用户名: 密码: 验证码:
催化剂对废生物质高压液化制取生物油产品产量和性质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源短缺的当今社会,资源的合理有效利用一直是人类面临的重大问题。随着化石能源可开采量的减少及其使用给环境带来的问题,尽快寻找与开发一种环境污染小的可再生能源是科研工作者一项重要任务。生物质液化制取生物油和高附加值化学品技术可以有效的将能量密度较低的生物质转化成能量密度高、品位高的液体燃料是合理利用生物质能的有效途径。针对生物质高压液化制取生物油和高附加值化学品技术的难点问题——生物油产品产率低、品质不高、生物质中木质素组分转化率低等问题,本研究将四种碱性催化剂(碳酸钠、碳酸钾、氢氧化钠和氢氧化钾)和石油化工领域常用的工业催化剂分子筛、氧化铝催化剂以及以它们为载体的自制负载型催化剂应用于生物质高压液化制取生物油和高附加值化学品的研究。研究目的是通过高效催化剂的添加改善高压液化相对苛刻的反应条件,提高生物质中木质素成分的转化率,提高生物油产品产率,更重要的是通过选择性催化剂的添加使生物油产品性质得到改善。
     在高压液化过程中反应条件的研究作为后续研究的基础必不可少。本实验选取生物质(稻草、锯末)为反应原料,在间歇式高温高压反应釜中进行生物质液化实验,在七个不同温度(260、280、300、320、340、360、380℃)和六个不同反应停留时间(0、5、10、20、30和40min)下对生物质高温高压液化受反应温度和反应停留时间的影响进行了研究,确定了本实验体系中液化反应的最佳反应条件,稻草高压液化总油产率最高为50.25%(280℃),锯末液化总油产率最高为35.96%(320℃)。由此可以看出作为生物质的主要组成成分,木质素、纤维素和半纤维素的含量对生物质液化产物的分布有很大的影响。
     为了进一步了解生物质液化过程,揭示生物质液化中间产物的结构,本实验采用中间取样法对稻草高压液化过程进行分析。在稻草液化反应200-310℃的升温过程中进行中间取样,将取出的产物分为水溶相、四氢呋喃可溶相(生物油)和残渣相。对反应原料和残渣进行扫描电镜分析、红外光谱分析和元素分析,对生物油进行气-质联用分析,并对水溶相进行了总有机碳的测定。扫描电镜结果显示,在液化过程中稻草的形态结构发生了巨大的改变,根据对比分析扫描电镜和红外光谱的结果发现稻草中纤维素和半纤维素于200℃开始分解,木质素于250℃开始分解。反应过程中生物油的主要成分为丁基羟基甲苯和二丁基邻二甲酸酯,随着反应温度的升高,小分子物质再聚合的现象明显,生物油中高分子物质有所增加。
     为提高生物质中木质素成分的转化率,选取碱性催化剂对生物质高压催化液化反应进行研究。锯末催化液化实验结果显示4种碱性催化剂(碳酸钠、碳酸钾、氢氧化钠和氢氧化钾)的添加均可提高3相生物油(乙醚相、乙酸乙酯相和丙酮相)产率,同时也使反应残渣得率大大降低,添加氢氧化钠催化剂时残渣得率仅有1.26%,而未添加催化剂时残渣得率为20.87%;油1相产率也由3.40%提高至11.87%。稻草液化实验结果显示添加催化剂碳酸钠时油1相产率最高,为9.895%;添加催化剂氢氧化钾时油2相产率最高,为6.693%;添加催化剂氢氧化钠时残渣得率最小,为6.415%。
     然而改善生物油品质也是生物质高压液化亟待解决的问题,实验选取氧化铝、分子筛以及以它们为载体的负载型催化剂进行生物质催化液化研究,针对催化剂添加对各相生物油产率的影响以及对生物油组成的改变进行分析,探讨了几种催化剂对生物质液化影响的差异,并对比稻草和锯末这两种作为纤维素和木质素代表物质的生物质在催化液化过程中受到的不同影响进行分析。实验结果显示,氧化铝催化剂对生物油产率影响不大,其催化作用主要体现在使烷烃类物质(heneicosane)的含量达到79.50%,有效地降低了生物油的含氧量,提高了生物油的热值。分子筛及其负载型催化剂的主要作用均体现在生物油中有机水溶相(OD)相产率大幅提高,并使生物油主要成分中烷烃类物质的比例提高。
     对比所有的催化液化实验结果,催化剂对锯末液化的促进效果均比稻草明显,最后为了研究更适合稻草催化液化的方法,将催化剂应用于稻草共溶剂液化过程。以乙醇-水混合溶液作为反应溶剂,添加碳酸钠、碳酸钾、氢氧化钠、氢氧化钾和铁负载型分子筛为液化催化剂,在高温高压反应釜中进行催化液化的实验研究。实验重点考察催化剂对共溶剂液化实验的影响、催化剂在共溶剂和纯水溶剂液化的催化效果对比以及催化剂对共溶剂液化产物性质的影响。反应在300℃下进行,催化剂的添加量均为1g,实验结果表明催化剂能有效促进稻草在共溶剂中的液化反应,氢氧化钠催化效果最好,使产物中油1相产率由38.64%提高到53.27%,转化率由85.31%提高到90.54%。通过对产物GC-MS结果对比表明,催化剂氢氧化纳可以促进烷烃类产物的生成,铁负载型分子筛可以促进芳香族化合物的生成。
     总之,反应温度对生物质高温高压液化的影响最大,稻草高压液化总油产率最高为50.25%(280℃),锯末液化总油产率最高为35.96%(320℃);在生物质高温高压液化的反应过程中纤维素和半纤维素于200℃开始分解,木质素于250℃开始分解。催化剂的添加能有效的促进稻草和锯末的高压液化反应。添加氢氧化钠催化剂时残渣得率仅有1.26%,未添加催化剂时残渣得率为20.87%;油1相产率也由3.40%提高至11.87%。,氧化铝催化剂对生物油产率影响不大,其催化作用主要体现在使烷烃类物质(heneicosane)的含量达到79.50%,有效地降低了生物油的含氧量,而分子筛及其负载型催化剂的主要作用均体现在生物油中有机水溶相(OD)相产率大幅提高,并使生物油主要成分中烷烃类物质的比例提高。另外它们作为工业催化剂,催化性能稳定、热稳定性高并且加工成型后可以回收利用,非常适合在液化反应的高温高压环境使用。
Recently, with lack of energy, there is an important issue which human has been facing is that how to utilize the resource reasonable. Along with the environmental problem brought by reduction of extraction of fossil energy and utilizing, the exploitation and development of renewable energy is an important tast for the researchers. Liquefaction of biomass to produce biology oil and high value-added chemicals technics are able to convert the lower energy density of biology substance to high energy density and grade liquid fuel. It is an efficiency way to utilize biology substances reasonable. However, there are several difficulties in the liquefaction conversion of biomass under high pressure to bio-oil and high value-added chemicals, such as low production of bio-oil, lower grade, and low conversion rate of lignin of bio-substances. Therefore, in this paper, the effects of several kinds of catalysts were investigated, including four kinds of alkaline catalysts (sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide), the industrial molecular sieve catalysts, alumina catalysts in petrochemials field, and ion-exchanging HZSM-5 zeolite catalysts applied to liquiefaction by high pressure to produce bio-oil and high value-added chemicals. The objective of this study is to improve relatively reaction conditions of high pressure liquefaction with high efficient catalyst, and then increase the conversion rate of bio-substance's lignin in order toincrease yield of bio-oil product. The most important is that how to improve the characteristics of bio-oil products with the selective catalysts.
     During the high pressure liquefaction process, the study of reaction conditions as the basis of further research is very necessary. The effects of reaction conditions on bio-oil yield, such as reaction temperature and holding time, were investigated. The highest total oil yield of straw and sawdust liqufection is 50.25%(280℃) and 35.96% (320℃), respectively. It was shown by the results that the yield and composition of bio-oil are determined by materials and reaction conditions.
     In addition, the structure of bio-oil and residues obtained from the thermochemical liquefaction of straw in hot compressed water was investigated. Those products were obtained by sampling during the experimental process at the temperature of 200,220,250,300 and 310℃, respectively. The products of liquefaction were separated into water-solution fraction, Tetrahydrofuran solubles (bio-oil) and insolubles (residues). The raw straw and residues were analyzed by SEM, FTIR, and elemental analysis, while the bio-oil and water-soluble products were analyzed by GC-MS and TOC, respectively. It was indicated by the results that the main component including cellulose and hemicellulose of straw began to decompose at 200℃, while the lignin decomposed at 250℃. The main compounds of bio-oil were butylated hydroxytoluene and dibutyl phthalate, while higher molecular compounds were produced by further repolymerization with the temperature increasing. The results might be helpful to investigate the product characteristics at different temperatures during the process of liquefaction and establish a pathway of the straw liquefaction, which can be utilized to improve the yield of goal products (bio-oil, phenols and other useful chemicals).
     The catalysts, which are used for the research of alkaline catalyst, were NaOH, KOH, Na2CO3 and K2CO3, respectively. The yields of three kinds of bio-oil (ether phase, ethyl acetate phase and acetone phase) of sawdust liquefaction were enhanced, while the yields of residue were reduced markedly. In the run with NaOH, the yield of residue (Oil) was 1.26%(11.87%), while the yield of residue (Oil) was 20.87% (3.40%) without catalyst. In the run of straw, the highest yield of Oill, Oil2 and lowest yield of residue were 9.895%(with Na2CO3),6.693%(with KOH) and 6.415% (with NaOH), respectively.
     Meanwhile, another objective of this study is to improve the quality of the bio-oil. The effect of the catalyst on yield and composition of bio-oil, and the catalytic effects differences between liquefaction of straw (cellulose) and sawdust (lignin) were investigated. The maximum bio-oil yield was obtained as 20.83%with Al2O3 catalyst (0.4g), while the minimum residue yield of 12.50%was obtained at 280℃with 0.3g Al2O3. It was shown by gas chromatography/mass spectrometry (GC-MS) analysis that the main difference between bio-oil obtained from with or without catalyst runs were the amount of heneicosane and other oxygenous compounds. In the rus of HZSM-5 and Ni, Fe ion-exchanging HZSM-5 zeolite catalysts, the total bio-oil yields were increased obviously with Ni, Fe ion-exchanging HZSM-5 zeolite. In addition, the catalytic effects of ion-exchanging HZSM-5 zeolite were differernt with the temperature. The yield of OD was increased with ion-exchanging HZSM-5 zeolite catalyst at 280℃, while the yield of HO was enhanced at 300℃.
     Furthermore, liquefaction of straw to produce bio-oil with mixed solvent (ethanol-water mixture) was carried out in a 1 OOOmL autoclave at 300℃. The alkalic additives selected in this research were NaOH and KOH, while catalysts in this research were Na2CO3, K2CO3 and Fe ion-exchanging HZSM-5 zeolite catalysts, respectively. It was shown by the results that the bio-oil yield was increased significantly by the addition of NaOH. In NaOH run, the bio-oil yield was enhanced from 38.64%to 53.27%, while the conversion rate of the liquefaction was increased from 85.31%to 90.54%. The hydrothermal liquefaction of straw was studied with the same alkalic additives and catalysts as the mixed solvent liquefaction. Comparing the results of the two different reaction systems (mixed solvent system and hydrothermal liquefaction system), it was indicated that alkalic additives and catalysts were more effective in the mixed solvent system. The bio-oil was analyzed by gas chromatography-mass spectrometry (GC-MS. It was indicated by the results that the component characterization of bio-oil was mainly depended on catalyst. The content of hydrocarbon was enhanced in the NaOH run, while the content of aromatic compounds was increased by FeHZSM-5.
     In conclusion, reaction temperature is the biggest effect for the process of biomass liquefaction with high temperature and high pressure. The hightest yield of total oil yield of staw in the high pressure liquefaction is 50.25%(280℃), while the total oil yield of sawdust liquefaction is 35.96%(320℃). In the process of biomass liquefaction with high temperature and high pressure, cellulose and hemicellulose were decomposed at 200℃, lignin was decomposed at 250℃. The addition of catalyst could improve the conversion of high pressure liquefaction of staw and sawdust. The addition of NaOH resulted in residue yield was only 1.26%, while the residues yield was 20.87%without catalyst. Oill yield was increased from 3.4%to 11.87%, Al2O3 catalyst has little effect on bio-oil yield, the major effectiveness is to increase the heneicosane to 79.50%, and efficiently reduce the oxygen content of bio-oil, but the effects of molecure sieve and ion-exchanging HZSM-5 zeolite catalysts are to increase OD phase yield, and also increase ratio heneicosane as main content in bio-oil. The decomposition of biomass was improved with catalysts. The strict conditions of biomass liquefaction was reduced, while the conversion rate of lignin and the yields of bio-oil and valuable chemicals were enhanced with HZSM-5 zeolite, Al2O3, and Ni, Fe ion-exchanging catalysts.
引文
[1]宋春财,王刚,胡浩权.生物质热化学液化技术研究进展.太阳能学报,2004,25(2):242-248
    [2]陈和平.关于编制“十五”新能源计划的思考.新能源,1999,12(10):1-5
    [3]Pindoria R V, Lim J Y, Hawkes J E, et al. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood wastes:effect of H2 pressure and samples configuration. Fuel,1997,76(11):1013-1023
    [4]Appell HR, Wender I, Miller RD. Converting organic wastes to oil. Agriculture Enengy,1971,15(3):17-19
    [5]刘一星.木质废弃物再生循环利用技术.北京:化学工业出版社,2005,109-114
    [6]宋春财,胡浩权.生物质秸杆在水中热化学液化研究.四川大学学报(工程科学版),2002,34(5):59-62
    [7]朱道飞,王华,包桂荣.纤维素亚临界和超临界水液化实验研究.能源工程,2004,5:6-10
    [8]白鲁刚,颜涌捷,李庭琛,等.煤与生物质共液化的催化反应.化工冶金,2000,21(2):198-203
    [9]曲先锋,彭辉,毕继诚,等.生物质在超临界水中热解行为的初步研究.燃料化学学报,2003,31(3):230-233
    [10]谌凡更,欧义芳.木质纤维原料的热化学液化.纤维素科学与技术,2000,8(1): 44-57
    [11]王树荣,骆仲泱,董良杰.生物质闪速热裂解制取生物油的试验研究.太阳能学报,2004,23(1):242-248
    [12]谢君,任路,李维,等.白腐菌液体培养产生木质纤维素酶的研究.四川大学学报(自然科学版),2000,37:161-166
    [13]Perez J, Munoz-Dorado J, Rubia T. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview. International Microbiology, 2002,5:53-63
    [14]McKendry P. Energy production from biomass:Overview of biomass. Bioresource Technology,2002,83(1):37-46
    [15]陈洪章.纤维素生物技术.北京:化学工业出版社,2005,8-36
    [16]高洁,汤列贵.纤维素科学与技术.北京:科学出版社,1999,24-79
    [17]朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社,2002,35-74
    [18]梁新,徐桂转,刘亚莉.生物质的热裂解与热解油的精制.能源研究与信息,2005,21(1):8-14
    [19]高培基,许平.资源环境微生物技术.北京:化学工业出版社,2004,18-34
    [20]蒋挺大.木质素.北京:化学工业出版社,2001,42-47
    [21]赵军,许庆利,孔海平,等。生物质能源产业化及研究现状.浙江化工,2006,37(3): 13-15
    [22]EUREC Agency. The future for renewable energy prospects and directions. London:James and James Science Publisher,1996,157-165
    [23]Demirbas A. Biomass resource facilities and biomass conversion processing forfuels and chemicals. Energy Conversion and Management,2001,42(11): 1357-1378
    [24]Mckendry P. Energy production from biomass (part2):conversion technologies Bioresource Technology,2002,83 (1):47-54
    [25]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003,19-38
    [26]蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业,2002,22(2): 75-80
    [27]王庆一.中国可在生能源现状障碍与对策——开发利用现状.中国能源,2002,7: 39-44
    [28]顾树华.能源利用与农业可持续发展.北京:北京出版社,2001,58-67
    [29]米铁,唐汝江,陈汉平.生物质能利用技术及研究进展.煤气与热力,2004,24(12): 701-705
    [30]李改莲,王远红,杨继涛,等.中国生物质能的利用状况及展望.河南农业大学学报,2004,38(1):100-104
    [31]赖艳华,吕明新,马春元,等.程序升温下秸杆类生物质燃料热解规律.燃料科学与技术,2001,7(3):246-248
    [32]赵明,吴文权,卢玫,等.稻草热裂解动力学研究.农业工程学报,2002,80:107-111
    [33]Alman S, Stubington J F. The pyrolysis kinetics of bagasse at low heating rates. Biomass and Bioenergy,1992,5(2):115-120
    [34]Brigewater A V, Cottarn M L. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and Fuels,1992,6(2):113-120
    [35]何芳,易维明,孙容峰,等.小麦和玉米秸秆热解反应与热解动力学分析.农业工程学报,2002,18(4):10-13
    [36]李水清,李爱民,任远,等.生物质废弃物在回转窑内热解研究-Ⅱ热解终温对产物性质的影响.太阳能学报,2000,21(4):341-348
    [37]Yorgun S, Sensoz S, Kockard O M. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass and Bioenergy,2001,20:141-148
    [38]Caglar A, Demirbas A. Conversion of cotton cocoon shell to liquid products by pyrolysis. Energy Conversion and Management,2000,41(16):1749-1756
    [39]Di Blasi C, Signorelli G, Di Russo C, et al. Product distribution from pyrolysis of wood and agricultural residues. Industrial and Engineering Chemistry Research, 1999,38:2216-2224
    [40]Zandersons J, Gravitis J, Kokorevics A, et al. Studies of the Brazilian sugarcane bagasse carbonization process and products properties. Biomass Bioenergy,1999, 17(3):209-219
    [41]Karaosmanoglu F, Culeuoglu E. Pyrolysis of rape cake. Energy Sources,2001,23: 377-382
    [42]Mansaray K G, Ghaly A E. Thermal degradation of rice husks in nitrogenatmosphere. Biosource Technology,1998,65:13-20
    [43]Karaosmanoglu F, Isigigur-Ergundenler A, Sever A. Biochar from the straw-stalk of rapeseed plant. Energy Fuels,2000,14(2):336-339
    [44]Karaosmanoglu F, Tetik E. Fuel properties of pyrolytic oil of the straw and stalk of rape plant. Renewable Energy,1999,16(1-4):1090-1093
    [45]Bassilakis R, Carangelo R M, Wojtowicz M A. TG-FTIR analysis of biomass pyrolysis. Fuel,2001,80(12):1765-1786
    [46]Sharma R K, Wooten J B, Baliga V L, et al. Characterization of char from the pyrolysis of tobacco. Journal of Agricultural and Food Chemistry,2002,50(4): 771-783
    [47]Stenseng M, Jensen A, Dam-Johansen K. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis,2001,58:765-780
    [48]Sipila K, Kuoppala E, Fagemas L, et al. Characterization of biomass-based Flash pyrolysis oils. Biomassand bioenergy,1998,14(2):103-113
    [49]Wang D. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy and Fuels,1998,12:19-24
    [50]Zhongyang Luo, Shurong Wang, Yanfen Liao, et al. Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy,2004,26:455-462
    [51]栾敬德,刘荣厚,武丽娟,等.生物质快速热裂解制取生物油的研究.农机化研究,2006,12:206-210
    [52]刘荣厚,陈义良,鲁楠,等.生物质热裂解技术的实验研究.农村能源,1999,5: 17-19
    [53]杨敏,宋晓锐,邓鹏飞,等.生物质的裂解及液化.林产化学与工业,2000,20(4): 77-82
    [54]Williams P T, Nittaya N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy,2000,25(6):493-513
    [55]Putun A E. Biomass to bio-oil via fast pyrolysis of cotton straw ands talk. Energy Sources,2002,24(3):275-285
    [56]Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management,2000,41(6):633-646
    [57]刘荣厚,牛卫生,张大雷.生物质热化学转换技术.北京:化学工业出版社,2005,39-75
    [58]张无敌,宋洪川,韦小岿,等.21世纪发展生物质能前景广阔.中国能源,2001(5):33-35
    [59]梁宝芬.美国生物质能等可在再能源发电考查报告.新能源,1994,16(10):1-7
    [60]汪大纲.世界生物质能利用的状况和展望.世界林业研究,1996,6:64-70
    [61]Wanger D E,梁海.德国可再生能源发电动向.国际电力,1997,4:6-10
    [62]李惠萍.世界各国重视开发和利用生物质能.能源技术,1997,4:59-60
    [63]李海滨,吴创之,陈勇.我国垃圾处理的技术出路.中国科技成果,2002,15: 19-20
    [64]姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社,2005,108-115
    [65]肃林湘.多种方式开发利用生物质能源.中国林业,2006,11:15
    [66]李炳焕.生物质能源的开发利用与前景.唐山师范学院学报,2002,24(2):36-38
    [67]Fierz David. The liquefaction of wood and cellulose and some general remarks on the liquefaction of coal. Chemistry and Industry,1925,44:942-944
    [68]Beckman D, Boocock D G. Liquefaction of Wood by Rapid Hydropyrolysis. The Canadian Journal of chemical Engineering,1983,61:80-86
    [69]Yamada T, Oirch. Rapid liquefy faction of lignocellulosic waste by using ethylene carbonate. Bioersource Technology,1999,70:61-67
    [70]Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components. Fuel,1996,75(8):987-998
    [71]Wu Q Y. New discoveries in study on hydrocarbon from thermal degradation of hetro tropically yellowing algae. Science in China Series,1994,3:326-335
    [72]姚福生,易维明,柏雪源.生物质快速热解液化技术.中国工程科学,2001,3(4) : 63-67
    [73]袁传敏,颜涌捷,任铮伟,等.木屑及其水解残渣快热解特性研究.华东理工大学学报(自然科学版),2005,31(1):96-98
    [74]Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass. Energy Conversion & Management,2000,41:1601-1607
    [75]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展.化工进展,2006,25(1):8-13
    [76]Yuan Xing-zhong, Xie Wen, Zeng Guang-ming, et al. Influence of catalyst on the yields and properties of products from biomass liquefaction in subcritical water. Int. J. Biotechnology,2008,10(1):35-42
    [77]Maldas D. Liquefaction of biomass in the presence of phenol and H2O using alkalines and salts as the catalyst. Biomass and Bioenergy,1997,12(4): 273-279
    [78]Motonobu Goto, Ryusaku Obuchi, Tsutomu Hirose, et al. Hydrothermal conversion of municipal organic waste into resources. Bioresource Technology, 2004,93:279-284
    [79]傅木星,袁兴中,曾光明,等.稻草水热法液化的实验研究.新能源及工艺,2006(2):34-38
    [80]Borgund A E, Barth T. Effects of base catalysis on the product distribution from pyrolysis of woody biomass in the presence of water. Organic Geochemistry, 1999,30:1517-1526
    [81]颜涌捷,任铮伟.纤维素连续催化水解研究.太阳能学报,1999,20(1):55-58
    [82]宋春财.农作物秸秆的热解及在水中的液化研究.大连:大连理工大学,2006
    [83]Lancas, Fernando M, Azocar, et al. Upgrading of sugar cane bagasse by thermal processes.8. Direct liquefaction withnalcohols. Fuel Science & Technology International,1996,14(7):979-992
    [84]Karagoz, Selhan, Bhaskar, et al. Low-temperature hydrothermal treatment of biomass:Effect of reaction parameters on products and boiling point distributions. Energy and Fuels,2004,18(1):234-241
    [85]董治国,王述洋.生物质快速热解液化技术的研究.林业劳动安全,2004,17(1): 12-14
    [86]阎桂焕,孙立,许敏,等.几种生物质制氢方式的探讨.能源工程,2004,4:38-41
    [87]Yan Y J, Xu J, Li T C, et al. Liquefaction of sawdust or liquid fuel. Fuel Processing Technology,1999,60(2):135-143
    [88]Qu Y X, Wei X M, Zhong C L. Experimental study on the direct liquefaction of cunninghamia lanceolata in water. Energy,2003,28(7):597-606
    [89]于树峰,仲崇立.农作物废弃物液化的实验研究.燃料化学学报,2005,33(2):205-210
    [90]Shinya Y, Tomoko O, Katsuya K, et al. Process for liquefying cellulose-containing biomass. US patent:4935567,1990-06-19
    [91]徐洁,李庭琛,颜涌捷,等.煤与木屑共液化.燃料化学学报,1999,27(4):328-334
    [92]Rocha J D, Luengo C A, Snape C E. The scope for generating bio-oils with relatively low oxygen contents via hudropyrolysis. Organic Geochemistry,1999, 30(12):1527-1534
    [93]Acikalin K, Karaca F, Bolat E. Central composite rotatable design for liquefaction of pine barks. Fuel Processing Technology,2005,87(1):17-24
    [94]Selhan K, Thallada B, Akinori M, et al. Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel,2004,83(17-18): 2293-2299
    [95]Dorrestijn Edwin, Laarhoven Lucas J J, Arends Isabel W C E, et al. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and App lied Pyrolysis,2000,54(1-2):153-192
    [96]王刚,梁小蕊,薛钦昭.生物质高压液化技术影响因素分析及展望.可再生能源,2008,26(4):31-40
    [97]Xu C B, Etcheverry T. Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel,2008,87:335-345
    [98]Ogi T, minowa T, Dote Y, et al. Characterization of oil produced by the direct liquefaction of Japanese oak in an aqueous 2-propanol solvent system. Biomass Bioenerg,1994,7:193-199
    [99]Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol,1999,70:61-67
    [100]Demirbas A. Conversion of wood to liquid products using alkaline glycerol. Fuel Sci. Techn. Int,1992,10:173-184
    [101]谢文,袁兴中,曾光明,等.催化剂对亚临界水中生物质液化行为的影响.资源科学,2008,30(1):129-133
    [102]Tomoaki M, Teruo K, Soetrisno T S. Thermochemical liquefaction of Indonesian biomass residues. Biomass and Bioenergy,1998,14(5-6):517-524
    [103]Selhan K, Thallada B, Akinor IM, etal. Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel,2004,83 (17-18):2293-2299
    [104]王晓艳.生物油及相关生物质原料的特性分析.吉林:吉林农业大学,2005
    [105]刘荣厚,牛卫生,张大雷.生物质热化学转化技术.北京:化学工业出版社,2005
    [106]日本能源学会.生物质和生物质能手册.北京:化学工业出版社,2006
    [107]李世光,徐绍平,路庆花,等.快速裂解生物油柱层析分离与分析.太阳能学报,2005,26(4):546-552
    [108]徐绍平,刘娟,李世光,等.杏核热解生物油萃取-柱层析分离分析和制备工艺.大连理工大学学报,2005,45(4):505-510
    [109]Zhang T, Zhou Y J, Liu D H, et al. Qualitative analysis of prod ucts formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology,2007,98:1454-1459
    [110]王立华,袁兴中,曾光明,等.生物质水热法催化液化的实验研究.太阳能学报,2009,30(8):1134-1138
    [111]程明杨,袁兴中,曾光明,等.金属改性催化剂对松木屑液化效果的影响.农业工程学报,2009,25(8):210-214
    [112]Hui Li, Xingzhong Yuan, Guangming Zeng, et al. Liquefaction of rice straw in sub-and supercritical 1,4-dioxane-water mixture, Fuel Processing Technology, 2009,90 (5):657-663
    [113]Lee S H, Ohkita T. Rapid wood liquefaction by supercritical phenol. Wood Sci Technol,2003,37:29-38
    [114]Miller J E, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel,1999,78:1363-1366
    [115]Selhan K, Thallada B, Akinori M, et al. Low temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products. Chemical Engineering Journal,2005,108:127-137
    [116]Selhan K, Thallada B, Akinori, et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel,2005,84:875-884
    [117]Mohammad F A, Mohammad N S, Waste S, et al. Study on the conversion of waste plastics/petroleum resid mixtures to transportation fuels. J Mater Cycles Manag,2004(6):27-34
    [118]Melek Y, Dursun P. Poplar wood-water slurry liquefactionin the presence of formic acid catalyst. Energy Conversion and Management,2004,45(17): 2687-2696
    [119]朱满洲,朱锡峰,郭庆祥,等.以玉米秆为原料的生物质热解油的特性分析.中国科学技术大学学报,2006,36(4):374-377
    [120]X. Z. Yuan, J. Y. Tong, G. M. Zeng, et al. Comparative Studies of Products Obtained at Different Temperatures during Straw Liquefaction by Hot Compressed Water. Energy & Fuels,2009,23:3262-3267
    [121]吕秀阳,迫田章义,铃木基之.固体废弃物在超/近临界水中连续分解装置的研制.高校化学工程学报,2001,15(1):40-45
    [122]朱道飞.生物质在超临界水中的液化转化的实验研究.昆明:昆明理工大学,2004
    [123]J. Dilcio Rocha, Carlos A. Luengo, Colin E. Snape. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Organic Geochemistry,1999,30:1527-1534
    [124]张素萍,颜涌捷,任铮伟,等.生物质快速裂解液体产物的分析.华东理工大学学报,2001,27(6):666-668
    [125]白雪双,王述洋,刘世锋.生物质液化燃油代用燃料的应用及展望.林业劳动安全,2006(1):34-36
    [126]Ozbay N, Putun A E, Uzun B B, et al. Biocrude from biomass:pyrolysis of cottonseed cake. Renewable Energy,2001,24:615-625
    [127]傅木星,袁兴中,曾光明,等.稻草水热法液化的实验研究.新能源及工艺,2006(2):34-38
    [128]于树峰, 仲崇立.农作物废弃物液化的实验研究.燃料化学学报,2005,33(2):205-210
    [129]Rezzoug S, Capart R. Liquefaction of wood in two successive steps:solvolysis in ethylene-glycol and catalytic hydrotreatment. Applied Energy,2002,72: 631-644
    [130]Lin LZ, Yao YG, Yoshioka M, et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science,1994,52:1629-16361
    [131]Lin LZ,Yao YG, Yoshioka M, et al. Preparation and properties of phenolated wood/phenol/formaldehyde cocondensed resin. Journal of Applied Polymer Science,1995,58:1297-1304
    [132]Alma MH,Yoshioka M, Yao YG, et al. Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Science and Technology,1996,30(1):39-47
    [133]Alma MH, Yoshioka M, Yao YG, et al. The preparation and flow properties of HCl catalyzed phenolated wood and itsblend with commercial Novolak resin. Holzforschung,1996,50(1):85-90
    [134]Chuncai Song, Haoquan Hu, Shengwei Zhu, et al. Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy & Fuels,2004,18(1):90-96
    [135]薛英,吴宇,万家义.M-ZSM-5分子筛的结构及催化性能研究进展.绵阳师范学院学报,2005,24(15):1-4
    [136]Dietrich M, Ronald A, Oskar F. Catalytic hydropyrolysis of lignin:influence of reaction conditions on the formation and composition of liquid products. Bioresource Technology,1992,40:171-177
    [137]Paul T Williams, Patrick A Horne. The influence of catalyst regeneration on the composition of zeolite-up-graded biomass pyrolysis oils. Fuel,1995,74: 1839-1851
    [138]Vitolo S, Bresci B, Seggiani M, et al. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite:behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel,2001(80):17-26
    [139]Ramesh K Sharma, Narendra N Bakhshi. Conversion of non-phenolic fraction of Biomass-Derived pyrolysis oil to hydrocarbon fuels over HZSM-5 using a dual reaction system. Bioresource Technology,1993,45:195-203
    [140]阎桂焕,孙立,许敏.几种生物质制氢方式的探讨.能源工程,2004,5:38-41
    [141]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究.燃料化学学报,2001,29(4):319-322
    [142]王树荣,骆仲泱,董良杰.几种农林废弃物热裂解制取生物油的研究.农业工程学报,2004,20(2):246-249
    [143]王东辉,程代云,史喜成.环境友好的超临界多相催化反应研究进展.现 代化工,2001,21(11):16-20
    [144]Goering H K, VanSoest P J. Agricultural handbook No.379. Forage fiber analyses:apparatus, reagentes procedures and some applications Washington: USDA,1970,20-45
    [145]吕秀阳,迫田章义,铃木基之.纤维素在近临界水中的分解动力学和产物分布.化工学报,2001,52(6):556-559
    [146]王昶,贾青竹,李崇武.松木生物质向轻质芳烃转化的催化分解,天津科技大学学报,2004,19(4):1-5
    [147]Jacobson R E. Energy Environ. Agic. Ind.2nd Proc-Biomass Conf. Am,1995, 1171-1180
    [148]Evans RJ, Milne TA, Soltys MN. Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. Ⅲ. Primary pyrolysis of lignin. J Anal Appl Pyrolysis,1986,9(3):207-236
    [149]Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass:a review. Bioresour. Bioresour Technol,2001,79:277-299
    [150]Jakab E, Liu K, Meuzelaar HLC. Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Res,1997,36: 2087-2095
    [151]Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 2007,4:649-661
    [152]Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel,2004,83: 2139-2150
    [153]Fang Z,minowa T, Smith R L, et al. Liquefaction and Gasification of Cellulose with Na2CO3 and Ni in Subcritical Water at 350℃. Ind. Eng. Chem. Res,2004, 43:2454-2463
    [154]Qian Y, Zuo C, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy,2007,32:196-202
    [155]Selhan Karagoz, Thallada Bhaskar, Akinori Muto, et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel,2005,84:875-884
    [156]Karagoz S, Bhaskar T, Muto A, et al. Hydrothermal Upgrading of Biomass: Effect of K2CO3 Concentration and Biomass/Water Ratio on Products Distribution. Bioresour. Technol,2006,97:90-98
    [157]Karagoz S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products. Chem. Eng. J,2005, 108:127-137
    [158]Karagoz S, Bhaskar T, Muto A, et al. Low-Temperature Hydrothermal Treatment of Biomass:Effect of Reaction Parameters on Products and Boiling Point Distributions.Energy Fuels,2004,18:234-241
    [159]Ba Tuya, Chaala A, Garcia-Perez Ma, et al. Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark. Characterization of Water-Soluble and Water-Insoluble Fractions.Energy Fuels,2004,18:704-712
    [160]Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 2007,4:649-661
    [161]高洁,汤烈贵.纤维素科学.北京:科学出版社,1999.245-267
    [162]郑志锋,张宏健,顾继友.木质生物材料液化研究进展.云南化工,2004,31(5): 27-34
    [163]A. Demirbas, F. Akdeniz. Fuel analyses of selected oilseed shells and supercritical fluid extraction in alkali medium. Energy Conversion&Management,2002(43):1977-1984
    [164]M. Erzengin, M. M. Kucuk. Liquefaction of sunflower stalk by using supercritical extraction. Energy Conversion&Management,1998(39): 1203-1206
    [165]A. Demirbas. Liquefaction of olive husk by supercritical fluid extraction. Energy Conversion&Management,2000(41):1875-1883
    [166]A. Caglar, A.Demirbas. Conversion of coton cocoon shell to liquid products by supercritical fluid extraction and low pressuer pyrolysis in the persence of alkalis. Energy Conversion&Management,2001 (42):1095-1104
    [167]Klein MT. Lignin thermolysis patways. PhD Thesis. Department of Chemical Engineering, Massachussetts Institute of Technology,1981
    [168]郭晓亚,颜涌捷,任铮伟.生物质油精制中催化剂的应用及进展.太阳能学报,2003,24(2):206-212
    [169]王梦亮,王华,常如波,等.纤维类废弃物的热化学催化液化试验研究.中国环境科学,2004,24(4):469-473
    [170]Akdeniz F, Gundogdu M. Direct and alkali medium liquefaction of Laurocerasus officinalis Roem. Energy Conversion and Management,2007,48: 189-192
    [171]Demirbas A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel. Energy Conversion & Management,2000, 41:1741-1748
    [172]Xu Chunbao, Timothy Etcheverry. Hydro-liquefaction of woody biomass in sub-and supercritical ethanol with iron-based catalysts. Fuel,2008,87: 335-345
    [173]张宝香,李永泰.ZSM-5分子筛在炼油工业中的应用.工业催化,2006,14(8): 23-26
    [174]Lappas A A, Samolada M C, Iatridis D K, et al. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel, 2002,81:2087-2095
    [175]Mastral J F, Berrueco C,.Gea M,et 1..Catalytic degradation of high density polyethvele over nanocrystalline HZSM-5 zeolite. Polymer Degradationand Stability,2006,91:3330-3338
    [176]Zhao Guoliang, Teng Jiawei, Xie Zaiku, et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis,2007,248:29-37
    [177]Lu Jiangyin, Zhao Zhen, Xu Chunming, et al. FeHZSM-5 molecular sieves Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene.Catalysis Communications,2006,7:199-203
    [178]Chen Lidong, Wang Xiangsheng, Guo Hongchen, et al. Hydroconversion of n-octane over nanoscale HZSM-5 zeolites promoted by 12-molybdo Phosphoric acid and Ni. Catalysis Communications,2007,8:416-423
    [179]Gomez J, Bruneau C, N. Soyer, et al. Thermal degradation of amphetamine sulphate. Journal of Analytical and Applied Pyrolysis,1985,7(4),307-313
    [180]Mukuna T. Theory of multiple-pass solar air heaters. Energy,1985,10(5): 581-588
    [181]Schutt B D, Serrano B, Ramon L, et al. Production of chemicals from cellulose and biomass-derived compounds through catalytic sub-critical water oxidation in a monolith reactor. Biomass and Bioenergy,2002,22:365-375
    [182]Mustafa C, Mehmet M K. Liquid products from Verbascum stalk by supercritical fluid extraction. Energy Conversion & Management,2001,42: 125-130
    [183]Kengo Tomita, Seiichiro Koda, Yoshito Oshima. Catalytic Hydration of Propylene with MoO3/Al2O3 in Supercritical Water. Ind. Eng. Chem. Res,2002, 41:3341-3344
    [184]Akdeniz F, Gundogdu M. Direct and alkali medium liquefaction of Laurocerasus officinalis Roem. Energy Conversion and Management,2007,48: 189-192
    [185]Selhan Karagoz, Thallada Bhaskar, Akinori Muto, et al. Hydrothermal upgrading of biomass:Effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology,2006,97:90-98
    [186]Juncheng Li, Lan Xiang, Feng Xu, et al. Effect of hydrothermal treatment on the acidity distribution of γ-Al2O3 support. Applied Surface Science,2006, 253:766-770
    [187]Stanislaus A, Al-Dolama K, Absi-Halabi M. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism. J. Mol. Catal. A:Chem,2002,181:33-39
    [188]Absi-Halabi M, Stanislaus A, Al-Zaid H. Effect of acidic and basic vapors on pore size distribution of alumina under hydrothermal conditions. Appl. Catal. A:Gen,1993,101:117-128
    [189]Zhang J L, Chen J G, Ren J, et al. Chemical treatment of γ-Al2O3 and its influence on the properties. Appl. Catal. A:Gen,2003,243:121-33
    [190]Dinjus E, Kruse A. Hot compressed water-a suitable and sustainable solvent and reaction medium?. Journal of Physics:Condensed Matter,2004,16: 1161-1169
    [191]Shabnam Haghighat Khajavi, Yukitaka Kimura, Toshinobu Oomori, et al. Kinetics on sucrose decomposition in subcritical water. LWT,2005,38: 297-302
    [192]Yixin Qu, Xiaomin Wei, Chongli Zhong. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water. Energy,2003; 28:597-606
    [193]张倩,刘植昌,徐春明.不同硅铝比HZSM-5分子筛催化剂裂解制烯烃性能的研究.化学反应工程与工艺,2008,18(1):86-89
    [194]Tan P L, Au C T. The Effect of Calcinations Temperature on the Catalytic Performance of 2wt.%Mo/HZSM-5 in Methane A romatization. Applied Catalysis A:General,2002, (228):115-125
    [195]Yin C., Yin Changlong, Zhao Ruiyu, et al. Transformation of olefin over Ni/HZSM-5 catalyst. Fuel,2005,84:701-706
    [196]张大治,魏迎旭,沈江汉,等.氯甲烷在镁修饰的ZSM-5分子筛催化剂上 催化转化研究.天然气化工,2006,31(3):14-18
    [197]Alper Sarioglan, Omer Tunc Savasci, Ayse Erdem-Senatalar, et al. The effect of support morphology on the activity of HZSM-5-supported molybdenum catalysts for the aromatization of methane. Journal of Catalysis,2007,246: 35-39
    [198]Doulgas C Elliott, Gary F Schiefelbein. Liquid hydrocarbon fuels from biomass. Amer. Chem. Scio. Div. Fuel Chem.Preprints,1989,34(4):1160-1166
    [199]Tatsuhiko Yamada, Hirokuni Ono. Rapid liquefaction of lignocellulosic waste in the presence of cyclic carbonates for preparing levulinic acid and polyurethane resins. J. Appl. Polym. Sci,1994,52(11):1629-1636
    [200]柴政强.气相色谱分析法测定丢糟中残留酒精分.酿酒科技,2000,(6):102
    [201]张惠芬,樊建,束嘉秀,等.硫酸-蒽酮分光光度法测定SPS的方法研究.昆明理工大学学报,2002,27(3):74-83
    [202]Wang TJ, Chang J, Wu C Z, et al. The steam reforming of naphthalene over a nickel-dolomite cracking catalyst. Biomass and Bioenergy,2005,28(5): 508-514
    [203]Tim Rogalinski, Kaiyue Liu, Tobias Albrecht, et al.Hydrolysis kinetics of biopolymers in subcritical water. J. of Supercritical Fluids,2008,46:335-341.
    [204]Ogi T, Yokoyama S, Koguchi K. Direct liquefaction of wood by catalyst. Part I. Effect of pressure, temperature, holding time and wood/catalyst/water ratio on oil yield, Sekiyu Gakkaishi,1985,28 (3):239-245
    [205]Selhan Karagoz, Thallada Bhaskar, Akinori Muto, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products. Chemical Engineering Journal,2005,108:127-137
    [206]Karagoz elhan, Bhaskar Thallada, Muto Akinori, et al. Hydrothermal upgrading of biomass:Effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology,2006,97:90-98
    [207]Fang Z.,minowa T., Smith R. L., et al. Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350℃. Ind. Eng. Chem. Res.2004,43:2454-2463
    [208]李辉,袁兴中,曾光明,等.混合溶剂对稻草亚/超临界液化行为影响初探.农业工程学报,2008,24(5):200-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700