩盐力学特性的刚性试验研究[J].西南工学院学报,1994,9(2):42-46.
    [144]邱贤德.岩盐流变特性的研究[J].重庆大学学报(自然科学版),1995,18(4):96-103.
    [145]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [146]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [147]刘绘新,张鹏,盖峰.四川地区盐岩蠕变规律研究[J].岩石力学与工程学报,2002,21(9):1290-1294.
    [148]杨春和,曾义军,吴文等.深层盐岩本构关系及其在石油钻井工程中的应用研究[J].岩石力学与工程学报,2003,22(10):1678-1682.
    [149]梁卫国,赵阳升.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004,23(3):391-394.
    [150]陈卫忠,王者超,伍国军等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2004,23(3):391-394.
    [151]何学秋,林柏泉.突出危险煤的流变性质及突出过程的能量耗散[A].中国煤炭学会首届青年科技工作者学术讨论会[C].1992:1-7.
    [152]吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报,1996,15(4):328-332.
    [153]曹树刚,鲜学福.煤岩蠕变损伤特性的试验研究[J].岩石力学与工程学报,2001,20(6):817-821.
    [154]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [155]姚爱军,黄福昌,张宗社.宽厚煤柱煤岩体流变力学特性试验研究[J].中国矿业,2003,12(2):52-55.
    [156]岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J].河南理工大学学报(自然科学版),2005,24(4):271-273.
    [157]Malan D.F.Simulating the time-dependent behaviour of excavations in hard rock[J].Rock mechanics and rock engineering,2002,35(4):225-254.
    [158]Matsushima S.On the flow and fracture of igneous rocks[J].Bull:Disast.Pre.Res.Inst.,Kyoto Univ.,1960,36:1-9.
    [159]Jaeger J.C.,Cook N.G.W.Fundamentals of rock mechanics[M].New York:Chapman &Hall,1979.
    [160]Ito H.,Sasajima S.A ten-year creep experiment on small rock specimens[J].Int.J.Rock Mech.Mine.Sci.and Geomech.Abstr.,1987,24(2):113-121.
    [161]陶振宇.岩石流变试验与现场观测的比较分析[J].水利学报,1985,26(10):49-54.
    [162]陈宗基,康文法.岩石的封闭应力,蠕变和扩容及本构方程[J].岩石力学与工程学报,1989,8(3):191-200.
    [163]王子潮,王绳祖.岩石幂次蠕变律常数的试验测定[J].岩石力学与工程学报,1989,8(3):191-200.
    [164]王子潮,王绳祖.地壳岩石半脆性非均匀蠕变本构模型[J].岩石力学与工程学报,1990,9(2):164-173.
    [165]扬建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77-80.
    [166]Xu Ping,Yang Tingqing.A study of the creep of granite[A].In:Proc.Of IMMM'95[C].Bejing:International Academic Publishers,1995,245-249.
    [167]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):246-251.
    [168]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312-322.
    [169]Malan D.F.,Vogler U.W.,Drescher K.Time-dependent behaviour of hard rock in deep level goldmines[J].Journal of the South African Institute of mining and Metallurgy,1997:135-137.
    [170]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报,1997,25(2):1-7.
    [171]金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(2):31-33.
    [172]Maranini E,Brignoli M.Creep behaviour of a weak rock:experimental characterization[J].Int.J.Rock Mech.Mine.Sci.,1999,36(1):127-138.
    [173]陈祖安.从强化弱化性质建立大理岩本构模型[J].地球物理学进展,1999,14(1):64-68.
    [174]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大 学学报(自然科学版),1999,22(5):99-103.
    [175]王金星.单轴应力下花岗岩蠕变变形特征的试验研究[D].焦作工学院硕士论文,2000,5.
    [176]刘泉声,许锡昌,山口勉等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [177]刘泉声,陈刚.花岗岩时-温等效原理的进一步验证[J].岩石力学与工程学报,2003,22(10):1601-1606.
    [178]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [179]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(supp.):203-206.
    [180]邓广哲,王广地.北山花岗岩热粘弹性流变特性分析[J].岩石力学与工程学报,2004,23(S1):4368-4372.
    [181]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    [182]Curran J.H.and Crawford A.M..A comparative study of creep in rock and its discontinuities.Proc.of the 21st U.S.National Rock Mechanics Symposium,Rolla,Missouri,1980:596-603.
    [183]Bowden R.K.Time-dependent behaviour of joints in shale,M.A.Sc.Thesis,University of Toronto,Ontario,1984.
    [184]刘家应.黄崖不稳定边坡的蠕变特征[J].岩土力学,1982,8:1-8.
    [185]黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学,1983,4(1):39-46.
    [186]许东俊,罗鸿禧.葛洲坝工程基岩稳定性的试验研究[J].岩土力学,1983,4(1):1-15.
    [187]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989:1-11.
    [188]周火明.三峡船闸边坡卸荷带岩体力学性质试验研究[A].见:工程岩石力学[C].武汉:武汉工业大学出版社,1998,157-160.
    [189]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(supp.):1882-1885.
    [190]杨松林.不连续岩体弹粘性力学研究[博士后研究报告][R].南京:河海大学,2003,6.
    [191]沈明荣,朱银桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226.
    [192]沈明荣,张学进.规则齿形结构面剪切蠕变本构方程的参数分析[J].地下空间与工程学报,2006,2(6):907-911.
    [193]J.C.耶格,N.G.W.库克著,中国科学院工程力学研究所译.岩石力学基础[M].北京:科学出版社,1981.
    [194]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):334-353.
    [195]吴立新,王金庄,孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35.
    [196]芮勇勤,徐小荷,马新民等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报,1999,20(6):612-614.
    [197]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33.
    [198]彭苏萍,王希良,刘咸卫等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报, 2001,26(2):149-152.
    [199]王崇革,刘泉声,刘双跃等.单轴应力下岩石的热-粘弹塑性模型研究[J].岩石力学与工程学报,2002,21(增2):2341-2344.
    [200]G.N.Boukharov,Chanda M W.The three processes of brittle Crystalline rock creep[J].Int.J.Rock Mech.Min.Sci.& Geomech..Abstr.,1995,32(4):325-335.
    [201]金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335-361.
    [202]邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [203]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96-98.
    [204]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [205]韦立德,徐卫亚,朱珍德等.岩石粘弹塑性模型的研究[J].岩土力学,2002,23(5):583-586.
    [206]陈沅江,潘长良,曹平等.一种软岩流变模型[J].中南工业大学学报(自然科学版),2003,34(1):16-20.
    [207]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005,8:43-45.
    [208]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642.
    [209]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.
    [210]L.Jurina,G.Maier,K.Podolak.On Model Identification Problem in Rock Mechanics[C].Proc.Symp.On the Geotechnics of Structurally Complex Formations,1977,Capri.
    [211]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel[J].Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [212]Wang Zhiyin,Liu Huaiheng.Back analysis of measured rheologic displacement of underground openings[A].In:Proc.6th conf.On Num Meth.In Geo.[C]Austria:[s.n.],1988:2291-2297.
    [213]Wang Zhiyin,Li Yunpeng.Back analysis of viscoparameters and strata stress in underground openings[A].In:Proc.Int.Symp.On Underground Eng[C].New Delhi:[s.n.],1988:181-186.
    [214]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,24(5):498-503.
    [215]朱元林,何平.冻土在振动荷载作用下的三轴蠕变模型[J].自然科学进展,1998,8(1):60-62.
    [216]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564.
    [217]王红伟,王希良,彭苏萍.软岩巷道围岩流变特性试验研究[J].地下空间,2001,21(5):361-363.
    [218]陈炳瑞,冯夏庭,丁秀丽等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,24(2):207-211.
    [219]陈炳瑞,冯夏庭,丁秀丽等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与 工程学报,2005,24(4):553-558.
    [220]胡斌,冯夏庭,王国峰等.龙潭水电站左岸高边坡泥板岩蠕变参数的智能反演[J].岩石力学与工程学报,2005,24(7):3064-3070.
    [221]罗润林,阮怀宁,黄亚哲.岩体初始地应力场的粒子群优化反演及在FLAC3D中的实现.长江科学院院报,2008,25(4):73-76.
    [222]李庆芬主编.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2006,3.
    [223]Rabotnov Y N.On the equations of state for creep[J].Progress in Applied Mechanics,1963:307-315.
    [224]Janson J,Hult J.Fracture mechanics and damage mechanics,a combined approach[J].J.de Mech.Appl.,1977,1(1):59-64.
    [225]易顺民,朱珍德著.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.
    [226]Kranz R L.Crack growth and development during creep of Barre granite[J].Int.J.Rock Mech.Min.Sci & Geomech.Abstract,1979,16(1):23-35.
    [227]Kranz R L.Crack-crack and crack-pore interactions in stressed granite[J].Int.J.Rock Mech.Min.Sci & Geomech.Abstract,1979,16(1):37-47.
    [228]Korzeniowski W.Rheological model of hard rock pillar[J].Rock Mech.Rock Eng.,1991(24):155-166.
    [229]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81-90.
    [230]陈有亮.岩石流变实验系统及岩石蠕变时效断裂特性的研究[D].同济大学博士论文,1994.
    [231]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报,1996,24(5):504-508.
    [232]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报,2000,6(6):491-496.
    [233]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480-483.
    [234]杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427.
    [235]徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295-298.
    [236]徐卫亚,杨松林.断续结构岩体流变力学分析[A].首届全球华人岩土工程论坛论文集[C].上海,2003:71-82.
    [237]Costin.L.S.Time-dependent damage and creep of brittle rock[A].Damage Mechanics and Continuum Modeling[C].ASCE,New York,1985:25-38.
    [238]Aubertin M,Gill D E,Ladayi B.An internal variable model for the creep of rock salt[J].Rock Mech.and Rock Eng.,1991,24:81-97.
    [239]Aubertin M,Sgaoula J,Gill D E.A viscoplastic-damage model for soft rocks with low porosity[A].In:Proc.of 8th Int.Cong,on Rock Mechanics[C].1995,1:283-289.
    [240]Chan K S,Brodsky N S,Fossum A F,et al.Damage-induced non-associated inelastic flow in rock salt[J].Int.J.Plasticity,1994,10:623-642.
    [241]Fossum A F,Brodsky N S,Chan K S,et al.Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J].Int.J.Rock Mech.Min.Sci.& Geom.Abst.,1993,30:1341-1344.
    [242]陈智纯,缪协兴,茅献彪.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术,1994,22(8):34-36.
    [243]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [244]郑永来,夏颂佑.岩石粘弹性连续损伤本构模型[J].岩石力学与工程学报,1996,15(supp.):428-432.
    [245]Lux K H,Hou Z.New developments in mechanical safety analysis of repositories in rock salt[A].Proc.Int.Conf.on Radioactive Waste Disposal,Disposal Technologies & Concepts[C].Berlin:Springer Verlag,2000:281-286.
    [246]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,1:10-15.
    [247]Wang G J.A new constitutive creep-damage model for salt rock and its characteristics[J].Int.J.Rock Mech.& Min.Sci.,2004,41(3):1-7.
    [248]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报,2005,24(23):4253-4259.
    [249]李建林,王乐华,刘杰等.岩石边坡工程[M].北京:中国水利水电出版社,2006.
    [250]卫管一,张长俊.岩石学简明教程(第二版)[M].北京:地质出版社,2000,5.
    [251]杨圣奇.岩石流变力学特性的研究及其工程应用[D].河海大学博士论文,2006.
    [252]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [253]李晓红,卢义正,康勇,饶邦华.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [254]张强勇,李术才,郭小红.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [255]袁文忠.相似理论与静力学模型试验[M].西安:西安交通大学出版社,1998.
    [256]Yoshida H and Horii H.Micro-mechanics based continuum model for a jointed rock mass and excavation analyses of a large-scale cavern[J].International Journal of Rock Mechanics &Mining Science,2004,41(1):119-145.
    [257]Xia Y,Peng S,Gu Z,and Ma J.Stability analysis of an underground power cavern in a bedded rock formation[J].Tunnelling and Underground Space Technology,2007,22(2):161-165.
    [258]Meek JL.Recent experience with numerical analysis of mining engineering related problems[C].In:Proc.5th Int Conf on Num Meth In Geomech,1985,93-103.
    [259]Huang J,Ma G,Yang Z.The application of the boundary element method(BEM) to mining engineering of Golden River Underground Phosphorus Mine[C].In:Proc.5th Int Conf on Num Meth In Geomech,1985,1557-1563.
    [260]Farahmond D.Boundary element method for evaluating stability of underground opening in rocks[C].Proc International Symposium on Large Rock Caverns,Helsinki,25-28 August,1986,V2,1247-1253.
    [261]Lee YN,Suh YH,Kim DY and Jue KS.Stress and deformation behaviour of oil storage caverns during excavation[J].Int J Rock Mech & Min Sci,1997,34(3-4):Paper No.305.
    [262]Detournay C,Hart R(ed).Proc.1st Int.FLAC Symposium on Numerical Modeling in Geomechanics,Minneapolis[M],1-3 September.Balkema,Rotterdam,pp 165-172.
    [263]Fang Z.A local degradation approach to the numerical analysis of brittle fracture in heterogeneous rocks[D].Ph.D.thesis,Imperial College of Science,Technology and Medicine,University of London,UK,2001.
    [264]Cai M,Kaiser PK,Morioka H,Minami M,Maejima T,Tasaka Y and Kurose H.FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J].Int J Rock Mech & Min Sci,2007,44(4):550-564.
    [265]Cundall PA,Strack OD.A discrete numerical model for granular assemblies[J].Geotechnique,1979,29:47-65.
    [266]Cundall PA.Formulation of a three-dimensional distinct element model-Part Ⅰ.A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J].Int J Rock Mech Min Sci Geomech Abstr,1988,25(3):107-116.
    [267]Cundall PA.Formulation of a three-dimensional distinct element model-Part Ⅱ.Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J].Int J Rock Mech Min Sci Geomech Abstr,1988,25(3):117-125.
    [268]Wu JH,Ohnishi Y and Nishiyama S.Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA)[J].Int J Rock Mech & Min Sci,2004,41(5):731-743.
    [269]Jiang Y,Li B and Yamashita Y.Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method[J].Int J Rock Mech & Min Sci,2009,46(1):97-106.
    [270]Murakami S.,Ohno M.A continuum theory of creep and creep damage[C].Proc.3rd IUTAM Symp.on creep in structures,ed.by A.R.S.Ponter and D.R.Hayhurst,1980,Springer-Verlag,422-443.
    [271]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [272]Kyoya T,Ichikawa Y,Kawamoto T.A damage mechanics theory for discontinuous rock mass[C].5th International Conference on Numerical Methods in Geomechanics,Nagaya,April,1985.
    [273]张贵科.节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D].河海大学博士论文.2006.
    [274]国家电力公司成都勘测设计研究院.锦屏一级水电站可行性研究报告[R].成都:成都勘测设计研究院,2003.
    [275]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].济南:山东大学博士学位论文,2007.
    [276]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [277]Hibino S.Rock mass behavior of large-scale cavern during excavation and trend of underground space use[J].Journal of the Mining and Materials Processing Institute of Japan,2001,117(3):167-175.
    [278]Yoshida T,Ohnishi Y,Nishiyama S,Hirakawa Y and Mori S.Behavior of discontinuities during excavation of two large underground caverns[J].Int J Rock Mech & Min Sci,2004,41(3):534-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700