用户名: 密码: 验证码:
钢纤维高强混凝土含损伤率型本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究内容是防护工程重点项目《强动载作用下钢纤维高强混凝土本构关系研究》和国家自然科学基金资助项目《混凝土材料动态力学性能试验研究》两个研究课题的子课题。主要从试验研究和理论分析出发,研究钢纤维高强混凝土的动态力学性能,建立含损伤的率型本构关系。
     本文首先分析了开展该项目研究的目的和意义。在广泛的文献调研的基础上,系统地综述了国内外对混凝土类材料的试验技术,动态力学性能及动态本构关系的研究历史和现状。
     本文的重点之一是利用国内最大的φ100 Hopkinson压杆对三种混凝土基体强度(C60、C80、C100),四种钢纤维含量(0、2%、4%、6%)的钢纤维高强混凝土进行不同应变率下的冲击压缩试验。利用材料试验机对上述材料进行准静态和准动态试验。在获得可靠的材料力学参数的基础上,分析了钢纤维混凝土动态强度增长因数、动态应变增长因数与应变率之间的关系。给出了所有系列强度和应变动态增长因数与应变率之间的函数关系,求出各自的应变率临界值。详细分析讨论了钢纤维高强混凝土动态韧度指数与钢纤维含量及应变率之间的关系,分析了钢纤维的增强和增韧作用。
     本文还对钢纤维高强混凝土动态劈裂强度进行初步研究。利用φ100 SHPB设备对C60、C80、C100三种混凝土基体强度、钢纤维含量分别为0、2%、4%的钢纤维高强混凝土进行了四种应变率的动态劈裂试验。利用材料试验机对上述材料进行了两种应变率的准静态试验。研究了钢纤维高强混凝土动态劈裂强度与应变率之间的关系,建立了钢纤维高强混凝土动态劈裂动态增强因数与应变率之间的函数关系,分析了动态劈裂试验中混凝土试样的能量耗散,讨论了基体强度、钢纤维含量及硅灰对钢纤维高强混凝土动态劈裂强度的影响。
     本文的另一重点是研究钢纤维高强混凝土的损伤演化、建立含损伤的率型本构模型。为此在φ100 SHPB设备上系统进行了三种混凝土基体强度(C60、C80、C100)、四种钢纤维含量(0、2%、4%、6%)的钢纤维高强混凝土的冲击损伤冻结压缩试验研究。通过试样外侧的钢套环限制试样的应变,通过撞击速度控制试样应变率,将应变和应变率控制在一定范围内,对试样进行冲击加载,之后在25TMTS上对上述受冲击损伤后的试样进行静态压缩试验,测出弹性模量的变化,从而可求出一定应变和应变率下的损伤度。分析了损伤度与钢纤维混凝土基体强度、应变率、应变和钢纤维含量之间的关系,考虑到冲击加载条件下混凝土裂纹扩展存在惯性效应,提出了在损伤演化方程中应引入修正系数进行“延迟修正”,最终建立钢纤维高强混凝土损伤演化方程。
     最后,利用试验及相应的分析结果,在ZWT非线性粘弹性本构模型的基础上,认为损伤是引起钢纤维高强混凝土应力—应变关系非线性的主要原因,给出了适用于钢纤维高强混凝土材料的含损伤的率型非线性本构模型,该模型的预测结果与试验结果吻合很好。
This research is the subtask of "Study on constitutive relation of steel fiber reinforced high strength concrete (SFRHSC) under strong dynamic load" which is a major project of protective engineering and "experimental study on dynamic mechanics property of concrete" which belongs to national natural science fund project. The dynamic mechanics property of SFRHSC is investigated and strain rate sensitive constitutive relation containing damage is founded through experimental study and theoretical analysis.
     Firstly, the research purpose and significance of the paper are analyzed. Otherwise, the research history and present state of test technique, dynamic mechanics property and dynamic constitutive relation of concrete are summarized by the numbers at home and abroad based on a mass of literature.
     In this paper, one of the emphases is impact compression experimentation on SFRHSC of three kinds of strain rate, namely high strain rate, moderate strain rate and slow strain rate, besides, the SFRHSC contains three kinds of strength of concrete matrix (C60, C80, C100) and four kinds of percentage of steel fiber (0, 2%, 4%, 6%). The quasi-static and quasi-dynamic tests of SFRHSC mentioned above are carried out with test equipment. Then based on the reliable mechanical parameters of the materials, the correlation between dynamic strength increase factor, dynamic strain increase factor and strain rate of steel fiber reinforced concrete is educed. Moreover, the functions between all ranges of strength, dynamic strain increase factor and strain rate are gained, and respective strain rate critical values are concluded. Lastly, the correlation between dynamic temper factor of SFRHSC , percentage of steel fiber and strain rate is analyzed detailedly, and the strength and temper enhancement effect of steel fiber is discussed.
     In this paper, an elementary study on dynamic split strength of SFRHSC is carried. By usingΦ100 SHPB, dynamic split tests about four kinds of strain rate of SFRHSC which contains three kinds of strength of concrete matrix (C60, C80, C100) and four kinds of percentage of steel fiber (0, 2%, 4%, 6%) are carried out. And the quasi-static experimentation containing two kinds of strain rate is accomplished with test equipment. At the same time, the correlation between dynamic split strength and strain rate of SFRHSC is reasered, and the function between dynamic split strength enhanced factor and strain rate of SFRHSC is founded. Energy dissipation of SFRHSC specimen in the dynamicak splitting tests is analyed. The influences of strength of conerete matrix, percentage composition of steel fiber and silica-fume on dynamic split strength of SFRHSC are discussed.
     Another emphasis of this paper is the research on damage evolvement of SFRHSC and foundation of strain rate sensitive constitutive relation containing damage. Therefore, impact damage "freezing in" compression experiment of SFRHSC which contains three kinds of concrete matrix strength (C60, C80, C100) and four kinds of percentage of steel fiber(0, 2%, 4%, 6%) is carried out by the numbers. By restricting strain of specimen with steel ringer around the specimen and controlling strain rate of specimen through controlling impact speed, the strain and strain rate are controlled in some range. After that, the specimen is loaded by impact, then static compression experiment of the specimen mentioned above that contains impact damage is carried out with 25T MTS, meanwhile, the change of elastic module is measured, thereby, the damage extent under some strain and strain rate can be gained. Further, the correlation between damage extent , matrix strength, strain rate, strain and steel fiber content is analyzed. Considering the inertial effect of crack expansion under impact load, this paper brings forward that the correctional factor should be introduced in damage evolvement equation, which can delay the amendment. In the end, damage evolvement equation of SFRHSC is established.
     Finally, using the result of the experiment and corresponding analysis, ZWT nonlinear sticky-elastic constitutive model is improved, and the strain rate sensitive nonlinear constitutive model for SFRHSC containing damage is put forward. The forecast result of the model matches the test result.
引文
[1]周丰峻.国际常规武器效应与相互作用会议专题报告.总参工程兵科研三所,1997.
    [2]江水德,陈肇元.高强度性能混凝土在人防工程中的应用[R].总参工程兵科研三所,2003.
    [3]郑全平.钢筋混凝土板爆炸震塌实验研究与数值模拟(博士学位论文)[D].中国人民解放军理工大学,2003.
    [4]Henager C H.The use of steel fibre reinforced concrete in containment and explosive-resistant structure.AD-Poo1743.
    [5]孙伟,严云.高强混凝土与钢纤维高强混凝土冲击和疲劳特性及其机理的研究[J].土木工程学,1992,27(5).
    [6]D.Chauvei D M.Impact on fiber reinforced concrete slabs.1989.
    [7]李晓军,张殿臣,李清献,王振宇.常规武器破坏效应与工程防护技术.总参工程兵科研三所,2001.
    [8]王明洋.含钢球的钢纤维混凝土遮弹机理研究.常规武器工程防护科研与设计应用成果资料,总参谋部兵种部,2001.
    [9]王明洋.人防工事柔性遮弹层的研制[R].中国人民解放军工程兵工程学院,1999.
    [10]严少华.高强钢纤维混凝土抗侵彻理论与试验研究[博士学位论文][D].中国人民解放军理工大学,2001.
    [11]刘瑞朝等.复合遮弹层研究[R].总参工程兵科研三所,2001.
    [12]江水德等.钢纤维高强混凝土施工技术规程.中国人民共和国国家军用标准,中国人民解放军总参谋部,2003.
    [13]陈德兴,张仕,张磊等.强动载作用下钢纤维高强混凝土本构关系研究[R].总参工程兵科研三所,2007.
    [14]胡时胜,张磊等.混凝土材料层裂强度的实验研究[J].工程力学,2004,21(4):128-132.
    [15]肖诗云,林皋,王哲,逯静洲.应变率对混凝土抗拉特性影响[J].大连理工大学学报,2001,41(6):721-725.
    [16]闫东明,林皋,王哲,张勇强.不同环境下混凝土动态直接拉伸特性研究[J].大连理工大学学报,2005,45(3).
    [17]李兆霞.工程材料的应变率效应及其损伤本构模拟计算[J].河海大学学报,1994,22(计算力学专辑):75-82.
    [18]严少华,钱七虎,周早生等.高强混凝土及钢纤维高强混凝土的高压状态方程的实验研究[J].解放军理工大学学报,2000,1(6):49-53.
    [19]严少华,李志成,王明洋等.高强钢纤维混凝土冲击压缩特性试验研究[J].爆炸与冲击,2002,22(3):237-241.
    [20]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构模型[J].水 利学报,1997,(7):72-77.
    [21]胡时胜等.研究混凝土动态力学性能的实验技术[J].中国科学技术大学学报,2007,37(10).
    [22]张磊,胡时胜,陈德兴.混凝土材料的层裂特性[J].爆炸与冲击,2008,28(3).
    [23]刘孝敏,胡时胜.应力脉冲在变截面SHPB锥杆中的传播特性[J].爆炸与冲击,2000,20(2):110-114.
    [24]Albertini C,Cadoni E,Labies K.Dynamic mechanical behaviour of large concrete specimens by means of hopkinson bar bundle[A].Proceeding of 2nd ISlE 96[C].China,1996.
    [25]Anderson W.F.Watson A.J,Gott M.B.,Development of a large diameter split hopkinson pressur bar to study compression wave transmission through soil,Proceedings of the 8~# International Syposium on Interaction of the Effects of Munitions with Structures,vol.1B.21-25,1997.
    [26]刘孝敏,胡时胜.应力脉冲在变截面SHPB锥杆中的传播特性[J].爆炸与冲击,2000,20(2):110-114.
    [27]刘孝敏,胡时胜.大直径SHPB弥散效应的二维数值分析[J].实验力学,2000,15(4):371-376.
    [28]Follansbee P S,Frantz C.Wave propagation in the split hopkinsion pressure bar [J].Journal of Engineering Materials and Technology,1983,105:61-66.
    [29]Gorham D A.A numerical method for the correction of dispersion in pressure bar signals[J].Journal of Physics E:Scientific Instruments,1983,16:477-479.
    [30]Gong J C,Malvern L E and Jenkins D A.Dispersion investigation in the split hopkinson pressure bar[J].Journal of Engineering Materials and Technology,1990,112:309-314.
    [31]Zhao H,Gary G.A three-dimensional analytical solution of longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar:application to experimental echniques[J].Journal of the Mechanics and Physics of Solids,1995,43(8):1335-1348.
    [32]Zhao H,Gary G.On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J].International Journal of Solids and Structures,1996,33(23):3363-3375.
    [33]Dong J K,Kittinum S.Numberrical simulation of the split Hopkinson pressure bar test technique for concrete under compression[J].International Journal of Impact Engineering,2009,1-9.
    [34]Gorham D A,Wu X J.An empirical method for correcting dispersion in pressure bar measurements of impact stress[J].Measurement Science and Technology,1996,(7):1227-1232.
    [35]Gorham D A,Wu X J.An empirical method of dispersion correction in the compressive Hopkinson bar test[J].J.de Physique IV,1997,(C3):223-228.
    [36]I E Shkolnik.Influence of high strain rates on stree-strain relationship,strength and elastic modulus of concrete[J].Cement and Concrete Composites,2008,(30):1000-1012.
    [37]Li Z H,Lambros J.Determination of the dynamic response of brittle composites by the use of the split Hopkinson pressure bar[J].Composites Science and Technology,1999,59:1097-1107.
    [38]Lok T S,Li X B,Liu D S,etal.Testing and response of large diameter brittle materials subjected to high strain rate[J].Journal of Materials in Civil Engineering,2002,14(3):262-269.
    [39]陈德兴,胡时胜,张守保等.大尺寸Hopkinson压杆及其应用[J].实验力学,2005,20(3):398-402.
    [40]李夕兵,古德生,赖海辉.冲击载荷下岩石动态应力--应变全图测试中的合理加载波形[J].爆炸与冲击,1993,13(2):125-130.
    [41]李夕兵,刘德顺,古德生.消除岩石动态试验曲线振荡的有效途径[J].中南工业大学学报,1995,26(4):457-460.
    [42]Li X B,Lok T S,Zhao J,et al.Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1055-1060.
    [43]巫绪涛,钢纤维高强混凝土动态力学性能的研究[博士论文][D],中国科学技术大学,合肥,2006.5.
    [44]李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报,2005,24(23):4215-4218.
    [45]Frew D J,Forrestal M J,Chen W.Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J].Experimental Mechanics,2002,42:93-106.
    [46]Chen W,Song B,etal.Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar[J].Experimental Mechanics,2003,43:20-23.
    [47]李英雷.装甲陶瓷的本构关系和抗弹机理研究(博士学位论文)[D].合肥:中国科学技术大学,2003.
    [48]谢建军,卢芳云,王志兵.冲击载荷下自密实混凝土的动态力学性能研究[A].第三届全 国爆炸力学实验技术交流会论文集[C],2004:201-205.
    [49]赵隆茂,马宏伟.白云山机场跑道等用混凝土动态劈裂拉伸力学性能的实验研究[A].第三届全国爆炸力学实验技术交流会论文集[C],2004:24-31.
    [50]刘逸平,黄小清,汤立群,罗立峰.混凝土桥面铺装材料冲击力学性能的实验研究[J].第三届全国爆炸力学实验技术交流会论文集[C],2004:219-222.
    [51]李夕兵.岩石在不同加载波下的σ-ε-(?)关系[J].中国有色金属学报,1994,4:16-22.
    [52]李夕兵,陈寿如,古德生.岩石在不同加载波下的动载强度[J].中南矿冶学院学报,1994,25:301-304.
    [53]张守保.大直径分离式霍普金森压杆脉冲整形技术[J].防护工程,2006,28(5):1-8.
    [54]徐明利,张若棋,王悟,李英华.波形整形器在酚醛树脂的霍普金森压杆实验中的应用[J].爆炸与冲击,2002,22:377-380.
    [55]宋博,姜锡权,陈为农.霍普金森压杆实验中的脉冲整形技术.第三届全国爆炸力学实验技术交流会论文集,2004,合肥,74-143.
    [55]Khan AS,Irani FK.An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone,Limestone and Granite[J].Mech Mater,1987,6:285-292.
    [57]Johnstone C,Ruiz C.Dynamic testing of ceramics under tensile stress[J].Int.J.Solids Struct.1995;32(17/18):2647-56.
    [58]F.Rubio.The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J].International Journal of Impact Engineering,2002,271 161-177.
    [59]M.Diamaruya,H.Kobayashi.Measurements of impact tensile strength of concrete and mortar using reflected tensile stress wave[]].J.Phys.IV France,2000.
    [60]J.R.Klepaczko.A Brara.An experimental method for dynamic tensile testing of concrete by spalling[J].International Journal of Impact Engineering,2001,25:387-409.
    [61]A.Brara,J.R.Klepaczko.Experimental characterization of concrete in dynamic tension[J].Mechanics of Materials,2006,38:253-267.
    [62]Abrans D A.Effect of rate of application of load on the compressive strength of concrete[J].Journa of ASTM Internationl,1917,17(2):364-377.
    [63]Watstein D.Effect of straining rate on the compressive strength and elastic properties of concrete[J].ACI Journal,1953,49(8):729-744.
    [64]Mchenry D and Shideler J J.Review of data on effect of speed in mechanical testing of concrete[A].Symposium on speed of testing of non-metallic materials[C]. Philadelphia: ASTM Special Technical Publication, 1956, 72-82.
    [65] Atchley B L and Furr H L. Strength and energy absorption capabilities of plain concrete under dynamic and static loading[J]. ACI Journal, 1967, 64(11): 745-756.
    [66]Cowell W L. Dynamic properties of plain portland cement concrete[A]. Technical Report R447[R]. California: Naval Civil Engineering Laboratory, Port Hueneme,1966.
    [67] Hughes B P, Gregory R. Concrete subjected to high rates if loading in compression[J].Magazine of concrete Research, 1972, 24(78): 25-36.
    [68] Mihashi H and Wittmann F H. Stochastic approach to study the influence of rate of loading on strength of concrete[J]. Heron, 1980, 25(3): 1-54.
    [69] Wakabayashi M, Nakamura T, Yoshida N, etal. Dynamic loading effects on the structural performance of concrete and steel materials and beams [A]. Proceeding of 7th World Conference on Earthquake Engineering[C]. Turkey, 1980, 6(3): 271-278.
    [70] Bhargava J and Rhenstrom A. Dynamic strength of polymer modified and fiber-reinforced concretes[J]. Cement and Concrete Reasearch, 1977, 7: 199-208.
    [71] Malvern L E, Jenkins D A, Tang T x, etal. Dynamic compressive testing of concrete [A].Proceedings of 2nd Symposium on the Interaction of Non-nuclear Munitions with Structures[C]. Florida: Us Department of Defense, 1985, 194-199.
    [72] Ross C A, Thompson PY, TedescoJW. Split-Hopkinson pressure bar tests on concrete and motar in tension and compression[J]. ACI Material Journal, 1989, 86(5):475-481.
    [73] Bischof f P H, Perry S H. Compressive behavior of concrete at high strain rates [J].Materials and Structures, 1991, 24: 425-450.
    [74] Ross C A, Jerome D M, Tedesco J W, etal. Moisture and strain rate effects on concrete strength[J]. ACI Material Journal, 1996, 93(3): 293-300.
    [75] Tedesco J W, Ross C A. Strain-rate-dependent constitutive equations for concrete[J].ASME Journal of Pressure Vessel Technology, 1998, 20(4): 398-405.
    [76] Malvar L J, Crawford J E. Dynamic increase factors for concrete[A]. 28th DDESB Seminar, Orlando, FL, USA, 1998.
    [77] Grote D J, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization[J]. International Journal of Impact Engineering, 2001, 25: 869-886.
    
    [78]Lok T S, Asce M, Zhao J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. Journal of Materials in Civil Engineering, 2004:16(1):54-59.
    [79]CEB.Concrete structures under inpact and implosive loading,Synthesis report,Bulletin d' information No.187(Committee Euro-International du Beton Lausanne,1998.
    [90]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型[J].水利学报,1997,(7):72-77.
    [81]曲福进,刘岩,赵国藩等.应变率对高性能纤维混凝土动态性能的影响[J].施工技术,1997,5:3-5.
    [82]吕培印,宋玉普.混凝土动态压缩试验及其本构模型[J].海洋工程,2002,20(2):43-48.
    [83]Watstein Do Effect of straining rate on the compressive strength and elastic properties of concrete[J].ACI Journal,1953,49(8):729-744.
    [84]Atchley B L and Furr H L.Strength and energy absorption capabilities of plain concrete under dynamic and static loading[J].ACI Journal,1967,64(11):745-756.
    [85]Takeda J,Tachikawa H.The mechanical properties of several kinds of concrete at compressive,tensile and flexural tests in high rates of loading[J].Transactions of the Architectural Institute of Japan,1962,77:1-6.
    [86]Takeda J,Tachikawa H.Deformatiom and fracture of concrete subjected to dynamic load[A].Proccedings of International Conference on Mechanical Behavior of Material[C].Japan:Kyoto,1971,267-277.
    [87]Rostasy F S and Hartwich K.Compressive strength and deformation of steel fiber reinforced concrete under high rate of strain[J].International Journal of Cement Composites Lightweight Concrete,1985,7(1):21-28.
    [88]Ahmad S H and Shah S P.Behavior of hoop confined concrete under high strain rates[J].ACI Journal,1985,82(5):634-647.
    [89]Kvirikadze O P.Determination of the ultimate strength and modulus of deformation of concrete at different rates of loading[A].Proceedings of RILEM International Symposium on Testing In-Situ Concrete Structure[C].1977,109-117.
    [90]Tang T,Malvern L E,Jenkins D A.Rate effects in uniaxial dynamic compression of concrete[J].Journal of Engineering Mechanics,ASCE,1992,118(1):108-124.
    [91]Tedesco J W,Ross C A.Strain-rate-dependent constitutive equations for concrete[J].ASME Journal of Pressure Vessel Technology,1998,20(4):398-405.
    [92]Tedesco J W,Powell J C,Ross C A,etal.A strain-rate-dependent concrete material model for ADINA[J].Computers and structures,1997,64(5):1053-1067.
    [93]姜锡权.水泥沙浆静动态力学行为及短纤维增强性能研究[博士学位论文][D].合肥:中 国科学技术大学,1996.
    [94]王道荣.高速侵彻现象的工程分析方法和数值模拟研究[博士学位论文][D].合肥:中国科学技术大学,2002.
    [95]Zhao H.A study on testing techniques for concrete-like materials under compressive impact loading[J].Cement and Concrete Composities,1998,20:293-299.
    [96]Donze F V,Magnier S A,Daudeville L.Numerical study of compressive behavior of concrete at high strain rates[J].Journal of Engineering Mechanics,1999,125(10):1154-1163.
    [97]Dhir R K,Sangha C M.A study of relationships between time,strength,deformation and fracture of plain concrete[J].Magazine of Concrete Research,1972,24(81):197-208.
    [98]Ban S and Muguruna n.Behavior of plain concrete under dynamic loading with straining rate comparable to earthquake loading[A].Proceedings of 2nd world conference on earthquake engineering[C].1960,3:1979-1993.
    [99]Hughes B P and Watson A J.Compressive strength and ultimate strain of concrete under impact loading[J].Magazine of Concrete Research,1978,30(105):189-197.
    [100]Dilger W H,Koch R and Kowalczyk R.Ductility of plain and confined concrete under different strain rates[J].ACI Journal,1984,81(1):73-81.
    [101]Bischoff P H,Perry S H.Compressive behavior of concrete at high strain rates[J].Materials and Structures,1991,24:425-450.
    [102]Hatano T and Tsutsumi H.Dynamic compressive deformation and failure of concrete under earthquake load[A].Proceedings of 2nd world conference on earthquake engineering[C].1960,3:1963-1978.
    [103]Paul F M,Ken P V and Robert A C.Dynamic tensile-compressive behavior of concrete[J].ACI Journal,1985,82(4):484-491.
    [104]Shraddhakar H,Zhenjia S.Strain-rate sensitive behavior of cement paste and mortar in compression[J].ACI Material Journal,1990,87(5):508-516.
    [105]Fu H C,Erki M A,Seckin M.Review of effects of loading rate on concrete in compression[J].Journal of Structural Engineering,1991,117(12):3645-3659.
    [106]Fu n C,Erki M A,Seckin M.Review of effects of loading rate on reinforced concrete[J].Journal of Structural Engineering,1991,117(12):3660-3679.
    [107]Grote D L,Park S W,Zhou M.Dynamic behavior of concrete at high strain rates and pressures:I.Experimental characterization[J].International Journal of Impact Engineering,2001,25:869-886.
    [108]Harris D W,Mohorovic C E and Dolen T P.Dynamic properties of mass concrete obtained from dam cores[J].ACI Material Journal,2000,97:290-296.
    [109]Sukontasukkul P,Nimityongskul P,Mindess S.Effect of loading rate on damage of concrete[J].Cement and Concrete Reasearch,2004,34:2127-2134.
    [110]Mander J B,Priestley M J N and Park R.Theoretical stress-strain model of confined concrete[J].Journal of Structure Engineering,ASME,1988,114(8):1804-1826.
    [111]Malvern L E,The propagation of longitudinal wave of plastic deformation in a bar of material exhibiting a strain-rate effect[J].Journal of Applied Mechanics,ASME,1951,vol.8,203-208.
    [112]Holomquist T J,Johnson G R,Cook W H.A computational constitutive model for concrete subjective to large strains,high strain rates,and high pressures[A].Jackson N,Dickert S.The 14~(th) International Symposium on Ballistics[C].USA:American Defense Prepareness Association,1993:591-600.
    [113]L.Zhang,S.S.Hu,D.X.Chen,An experimental technique for spalling of concrete.experimental mechanics.2009,49(4).
    [114]Ottosen N S.A failure criterion for concrete[J].Journal of Engineering Mechanics Division,ASCE,1977,103:527-535.
    [115]Ottosen N S.Constitutive model for short-time loading of concrete[J].Journal of Engineering Mechanics Division,ASCE,1979,105:127-141.
    [116]刘海峰,宁建国.强冲击载荷作用下混凝土材料动态本构模型[J].固体力学学报,2008,29(3),231-238.
    [117]唐志平.在高应变率下环氧树脂力学性能的研究[D].合肥:中国科学技术大学,1980.
    [118]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992,12(4),333-342.
    [119]胡时胜,王道荣.冲击荷载作用下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [120]胡时胜,王道荣.混凝土材料动态本构关系[J].宁波大学学报(理工版),2000,13(增刊):82-85.
    [121]姜锡权.水泥砂浆静动态力学行为及短纤维增强性能研究[D].合肥:中国科学技术大学博士学位论文,1996.
    [122]刘文彦.水泥基复合材料在冲击载荷下的力学响应和纤维的桥联行为研究[D].合肥:中国科学技术大学博士学位论文,1999.
    [123]陈江瑛.水泥砂浆动态力学性能研究[D].杭州:浙江大学硕士学位论文,1997.
    [124]陈江瑛,王礼立.水泥砂浆的率型本构方程[J].宁波大学学报(理工版),2000,13(2): 1-5.
    [125]陈江瑛,黄旭升,王礼立.混凝土的动态损伤演化[J].宁波大学学报(理工版),2000,13(增刊):170-173.
    [126]Park S W,Kim Y R,Schapery R A.A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete[J].Mechanics of Materials,1996,24:241-255.
    [127]张磊,胡时胜,陈德兴.钢纤维混凝土层裂特性[J].爆炸与冲击,2009,29(2).
    [128]商霖,宁建国,孙远翔.强冲击载荷作用下钢筋混凝土本构关系的研究[J].固体力学学报,2005,26(2):175-181.
    [129]Perzyna P.Fundamental problem in visco-plasticity[J].Advances in Applied mechanics,1966,9:243-377.
    [130]Bicanic N,Zienckiewicz O C.Constitutive model for concrete under dynamic loading[J].Earthquake Engineering and Structural Dynamics,1983,11:689-711.
    [131]Tashman L,Masad E,Little D,etal.A microstructure-based viscoplastic model for asphalt concrete[J].International Journal of Plasticity,2005,21:1659-1685.
    [132]Gatuingt F,Pijaudier-Cabot G.Coupled damage and plasticity modelling in transient dynamic analysis of concrete[J].International Journal for Numerical and Analytical Methods in Geomechanics,2002,26:1-24.
    [133]Gatuingt F,Pijaudier-Cabot G.Coupled Gurson plasticity and damage model for concrete structures indynamics[A].15~(th) ASCE Engineering Mechanics Conference[C].New York:Columbia University,2002,1-8.
    [134]Ragueneau F,Gatuingt F.Inelastic behavior modelling of concrete in low and high strain rate dynamics[J].Computers and Structures,2003,81:1287-1299.
    [135]商霖,宁建国,孙远翔.强冲击载荷作用下钢筋混凝土本构关系的研究[J].工程力学,2005,22(2).
    [136]宁建国,商霖,孙远翔.混凝土材料冲击特性的研究[J].力学学报,2006,38(2).
    [137]杜荣强,林皋.混凝土动力损伤本构关系的基础理论及应用[J].哈尔滨工业大学学报,2006,38(5).
    [138]杜荣强,林皋,冷飞.混凝土动力本构模型的基础理论与建模应用综述[J].世界地震工程,2007,23(2).
    [139]宁建国,商霖,孙远翔.混凝土材料动态力学性能的经验公式、强度理论与唯象本构模型[J].力学进展,2006,36(3).
    [140]刘永胜,王肖钧,金挺等.钢纤维混凝土力学性能和本构关系研究[J].中国科技大学学报,2007,37(7).
    [141]宁建国,刘海峰,商霖.强冲击载荷作用下混凝土材料动态力学特性及本构模型[J].中国科学,2008,38(6).
    [142]陈德兴,任辉启,余泽清等.钢纤维高强混凝土冲击压缩下韧度指数实验研究[J].防护工程,2007,29(2):4-8.
    [143]刘海峰,宁建国.冲击载荷作用下混凝土动态力学本构模型的研究[J].工程力学,2008,25(12):135-140.
    [144]Mao-hong Yu.Advances in strength theories for materials under complex stress star.20th Century.Appl Mech Rev,2002,55(3).
    [145]李庆斌,张楚汉,王光纶.单压状态下混凝土的动力损伤本构模型[J].水利学报,1994,(3):85-89.
    [146]Li Q B,Zhang C H,Wang G L.Dynamic damage constitutive model of concrete in uniaxial tension[J].Engineering Fracture Mechanics,1996,53(3):449-455.
    [147]Eibl J,Curbach M.An attempt to explain strength increase due to high loading rates[J].Nuclear Engineering and Design,1989,112:45-50.
    [148]Eibl J,Schmidt-Hurtienne B.Stress rate sensitive constitutive law for concrete[J].Journal of Engineering Mechanics,ASCE,1999:125(12):1411-1420.
    [149]陈大年,Al-Hassani S T S,尹志华等.混凝土的冲击特性描述[J].爆炸与冲击,2001,21(2):89-97.
    [150]Bischoff P H.Compress Behaviour of concrete at high Strain Rates[J].Material and Structure,1991,144(24),425-450.
    [151]孟益平,胡时胜.混凝土材料冲击压缩中的一些问题[J].实验力学,2003,18(1):106-112.
    [152]巫绪涛,胡时胜,孟益平.混凝土动态力学试验的应变片直接测量法[J].实验力学,2004,19(2):319-323.
    [153]中国工程建设标准化协会标准:CECS13:89.钢纤维混凝土试验方法[S].北京:中国计划出版社,1996.
    [154]焦楚杰,孙伟,高培正,蒋金洋.钢纤维高强混凝土力学性能研究[J].混凝土与水泥制品,2005,143(3):35-38.
    [155]Tedsco J W,Ross C A,Hughes M L.Load rate effects on concrete compressive strengh[A].Merkle D.H.Proceedings of the sixth international symposium on interactiong of nonnuclear munitions with structyes[C].Florida USA,1993:194-197.
    [156]Carpinteri A,Ingraffea A R著.杨煜惠,黄政宇,万良芬等译.混凝土断裂力学[M].长沙,湖南大学出版社,1988.
    [157]Engineered materials handbook.Ceramic and Glasses[M].1991.
    [158]高丹盈,赵皋,朱海棠.钢纤维混凝土设计及应用[M].中国建筑工业出版社,2003.
    [159]Albertini C,Montagnani M.Study of the true tensile stress-strain diagram ofplain concrete with real size aggregate[A].Proceedings of the International Conference Eurodymat[C].Oxford,1994:C8-113.
    [160]Reinhardt H W,Kormeling H A,Zielinski A J.The split Hopkinson bar,a versatile tool for impact testing of concrete[J].Mater Struct,1986,19:55.
    [161]Ross CA,Tedesco JW,Kuennen ST.Effects of strain rate on concrete strength[J].ACI Mater]1995,12:37.
    [162]Toutlemonde,F.Shock strength of concrete structures;From material behaviour to strucnIre design[D].E.N.P.C,Paris(in French),1994.
    [163]Tulin Akcaoglu,Mustafa Tokyay,Tahir Celik.Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[]].Cement&Concrete Composites,2004,26:633-638.
    [154]Zielinski A.J.Fracture of concrete and mortar under uniaxial impact tensile loading[D].Delft University of Technology,The Netherlands,1982.
    [165]Antonn JR,Rajendran AM.Effect of strain rate and size on tensile strength of concrecte[A].Proceeding of the Topical Conference on Shock Compression of condensed Matter[C].Amsterdam,1992:501.
    [166]马宏伟,闫晓鹏,程载斌等.混凝土动态层裂拉伸实验的数值模拟[J].爆炸与冲击,2003,83-85.
    [167]胡时胜,王道荣.冲击载荷下混凝土的动态本构关系[J].爆炸与冲击,2001,22(3):242-246.
    [168]过镇海.混凝土的强度和变形试验基础和本构关系[M].清华大学出版社,1997.
    [169]王礼立,蒋昭镳,陈江瑛.材料微损伤在高速变形过程中的演化及其对率型本构关系的影响[J].宁波大学学报,1996.9(3):47-55.
    [170]Eibl J,Curbach M.An attempt to explain strength increase due to high loading rates[J].Nuclear Engineering and Design,1989,112:45-50.
    [171]Eibl J,Scbmidt-Hurtienne B.Stress rate sensitive constitutive law for concrete[J].Journal of Engineering Mechanics,ASCE,1999:125(12):1411-1420.
    [172]Perzyna P,Fundamental problems in viscoplasticity,Advances in Applied Mechanics,1966,vol.9,243-377.
    [173]Perzyna P,Thermodynamic Theory of Viscoplasticity,Advances in Applied Mechanics,1971,vol.11,313-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700