用户名: 密码: 验证码:
笋壳流化床快速热解制取生物质油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热解(biomass fast pyrolysis)液化技术是可再生能源发展领域中的前沿技术之一。在国内外众多的生物质快速热解液化装置类型中,流化床反应器(fluidized reactor)制造工艺比较成熟,应用最为广泛。笋壳(Bamboo Shoot Shell)是农产品竹笋加工过程的剩余物,作为一种优质的生物质,笋壳的纤维素、木质素的含量很高。利用笋壳为原料通过流化床快速热解方式制取生物质油,具有重要的环境效益、经济效益和社会效益。本文在国家林业局“948”项目“木屑和锯末热解制取洁净燃料和化学品技术”的依托下,根据鼓泡流化床的特点以及笋壳的热解特性,研制出生物质快速热解的流化床热解反应器,并以笋壳为原料进行快速热解制取生物质油的实验研究,采用FTIR、GC-MS对生物质油进行分析。具体研究工作如下:
     1、自行研制出生物质流化床快速热解装置。本装置给出以变径、变螺距加气流输送的螺旋给料机的设计思想、设计方法和计算过程;从反应器的处理能力入手,进行物料衡算和热量衡算,设计计算流化床反应器的结构和几何尺寸以及各附属设备的选型;研究分析生物质热解产物特性、旋风分离器的工作原理以及结构,给出合理设计及相关计算,实现气固产物高效分离;提出生物质油骤冷冷凝器的设计思想,为达到骤冷目的,采取二次冷凝的构想和设计思路。
     2、通过对毛竹笋壳进行热重分析(TG)、红外光谱分析(FTIR)、热解过程的动力学分析,求取笋壳热解过程的反应的活化能及动力学参数。试验结果表明:笋壳的红外吸收光谱图主要由烃基、碳基、碳水化合物及苯环等吸收带组成。笋壳的热解(TG曲线)过程分为脱水、预热解、热解(剧烈失重)、炭化(缓慢失重)四个阶段,主反应阶段主要集中在250~650℃左右。生物质热解的快慢主要取决于原料粒径和升温速率两个影响因素。用Doyle法求出不同升温速率下笋壳热解的表观活化能在120~160 kJ·mol~(-1)之间,利用动力学补偿效应得出了相应的动力学参数,确定了笋壳热解反应的动力学方程,认为一级反应模型可以对反应机理进行较好的描述。
     3、以毛竹笋壳为原料,石英砂为流化介质,在自行研制的流化床快速热解装置上进行热解试验。研究热解温度、物料尺寸、进料速率、滞留时间、不同添加剂对生物质油产率的影响。试验结果表明:四种添加剂中添加剂Ⅳ的效果最好,加入添加剂Ⅳ笋壳快速热解温度可以降低将近100℃;笋壳的物料尺寸为小于1 mm比较适合本实验装置;进料速度是50 g·min~(-1)、滞留时间是小于1 s、添加剂Ⅳ浓度0.4 %,生物质油的产率可达66.7%。
     4、利用FTIR和GC-MS分析了毛竹笋壳生物质油的主要化学成分,并测定其元素组成和理化特性。试验结果表明:生物质油的性能与锅炉燃油有一定的差别,主要是热值比锅炉燃油低,含氧量高达38.5%,作为燃油使用,还需要进行改性;根据FTIR分析和GC-MS的分析结果可知,笋壳生物质油成分很复杂,其中添加剂Ⅳ的笋壳热解油含有的可辨识化合物有38种。生物质油中主要含有机酸类、芳香烃类、烷烃类、酚类、苯酚类、苯环类等化合物,其中酚类衍生物相对含量可达55%左右,可以用来部分代替苯酚制取酚醛树酯胶粘剂。
The technology of biomass fast pyrolysis is one of the most important technologies in the fields of renewable Energy. The fluidized bed recator which is one of the advanced biomass pyrolysis reactor is widely used in the world. As a high-quality biomass, bamboo shoot shell high contains cellulose and lignin. Bio-oil from fast pyrolysis of bamboo shoot shell in the fluidized bed takes on important environmental, economic and social benefits. This paper relys on projects“the technologies of saw wood powder pyrolysis for nonpollution fuel and chemicals”which is the national“948”technology projects in the area of energy. In this paper, based on characteristics of fluidized bed and bamboo shoot shell, the reactor of biomass fast pyrolysis were designed and manufactured. Bio-oils from fast pyrolysis of bamboo shoot shell were researched in the reactor. By using FTIR and GC-MS, the bio-oils were anaylzed. The detailed studies are as follows:
     1. The experimental equipment of biomass fast pyrolysis in the fluidized bed was designed and manufactured. Design method and calculation procession of screwy feed-in implement which holds different diameters and volution distance were used in the equipment. From the treatments of bamboo shoot shell, mass balance and heat balance were carried out and the structures of fluidzied bed reactor were calculated. Cyclone separator was designed rightly by analyzing bio-oil properties and working principles of cyclone separator. In order to quenche, the design ideas of condensation implement which contains two steps cooling were put forward.
     2. By analysis TG, FTIR and kinetic analysis of pyrolyisi process from the mao bamboo shoot shell, reactive activation energy and kinetic parameters of the thermal decomposition process were achieved. The experimental results showed that the spectra of bamboo shoot shell infrared absorption was mainly made up of absorption bands of alkyl, carbon-group, carbohydrate and benzene-loop and so on. Bamboo shoot shell pyrolysis process (TG curve)was divided into four phases, such as dehydration, pre-pyrolysis, pyrolysis (severe lossing of weight), carbonization (slow lossing of weight). Reaction stage mainly concentrated in about 250~650℃. The speed of bamboo shell pyrolysis depended on the effect factors of raw materials size and heating rate. By using Doyle method, activation energy of bamboo shoot shell in different heating rates which were 120~160 kJ·mol-1 was calculated. By using the kinetic compensative, the corresponding kinetic parameters were obtained and the pyrolysis kinetic equation of bamboo shell was determined. It was considered that the reaction mechanism could be better described by one grade reaction model.
     3. Pyrolysis experiment with the shoot shell was carried out in the self-designed fluidized bed in which quartz sand was used as the fluidizing medium. The effects of bio-oil yields on pyrolysis temperature, material size, feeding rate, retention time and different additives were studied. The best pyrolysis process conditions of fast pyrolysis were explored. The results showed that additiveⅣwas one of the best additives, pyrolysis temperature would descend about 100℃with the additiveⅣ. Material size below 1mm was adapt to the equipment. As the feeding speed 50 g·min-1, retention time below 1 s, the concentration of additiveⅣ0.4%, bio-oil maximum yields could be 66.7%.
     4. By using FTIR and GC-MS, the major compositions of bio-oils were analyzed, then elements composition, chemical and physical properties of the bio-oil were measured. The experimental results showed that the performance of bio-oils was a little different from boiler fuels, mainly lying in the calorific value and oxygen content. If bio-oil will be used as fuels, it need to be refined. According to the results of FTIR and GC-MS analysis, the bio-oil composition was very complex. There were 38 kinds of recognizable compounds in the bio-oils from the bamboo shell which were added additiveⅣwhile pyrolysising. The bio-oils mainly contained organic acids, hydrocarbons, hydroxybenzene, phenols, benzene compounds and so on. Due to relatively high content of hydroxybenzene ramification which was up to 55%, the bio-oils could be used to produce the adhesive system.
引文
[1]史立山.中国能源现状分析和可再生能源发展规划[J].可再生能源, 2004, 5: 1-5.
    [2] Johansson, T B. Biomass for Energy, Environment, Agriculture and Industry, Proceeding of the 8th European Biomass Conference, 1994.
    [3]高虹,张爱黎.新型能源技术与应用[M].北京:国防工业出版社, 2007.
    [4]岑可法.中国能源与环境可持续发展的若干问题[J].中国废钢铁, 2006(2): 4-13.
    [5]史仲平,华兆哲,译.生物质和生物能源手册[M].日本能源学会.北京:化学工业出版社, 2007.
    [6]李俊峰,时璟丽,王仲颖.欧盟可再生能源发展的新政策及对我国的启示[J].可再生能源, 2007, 25(3):1-3.
    [7]宋昭峥,丁宏霞,孙贵利,等.国外可再生能源发展现状与展望[J].现代化工, 2007, 27(5): 61-64.
    [8]曾麟,王革华.世界主要发展生物质能国家的目的与举措[J].可再生能源, 2005(2): 53-55.
    [9] Bridgwater A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003, 91(2-3): 87-102.
    [10] Luo Z Y, Wang S R, et al. Research on biomass fast pyrolysis for liquid fuel[J]. Biomass & Bioenergy, 2004, 26: 455-462.
    [11] Peacocke G V C, Russel P A, Jenkins J D, et al. Physical properties of flash pyrolysis liquids[J]. Biomass Bioenergy, 1994, 7: 169-178.
    [12] Soltes E J, Lin J C K. Hydroprocessing of biomass tars for liquid engine fuels[J]. In Progress in Biomass Conversion, 1984, 5: 1-69.
    [13] Iojoiu E E, Dominem E, Davidian T, et al. Hydrogen production by sequentialcracking of biomass derived pyrolysis oil over noblemetal catalysts supported on ceriazirconia[J]. Applied Catalysis(A): General, 2007, 323: 147-161.
    [14] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management, 2001, 42(11): 57-78.
    [15]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源, 2004(3): 11-14.
    [16] Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction heating reactor[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 230-237.
    [17]陶朴良,张无敌.沼气发酵综合利用的现状与发展趋势[J].能源工程, 2001, 1: 9-11.
    [18] Demirbas A. Effect of temperature on pyrolysis products from four nut shells. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 285-289.
    [19] Kapur T, Kandopal T C, Garg H P. Electricity generation from husk in Indian rice mills: Potential and financial viability[J]. Biomass and Bioenergy, 1996, 10: 393-403.
    [20] Smousr S M, Staats G E, Rao S N, et al. Promotion of bimass cogeneration with power export in the Indian Sugar Industry[J]. Fuel Processing Technology, 1998, 54: 227-247.
    [21] Twidell J. Biomass energy[J]. Renewable Energy World, 1998, 3: 38-9.
    [22] Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of analytical and applied pyrolysis, 1999, 51: 3222.
    [23] Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 2: tests in diesel engines[J]. Biomass and Bioenergy, 2003, 25(1): 101-111.
    [24] Demirbas M F, Balat M. Recent advances on the production and utilization trends of bio-fuels: a global perspective[J]. Energy Conversion and Management, 2006, 47(15–16): 2371-2381.
    [25]宋春财,王刚,胡浩权.生物质热化学液化技术进展[J].太阳能学报, 2002, 34(4): 27-29.
    [26] Raveendran K, Ganesh A, Khilart K C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12): 1812-1822.
    [27] Wang S R, Luo Z Y, Tan H, et al. The anlyses of characteristics bio-oil produced frombiomass flash pyrolysis[J]. Journal of Engineering Thermophysics, 2004, 25(6): 1049-1052.
    [28] Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I:model compound studies and reaction pathway[J]. Biomass & Bioenergy, 1995, 8(3): 131-149.
    [29] Twidell J.Biomass energy[J]. Renewable Energy World, 1998, 3: 38-9.
    [30] Inguanzo M, Dominguez A, Menendez J A, et al. On the Pyrolysis of Sewage Sludge: the Influence of Pyrolysis Conditions on Solid, Lieuid and Gas Fractions[J]. Journal of Analytical and Ppplied Pyrolysis, 2002, 63(1): 209-222
    [31] Sheng G X. Biomass gasifiers: from waste to energy production[J]. Biomass, 1989,20(2): 3-12.
    [32] Reddy K T, Basu S. Gas-to-liquid technologies: India’s perspective[J]. Fuel Processing Technology, 2007, 88(5): 493-500.
    [33] Lv P, Yuan Z, Wu C, et al. Bio-syngas production from biomass catalytic gasification[J]. Energy Conversion and Management, 2007, 48(4): 1132-1139.
    [34] Baglioni P, Chiaramonti D, Bonini M, et al. Bio-Crude-Oil/Diesel oil emulsification: main achievements of the emulsification process and preliminary results of tests on Diesel engine[A]. Bridgwater AV. Progress in Thermochemical Biomass Conversion[C]. Oxford: Blackwell Science, 2001, 1525-1539.
    [35] Oasmaa A, Kyto M, Sipila K. Pyrolysis oil combustion tests in an industrial boiler[A]. Bridgwater A V, Progress in Thermochemical Blomass Conversion[C]. Blackwell Science. 2001, 1468-1481.
    [36] Ayhan D. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management, 2001, 42: 1357-1378.
    [37] Chen G, Andries J, Luo Z, et al. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects[J]. Energy Conversion and Management. 2003, 44(11): 1875-84.
    [38] Czernik S, French R, Feik C, et al. Hydrogen by Catalytic Steam Reforming of Liquid By products from Biomass Thermoconversion Processes[J]. Ind. Eng. Chem. Res. 2002, 41(17): 4209-15.
    [39] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management, 2001, 42(11): 1357-1378.
    [40]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[J].北京:化学工业出版社, 2005.
    [41] Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass[J]. Renewable Energy, 2007, 32: 649-661.
    [42]唐卫军,肖波,杨家宽,等.生物质转化利用技术研究进展[J].再生能源研究, 2003, 4: 30-32.
    [43]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报, 1995, 16: 23-27.
    [44] Sensoz S, Can M. Pyrolysis of pine chips: 1.effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources, 2002, 24(4): 347-55.
    [45] Albertazzi S, Basile F, Brandin J, et al. The technical feasibility of biomass gasification for hydrogen production[J]. Catalysis Today. 2005, 106(1-4): 297-300.
    [46] Brage C, Yu Q, Chen G, et al. Tar evolution profiles obtained from gasification of biomass and coal[J]. Biomass and Bioenergy. 2000, 18(1): 87-91.
    [47] Leung D Y C, Yin X L,Wu C Z. A review on the development and commercialization of biomass gasification technologies in China[J]. Renewable and Sustainable Energy Reviews, 2004, 8(6): 565-80.
    [48] Vogel A, Kaltschmitt M. Gasification of biomass for electricity generation and the provision of liquid biofules, status and prospects[C]. Mirko Bar Zeds. Energetic Utilization of Biomass. Beijing: Science Press, 2004: 155-170.
    [49] Amen C C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review[J]. Bioresource Technology, 2001, 79: 277-299.
    [50] Ba T, Chaala A, Garcia P M, et al. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark storage stability[J]. Energy & Fuels, 2004, 18(1): 188-201.
    [51] Bensiz S. Slow pyrolysis of wood barks from Pinus brutia Tenand product compositions[J]. Bioresource Technology, 2003, 89: 307-311.
    [52] Amen C C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar[J]. Biomass and Bioenergy, 1997, 13(1/2): 25-37.
    [53] Murwanashyaka J N, Pakdel H, Roy C. Separation of syringol from birch wood-derived vacuum pyrolysis oil[J]. Separation and Purification Technology, 2001, 24: 155-165.
    [54] Boucher M E, Chaala A, Pakdel H, et al. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. PartⅡ: Stability and ageing of bio-oiland it’s blends with methanol and a pyrolytic aqueous phase[J]. Biomass and bioenergy, 2000, 19: 351-361.
    [55] Mohan D, Pittman C U, Steele P H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Revies[J]. Eneryg Fuels, 2006, 20(3): 848-889.
    [56] Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1: emulsion production[J]. Biomass and Bioenergy, 2003, 25(1): 85-99.
    [57] Vagia E C, Lemonidou A A. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction[J]. international Journal of Hydrogen Energy. 2007, 32(2): 212-223.
    [58] Pan Y, Wang Z X, Kan T, et al. Hydrogen production by catalytic steam reforming of bio-oil, naphtha and CH4 over C12A7-Mg catalyst[J]. Chinese Journal of Chemical Physics, 2006, 19(3): 190-192.
    [59] Kinosh I C, Turn S Q. Production of hydrogen from bio-oil using CaO as a CO2 sorbent[J]. International Journal of Hydrogen Energy, 2003, 28(10): 1065-1071.
    [60] Galdamez J R. Hydrogen production by steam reforming of bio-oil using coprecip itated Ni-Al catalysts: Acetic acid as a model compound[J]. Energy & Fuels, 2005, 19 (3): 1133-1142.
    [61] Koufopanos C, Maschio G, Lucchesi A. Pyrolysis, a promising route for biomass utilization[J]. Bioresource Technology, 1992,(42): 219-231.
    [62]周利民,王一平,黄群武,等.生物质/塑料共热解热重分析及动力学研究[J].太阳能学报, 2007, 2 (9): 979 - 983.
    [63] Liu N. Kinetics of Thermal Decomposition for Biomass and Revelvant Kinetic Analysis Method[D]. Hefei: State Key Laboratory of Fire Science, University of Science and Technology of China, 2000(in Chinese).
    [63] Rong Z, Shi Q Z. Therm al Analysis Kinetics[M]. Beijing: Science Press, 2001(in Chinese).
    [64] Bilbao R, Mastral J F, AldeaM E, et al. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere[J]. J Anal Pyrol, 1997(39): 53-64.
    [65] Joan J, Manya E, Fnrique, V, et al. Kinetics of Biomass pyrolysis a reformulated three-parallel-reactionsmodel[J]. Ind Eng Chem Res, 2003, 23(4): 434-441.
    [66] Koufopanos C A, Maschio G, Lucchesi A. Kinetic modelling of the pyrolysis ofbiomass and biomass components[J]. Canadian journal of chemical engineering, 1989, 67: 75-84.
    [67] Colomba D B, Lanzetta M I. Kinetics of isothermal xylan degration in inert atmophere[J]. Journal of analytical and applied pyrolysis, 1997(40/41): 287-303.
    [68] Varhegyi G, Antal M J. Kinetic modeling of biomass pyrolysis[J]. Journal of analytical and app lied pyrolysis, 1997, 42: 73-87.
    [69] Rioche C, Kulkarn I S Meunier F C, et al. Steam reforming ofmodel compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. Applied Catalysis(B): Environmental, 2005, 61(1/2): 130-139.
    [70] Jale Y, Christoph K, Mehmet S, et al. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products[J]. Fuel Processing Technology, 2007, 88: 942-947.
    [71] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable & Sustainable Energy Reviews, 2000, 4(1): 1-73.
    [72] Ates F, Putun E, Putun A E. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 779-790.
    [73] Radlein D. The Production of Chemicals from Fast Pyrolysis Bio-oils1 In Fast Pyrolysis of Biomass: A Handbook: Bridgwater[M]. UIK, CPL Press, 1999, 164-188
    [74] Kyung Hae L, Bo S K, Young K P. Influence of Reaction Temperature, Pretreatment, and a Char Removal System on the Production of Bio-oil from Rice Straw by Fast Pyrolysis, Using a Fluidized Bed[J]. Energy & Fuels, 2005(9): 2179-2184.
    [75] Diebold J P, Power A T. Engineering Aspects of the Vortex Pyrolysis Reactor to Produce Primary Pyrolysis Oil Vapor for Use in Resins and Adhesives Proceedings in Research in Thereto-Chemical Biomass Coversion[J], Elsevier Applied Science, New York, 1988, 609.
    [76] Wagenaar B M, Venderbosch R H, Carrasco J. Rotating Cone Bio-oil Production and Applications[J]. Oxford, Blackwell, 2001.
    [77] Bridgwater A, Dieboid J, Meier D. Handbook of fast pyrolys-is of biomass[M]. CPL Scientific Publishing Services Limit-edLiberty House.
    [78] Sascha R A K, Wolter P, Driftbram V D. Principles of a Novel Multistage Circulating Fluidized Bed Reactor for Biomass Gasification, Chem, Engin Science, 2003, 58:725-731.
    [79] Arthur M C, Janse P, Maarten B. Anovel Interconnected Fluidized Bed for the Combined Flash Pyrolysis of Biomass and Combustion of Char[J]. Chem. Engin. J. 2000, 76: 77-86.
    [80] Jacques L D, Francois B, Fatou T N, et al. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor [J]. Fuel, 2007(2): 1800-1810.
    [81] Lappas A A, Samolada M C, Iatridis D K, et al. Biomass Pyrolysis in a Circulating Fluid Bed Reactor for the Production of Fueles and Chemicals[J]. Fuel, 2002, 81: 2087-2095
    [82] Davidian T, Guilhaume N, Daniel C, et al. Continuous hydrogen production by sequential catalytic cracking of acetic acid(I): Investigation of reaction conditions and application to two parallel reactors operated cyclically[J]. Applied Catalysis (A): General, 2008, 335(1): 64-73.
    [83] Dai X, Wu C, Li H B, et al. The fast pyrolysis of biomass in CFB reactor[J]. Energy & Fuels, 2000, 14(3): 552-7.
    [84] Hans D, Manuel G P, Alain A, et al. Corrosion of Metals by Bio-oil Obtained by Vacuum Pyrolysis of Softwood Bark Residues. An X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Study[J]. Energy & Fuels, 2004, 18: 1291-1301.
    [85] Agblevor F A, Besler S, Wiselogel A E. Fast pyrolysisof stored biomass feedstocks[J]. Energy Fuels, 1995, 9(4): 635-640.
    [86] Boateng A A, Mullen C A, Goldberg N, et al. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis[J]. Ind Eng Chem Res, 2008, 47(12): 4115-4122.
    [87] Yanik J, Kornmayer C, Saglam M, et al. Fast pyrolysis of agricultural wastes: characterization of pyrolysis products[J]. Fuel Process Technol, 2007, 88(10): 942-947.
    [88] Zheng J L. Bio-oil from fast pyrolysis of rice husk: yields and related properties and improvement of the pyrolysis system[J]. J Anal Appl Pyrolysis, 2007, 80(1): 30-35.
    [89] Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk: product yields and compositions[J]. Bioresour Technol, 2007, 98(1): 22-28.
    [90]戴先文,周肇秋,吴创之.循环流化床作为生物质热解液化反应器的实验研究[J].化学反应工程与工艺, 2000, 16(3): 263-269.
    [91]任铮伟,徐清.流化床生物质快速裂解制液体燃料[J].太阳能学报, 2002, 23(4):462-466.
    [92]徐保江,李美玲.旋转锥式闪速热解生物质试验研究[J].环境工程, 1999, 17(5): 71-74
    [93]苏学泳,王智微.生物质在流化床中的热解和气化研究[J].燃料化学学报, 2000, 28(4): 298-305.
    [94]蒋剑春,应浩.锥形流化床生物质气化技术和工程[J].农业工程学报, 2006, 22(增刊): 211-215.
    [95]陈冠益,访梦祥.生物质流化床的实验研究及设计要点[J].热力发电, 1999, 5: 19-23.
    [96]王琦,刘倩.流化床生物质快速热解制取生物油试验研究[J].工程热物理学报, 2008, 29
    [97]柏雪源,易维明.玉米秸秆在等离子体加热流化床上的快速热解液化研究[J].农业工程学报, 2005, 21(12): 127-130.
    [98]吕鹏梅,常杰.生物质废弃物催化气化制取富氢燃料气[J].煤炭转化, 2002, 25(7): 32-36.
    [99]吕鹏梅,熊祖鸿.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备, 2003, 4(11): 31-34.
    [100]陈继辉,卢啸风.循环流化床锅炉焚烧生物质燃料的研究进展[J].农业工程学报, 2006, 22(10): 267-270.
    [101]刘焕卫,易维明.流化床热裂解影响因素的研究[J].农机化研究, 2007, 9: 137-139.
    [102]涂丽丽,魏立安.生物质流化床气化结焦的原因与预防[J].江西科学, 2008, 26(3): 464-466.
    [103]董良杰,刘艳阳.生物质快速热裂解制取生物油的试验研究[J].吉林农业大学学报, 2008, 30(4): 610-616.
    [104] Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil(pyrolytic lignin). Part I: PY-GC/MS, FTIR, and functional groups[J]. Journal of Analytical and Applied Pyrolysis, 2001, 60: 41-54.
    [105]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报, 2006, 27(12): 1285-1289.
    [106]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报, 2004, 25(6): 1049-1052.
    [107]王凤旵,王君,陈明功,等.生物质热解油的特性及其应用研究进展[J].生物质化学工程, 2008, 42 (1): 34-40.
    [108]王丽红,柏雪源,易维明,等.玉米秸秆热解生物油特性的研究[J].农业工程学报, 2006, 22 (3): 108-111.
    [109] Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1): 87-92.
    [110] Ba T, Chala A, Garcila P M, et al. Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark. Characterization of Water-Soluble and Water-Insoluble Fractions[J]. Energy Fuels, 2004, 18(3): 704~712
    [111] Boucher M E, Chaala A, Roy C. Bio-oils obtainned by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J]. Biomass and Bioenergy, 2000, 19: 337-350.
    [112]刘宝勇,郭贞,郭庆杰,等.生物质热解与热解油精制[J].中国粉体技术, 2007, 3: 39-43.
    [113] Ikura M, Mirmiran S, Stanciulescu M, et al. Pyrolysis liquid-in-diesel oil microemulsions: US 5820640, 1998.
    [114] Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil[J]. Energy & Fuels, 1993, 7: 306-314.
    [115] Vitolo S, Bresci B, Seggiani M, et al. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite behaviour of the catalyst when used in repeated upgrading-regenerating cycles[J]. Fuel, 2001, 80(1): 17-26.
    [116] Zhang S, Yan Y, Li T, et al. Upgrading of liquid fuel from the pyrolysis of biomass[J]. Bioresource Technology, 2005, 96(5): 545-550.
    [117] Zhang Q, Chang J, Wang T, et al. Upgrading Bio-oil over Different Solid Catalysts[J]. Energy Fuels, 2006, 20 (6): 2717-2720
    [118] Wilson N G, Williams P T. Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio-oil[J]. International Journal of Energy Research, 2003, 27(2): 131-143.
    [119] Ikura M, Maria S, Ed H. Emulsifcation of pyrolysis derived bio-oil in diesel fuel[J]. Biomass and Bioenergy, 2003, 24: 221-232.
    [120] Ramos M C, Navascues A I, Garcia L, et al. Hydrogen production by catalytic steamreforming of acetol, a model compound of bio-oil[J]. Ind Eng Chem Res, 2007, 46(8): 2399-2406.
    [121] Chiaramontia D, Boninia M, Fratinia E, et a1. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. PartⅠ: emulsion production[J]. Biomass and Bioenergy, 2003, 25: 85-99.
    [122] Chiaramontia D, Boninia M, Fratinia E, et a1. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. PartⅡ: tests in diesel engines[J]. Biomass and Bioenergy, 2003, 25: 101-111.
    [123]郭晓亚,颜涌捷,任铮伟,等.生物质裂解油催化裂解精制[J].过程工程学报, 2003, 3(1): 91-95.
    [124]郭晓亚,颜涌捷,李庭琛,等.生物质油催化裂解精制中催化剂上焦碳前身物的分析[J].华东理工大学学报, 2003, 29(5): 534~536
    [125]王铁柱.生物质焦油催化裂解试验研究[D].学位论文.浙江:浙江大学, 2003.
    [126]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化学学报, 2001, 29(1): 70-75.
    [127] Gayubo A G, Aguayo A T, Atutxa A, et al. Deactivation of a HZSM-5 Zeolite catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons[J]. Energy Fuels. 2004, 18(6): 1640-1647.
    [128]张琦.固体酸碱催化剂催化酯化改质提升生物油的研究[D].中国科学技术大学, 2006.
    [129] Qian Y J, Zuo C J, Tan J, et al. Structural analysis of bio-oils from subsand supercritical water liquefaction of woody biomass[J]. Energy, 2007, 32(3): 196-202.
    [130] Johannes M L, Penn I, Marco M R. Reforming of aqueouswood pyrolysis condensate in supercritical water[J]. International Journal of Hydrogen Energy, 2006, 31(11): 1597-1606.
    [131] Kecha G N, Voutetakis S S, Lemondou A A, et al. Hydrogen production via steam reforming of the aqueous phase of bio-oils in a fixed bed reactor[J]. Energy & Fuels, 2006, 20(5): 2155-2163.
    [132] Garcia L, French R, Czernik S, et al. Catalytic steam reforming of bio-oils for the production of hydrogen. Effects of catalyst composition[J]. Applied Analysis A: General, 2000, 201(2): 225-239.
    [133] Wlliams P T, Horme P A. The influence of catalyst tyep on the composition ofupgraded biomass pyrolysis oils[J]. Joumal of Anlytical and Applied Pyrolysis, 1995(31): 39-61.
    [134]林瑞荣,陈存及,郑兆飞,等.毛竹丰产林生态培育技术的推广应用[J].福建林业科技, 2002, 29(2): 65-67.
    [135]李显惠.闽北竹业现状、问题与发展对策[J].福建林业科技, 2004, 31(2): 109-112.
    [136]朱石麟.中国竹类植物图志[M].北京:中国林业出版社, 1994.
    [137]朱江涛,黄正宏,康飞宇,等.竹炭的性能和应用研究进展[J].材料导报, 2006, 20(4): 41-43, 52.
    [138] Keim, Toshitatsu M, Yasuo H, et al. Removal of nitrate nitrogen from drinking water using bamboo powder charcoal [J]. Bioresource Technology, 2004, 95(3): 255-257.
    [139]胡志彪,陈杰斌,张著森,等.竹炭对铬(Ⅵ)离子吸附性能的研究[J].功能材料, 2008, 39(3): 523-525.
    [140]谢碧霞,李安平,胡春水,等.高活性竹笋膳食纤维饼干的研制[J].中南林学院学报, 2000, 20(2): 22-25.
    [141]范秀华,陆胜民.雷竹笋乳酸饮料的加工工艺[J].食品与发酵工业, 2005, 31(1): 157-158.
    [142]白卫东,赵文红,刘晓艳,等.软包装调味笋的研制[J].农产品加工, 2006, 1: 40-42.
    [143]林开文,苏光荣,郭永杰,等.锡金龙竹竹笋的营养成分分析与评价[J].西部林业科学, 2009, 38(1): 48-54.
    [144]胡春水,谢碧霞,钟海雁.乳酸菌发酵制备竹笋膳食纤维的研究[J].食品工业科技, 19991(1): 38-39.
    [145]孙静亚,杨玉霞,王惠君.竹笋壳色素的提取及性质的研究[J].中国食品添加剂, 2004, 5: 8-10,15.
    [146]许丽旋,蔡建秀.竹笋壳黄酮提取液抑菌效果初步研究[J].农产品加工, 2006, 1(7): 63-65.
    [147]张英,陆柏益,吴晓琴,等.竹笋氨基酸肽类提取物及其制备方法和用途[J]. 2006, CN, 1854121.
    [148]冯国芳,谢涛.酸处理竹笋壳纤维糖化工艺的优化[J].湖南工程学院学报, 2008, 18(3): 84-86.
    [1]丁福臣,迟姚铃,易玉峰.生物质热解液化技术及其产物利用的研究进展[J].北京石油化工学院学报, 2007, 15(2): 45-46.
    [2]姚福生,易维明,柏雪源,等.生物质快速热解液化技术[J].中国工程科学, 2001, 3(4): 63-65.
    [3]董治国,王述洋.生物质快速热解液化技术的研究[J].林业劳动安全, 2004, 17(1): 13-15.
    [4]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源, 2004, 3(115): 45-46.
    [5]刘荣厚.生物质闪速热裂解特性及闪速热裂解试验研究[D].沈阳:沈阳农业大学, 1997.
    [6]张洪勋,李林.纤维素类生物质热解技术研究进展[J].北京联合大学学报(自然科学版), 2004, 18(1): 15-18.
    [7] Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51: 3-22.
    [8] David C, Anja O, Yrjo S. Powe rgeneration using fast pyrolysis liquids f rom biomass[J]. Renewable and sustainable energy reviews, 2007, 11: 1056-1086.
    [9] Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy and Fuels, 2004, 18(2): 590-598.
    [10] Bridgwater A V. Biomass Fast Pyrolysis[J]. Themal Science, 2004, 8(2): 21-49.
    [11] Wagenaar B M. The Rotating Cone Reactor for Rapid Thermal Solid Processing[J]. Hengelo the Netherlands, 1994.
    [12] Kersten S R, Wang X, Prins W, et al. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 1: Literature Revies and Model Simulations[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8773-8785.
    [13] Tomishige K, Asadullah M, Kunimori K. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor[J]. Catalysis Today, 2004, 89(4): 389-403.
    [14] Prins W, Wagenaar B. Review of the rotating cone technology for flash pyrolysis of biomass[J]. Presented at the pyrolysis and gasification conference in stuttgard, 1997, 4: 1120-1128.
    [15] Chiaramontia D, Boninia M, Fratinia E, et a1. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. PartⅠ: emulsion production[J]. Biomass and Bioenergy, 2003, 25: 85-99.
    [16] Triantafyllidis K S, Iliopoulou E F, Antonakou E V. Hydrothermally stable mesoporous aluminosilicates(MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis[J]. Microporous and Mesoporous Materials, 2007, 99(1-2): 132-139.
    [17] Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived io-oil in diesel fuel. Biomass & Bioenergy, 2003, 24: 221-232.
    [18] Lang X, Dalai A K, Bakhshi N N, et al. Preparation and characterization of bio-diesels from various bio-oils[J]. Bioresource Technology, 2001, 80(1): 53-62.
    [19] Pütün A E, Apaydm E, Pütün E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy, 2004, 79: 2171-2180.
    [20] Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell: a near fuel[J]. Biomass and Bioenergy, 2004, 25(1): 113-117.
    [21]林木林,蒋剑春.生物质快速热解技术现状[J].生物质化学工程, 2006, 40(1): 21-26.
    [22]杨素文,丘克强.生物质真空热解液化技术研究现状[J].现代化工, 2008, 28(1): 22-26.
    [23]朱锡锋, Venderbosch R H.生物质热解油气化试验研究[J].燃料化学学报, 2004, 32 (4): 510-512.
    [24]李理,阴秀丽,吴创之,等.生物质热解油气化制备合成气的研究[J].可再生能源, 2007, 25 (1): 40-43.
    [25]戴先文,吴创之,周肇秋,等.循环流化床反应器固体生物质的热解液化[J].太阳能学报, 2001, 22(2): 124-130.
    [26]刘守新,张世润.生物质的快速热解[J].林产化学与工业, 2004, 24(3): 93-101.
    [27]何方,王华,金会心.生物质液化制取液体燃料和化学品[J].能源工程, 1999, 5: 14-17.
    [28]曾忠.生物质热解液化实验研究[J].应用科学学报, 2002, 4: 27-29.
    [29]廖艳芬,王树荣,洪军,等.生物质热裂解制取液燃料的实验研究新能源与工艺[M].北京:化学工业出版社, 2004.
    [30]朱锡锋,郑冀鲁,陆强,等.生物质热解液化装置研制与试验研究[J].中国工程科学, 2006, 8(10): 89-93.
    [31]陈明强,颜涌捷,任铮伟,等.导向喷动流化床生物质快速裂解制液体燃料[J].华东理工大学学报, 2004, 30(2): 143-147.
    [32]杨昌炎,丁一刚,刘生鹏,等.麦秸快速热解的试验研究[J].化学与生物工程, 2005, 4: 13-15.
    [33]谭洪,王树荣,骆仲泱,等.生物质整合式流化床热解制油系统试验研究[J].农业机械学报, 2005, 36(40): 30-33.
    [34]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报, 2001, 29(4): 19-22.
    [35]杨昌炎,姚建中,林伟刚.生物质细粉加料技术的改进[J].化学工程, 2006, 34(7): 43-45.
    [36]化学工程手册编委会.化学工程手册[M].北京:化学工业出版社, 1989.
    [37]高春生,单利,崔光国,等.粉末直接压片工艺主要辅料的流动性研究[J].科学技术与工程, 2004, 4(5): 367-370.
    [38]王昶,贾青竹,中川绅好,等.木材经催化热分解向BTX和合成染料的转化[J].化工学报, 2004, 55(8): 1341-1347.
    [39]刘靖,殷小荣.热磨机螺旋进料器的设计[J].林产工业, 1990, 18(5): 30-33.
    [40]赵琪,施纯仁.变速、变螺距、变直径螺旋给料机的开发与设计[J].中国建材装备科技博览, 2001, 2(1): 10-11.
    [41]王晓艳,董良杰,李玉柱,等.生物质热裂解制取生物油装置的螺旋给料机设计[J].吉林农业大学学报, 2005, 27(5): 582-585.
    [42]上海机电设计院编.铸造车间接卸化—斗式提升机、螺旋输送机[M].北京:机械工业出版社, 1956.
    [43]闫桂焕,许敏,孙荣峰.生物质螺旋给料机的设计[J].可再生能源, 2007, 25(1): 74-76.
    [44]电机工程手册编辑委员会.机械工程手册(第68篇运输机械)[M].北京:机械工业出版社, 1979.
    [45]庞美容.慢速螺旋输送机的功率探讨[J].饲料工业, 1994, 15(11): 17-20.
    [46]起重机运输设备选用手册编写组.起重机运输设备选用手册[M].北京:机械工业出版社, 1991.
    [47]夏延栋,胥德孝.实用密封技术手册[M].哈尔滨:黑龙江科学技术出版社, 1987.
    [48]齐国利,王丽,翟明,等.生物质快速热解制取生物油[J].太阳能学报, 2007, 28(2): 223-225.
    [49]杜洪双,常建民,王鹏起,等.木质生物油快速热解生物油产率影响因素分析[[J].林业机械与木工设备, 2007, 35(3): 16-18.
    [50]白尚显,唐文俊.染料手册[M].北京:冶金工业出版社, 1994.
    [51]奚同庚等编著.无机材料热物性学[M].上海:上海科学技术出版社, 1981.
    [52]化工部热工设计中心站.热能工程设计手册[M].北京:化学工业出版社, 1998.
    [53]陈甘堂,王樟茂.流化态技术的理论和应用[M].北京:中国石化出版社, 1996.
    [54]时均,汪家鼎,余国宗,等.化学工程手册下卷[M].北京:化学工业出版社, 1996.
    [55]黄璐,王保国编著.化工设计[M].北京:化学工业出版社, 2001.
    [56]陈敏恒,方图南,丛德滋,等编著.化工原理[M].北京:化学工业出版社, 2006.
    [57]严建华,程乐鸣.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社, 1998.
    [58]顾顺符,潘秉勤.管道工程安装手册[M].北京:中国建筑工业出版社, 1997.
    [59]林宗虎.锅炉手册[M].北京第一版机械工业出版社西安交通大学, 1989.
    [60]陈敏恒,方图南,丛德滋,等编著.化工原理(上册)[M].北京:化学工业出版社, 2006.
    [61]郭慕孙,李洪钟主编.流态化手册[M].北京:化学工业出版社, 2007.
    [62]郭慕孙.全国流化会议报告集[M].北京:科学出版社, 1964.
    [63]温崇哲.热工及热应力基础[M].机械工业出版社, 1982.
    [64]洪军.生物质热裂解制油机理试验研究及流化床闪速热裂解装置设计[D].浙江大学硕士论文, 2002, 285-87.
    [65]吴建良,查丽文.常用流量计的选型[J].计量装置及应用, 2004, 9(7): 66-67.
    [66]郑毅然.浅谈热电偶及补偿导线的选型与使用[J].验室科学, 2007, 2( 1): 165-167.
    [67]靳士兰,邢风兰,李文刚,等编著.化工制图[M].北京:国防工业出版社, 2006.
    [68]曹素红,康惠宝.旋风分离器设计方法的研究[J].广东化工, 2007, 34(4): 88-89.
    [69]金国淼编著.除尘设备设计[M].上海:上海科学技术出版社, 1983.
    [70]李玉柱.生物质热裂解制取生物油试验装置的研制[D].吉林:吉林农业大学, 2005.
    [1]阎长乐.中国能源发展报告[M].北京:中国计量出版社, 2001: 15-35.
    [2]倪维斗,靳晖,李政.中国液体燃料的短缺及其替代问题[J].科技导报, 2001(12): 9-12.
    [3] Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18: 590-598.
    [4] Dai X W, Wu C Z, Li H B, et al. The fast pyrolysis of biomass in CFB reactor[J]. Energy&Fuels, 2000, 3: 552-557.
    [5]陈明强,颜涌捷,任铮伟,等.导向喷动流化床生物质快速裂解制液体燃料[J].华东理工大报, 2004, 30(2): 143-147.
    [6]魏学锋,刘建平.生物质燃料的利用现状与展望[J].云南环境科学, 2005, 24(2):16-19.
    [7]中国大百科全书出版社编辑部.能源百科全书[M].北京:中国大百科全书出版社, 1997.
    [8]朱清时,阎立峰,郭庆祥.生物质洁净能源[J].北京:化学工业出版社, 2002.
    [9] Demirbas M F, Balat M. Recent advances on the production and utilization trends of bio-fuels: a global perspective[J]. Energy Conversion and Management, 2006, 47: 2371-2381.
    [10] Dinesh M, Charles U, Pittman J, et al. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels, 2006, 20: 848-889.
    [11]刘威.生物质能开发利用设计与环境效应的研究[D].东北师范大学硕士毕业论文, 2002, 4.
    [12]郭廷杰.加速生物质能的利用和发展[J].能源技术, 2003, 24(4): 152-155.
    [13]雒廷亮,许庆利,刘国际,等.生物质能的应用前景分析[J].能源研究与信, 2003, 19(4): 194-197.
    [14]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业, 2002, 22(2): 75-80.
    [15]吴创之,罗曾凡,阴秀丽.农业生物质气化发电技术应用分析[J].新能源, 1995, 17: 5-11.
    [16]王革华.生物质能开发利用[M].中国农村能源年鉴,中国能源出版社, 1998: 34-35.
    [17]陈文伟,高荫榆,刘玉环,等.生物质的转化与利用[J].工作论坛, 2003, 112: 6.
    [18]何芳,易维明,孔容峰,等.小麦和玉米秸秆热解反应与热解动力学分析[J].农业工程学报, 2002, 18(4), 10-13.
    [19]董良杰.生物质热裂解技术及其反应动力学研究[D].沈阳:沈阳农业大学, 1997, 8(2): 176-180.
    [20] Cheu Y H E, Anthony R G, Soltes E J. Kinetic studies of Pine Pyrolytic Oils by Hydrotreatment[J]. Fuel Process Technol, 1988, 19(1): 31~50
    [21] Babu B V, Chaurasia A S. Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum[J]. Energy Conversion and Management. 2004, 45(9-10): 1297-327.
    [22] Encinar J M, Gonzalez J F, Rodriguez J J, et al. Catalysed and uncatalysed steam gasification of eucalyptus char: influence of variables and kinetic study[J]. Fuel, 2001, 80(14): 2025-36.
    [23]于娟,章明川,沈轶,等.生物质热解特性的热重分析[[J].上海交通大学学报, 2002, 36(10): 1475-1478.
    [24]段佳,罗永浩,陆方,等.生物质废弃物热解特性的热重分析研究[J].工业加热, 2006, 35(3): 10-13.
    [25]邵千钧,彭锦星,徐群芳,等.竹质材料热解失重行为及其动力学研究[J].太阳能学报, 2006, 27(7): 671-676.
    [26]张晓东,许敏,孙荣峰,等.玉米秸热解动力学研究[J].燃料化学学报, 2006, 34(1): 123-125.
    [27] Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I:model compound studies and reaction pathway[J]. Biomass & Bioenergy, 1995, 8(3): 131-149.
    [28] Johannes M L, Penn I, Marco M R. Reforming of aqueouswood pyrolysis condensate in supercritical water[J]. International Journal of Hydrogen Energy, 2006, 31(11): 1597-1606.
    [29] Davidlan T, Guilhaume N, Provendier H, et al. Contionuous hydrogen production by sequential catalytic cracking of acetic acid(II): Mechanistic features and characterisation of catalysts under redox cycling[J]. Applied Catalysis (A): General, 2008, 337(2): 111-120.
    [30]赵俊成,孙立,易维明.在管式炉中生物质热解的机理[J].山东理工大学学报, 2004, 18(2): 33-36.
    [31] Demirbas A. Effect of temperature on pyrolysis products from four nut shells[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 285-289.
    [32] Boucher M E, Chaala A, Pakdel H, et al. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol as a pyrolytic aqueous phase[J]. Biomass and Bioenergy, 2000, 19(5): 351-361.
    [33] Bridgewater A V, Peacocke G V. Fast Pyrolysis Processes for biomass[J]. RenewSustain Enemy Reviews, 2000, 4: l-73.
    [34] Chiaramontia D, Boninia M, Fratinia E, et al. Development of emul sions f rom biomass pyrolysis liquid and diesel and their use in engines. Part I: emul sion production [J]. Biomass and Bioenergy, 2003, 25: 85-89.
    [35] Svenson J, Pettersson J B C, Anker J, et al. Fastpyrolysis of the main components of birch wood[J]. Combustion Science and Technology, 2004, 176: 977-990.
    [36]李伍刚,李瑞阳.生物质热解技术研究现状及其进展[J].能源研究与信息, 2001, 17(4): 210-216.
    [37]陆强,朱锡锋,李全新,等.生物质快速热解制备液体燃料[J].化学进展, 2007, 19(7-8): 1064-1071.
    [38]刘荣厚.生物质热裂解特性及闪速热裂解试验研究[D].沈阳:沈阳农业大学, 1997, 117-125.
    [39]王树荣,刘倩.基于热重红外联用分析的生物质热裂解机理研究[J].工程热物理学报, 2006, 27(2): 351-353.
    [40]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源, 2004(3): 11-14.
    [41] Demirbas A. An overview of biomass pyrolysis[J]. Energy Sources, 2002, (24): 471-482.
    [42] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable and Sustainable Energy Reviews, 2000, 4 (1): 1-73.
    [43]廖艳芬,骆仲泱,王树荣,等.纤维素快速热裂解机理试验研究[J].燃烧化学学报, 2003, 31(2): 133-138.
    [44] Williams P T, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J]. Energy, 2000, 25(6): 493-513.
    [45] Vitoloa S, Seggiania M, Fredianib P, et a1. Catalytic upgrading of pyrolytic oils to fuel over different zeolites[J]. Fuel, 1999, 78(10): 1147-1159.
    [46] Park H J, Dong J I, Jeon J K, et a1. Conversion of the pyrolytic vapor of radiata pine over zeolites[J]. Journal of Industrial and Engineering Chemistry, 2007, 13(2): 182-189.
    [47] Antonakou E, Lappas A, Nilsen M, et al. Evaluation of various types of Al-MCM-41materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals[J]. Fuel, 2006, 85(14/15): 2202-2212.
    [48] Iliopoulou E F, Antonakou E V, Karakoulia S A, et al. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts[J]. Chemical Engineering Journal, 2007, 134(1/3): 51-57.
    [49] Garcia L, French R, Czernik S, et al. Catalytic steam reforming of bio-oil for the production of hydrogen: Effects of catalyst composition[J]. App lied Catalysis(A): General, 2000, 201(2): 225-239.
    [50] Basagiannis A C, Verykios X E. Reforming reactions of acetic acid on nickel catalysts over a wide temperature range [J]. Applied Catalysis(A): General, 2006, 308: 182- 193.
    [51]郭晓亚,颜涌捷,李庭琛,等.生物油精制前后热稳定性和热分解动力学研究[J].华东理工大学学报, 2004, 30: 270-300.
    [52]徐保江,李美玲,曾忠,等.旋转锥式生物质热解系统及热载体动力学研究[J].上海理工大学学报, 2000, 22(1): 16-20.
    [53] Babu B V, Chaurasia A S. Modeling for pyrolysis of solid particle: kinetics and heat transfer effects[J]. Energy Conversion andManagement, 2003, 44: 2251-2275.
    [54] Kuroda K I. Analytical pyrolysis products derived from cinnamyl alcohol-end groups in lignins[J]. Journal of Analytical and Applied Pyrolysis, 2000, 53: 123-134.
    [55]王树荣.生物质热裂解制油的试验与机理研究[D].杭州:浙江大学, 1999, 15-20.
    [56] Mollab A, Robinson C W. Pentachlorophenol adsorption and desorption characteristics of granular activated carbon: kinetics. Water Research, 1996, 30: 2901-2907.
    [57]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社, 2001.
    [58] Vlaev L T, Markovska I G, Lyubchev L A. Nonisothermal kinetics of pyrolysis of rice husk[J]. Thermochimica Acta, 2003, 406: 1-7.
    [59] Font R, Fullana A Conesa J A, et al. Analysis of the pyrolysis and combustion of different sewage sludge by TG[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 927-941.
    [60] Mette S, Anker J. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[J]. Journal of Analytical and Applied Pyrolysis, 2001(78): 765-780.
    [1]邵强.我国能源现状及可再生能源开发问题[J].西部探矿工程, 107: 208-209.
    [2] Dai X W, Wu C Z, Li H B, et al. The fast pyrolysis of biomass in CFB reactor. Energy & Fuels, 2000, 3: 552-557.
    [3]中国大百科全书出版社编辑部.能源百科全书[M].北京:中国大百科全书出版社, 1997.
    [4] Demirbas M F, Balat M. Recent advances on the production and utilization trends of bio-fuels:a global perspective[J]. Energy Conversion and Management, 2006, 47: 2371-2381.
    [5]刘威.生物质能开发利用设计与环境效应的研究[D].东北师范大学硕士毕业论, .2002.
    [6]许丽旋,蔡建秀.竹笋壳黄酮提取液抑菌效果初步研究[J].农产品加工·学刊, 2006(7): 63-65.
    [7]林鑫民,陈开标.竹笋开发和加工技术.贵阳:贵州科技出版社, 1991.
    [8]黄翠琴,何桂华.笋竹加工利用[M].福建:福建科技出版社, 2004.
    [9]罗曼,邹国林,邬开朗.笋壳过氧化物酶提纯及综合利用的研究[J].氨基酸和生物资源, 2000, 22(4): 28-32.
    [10]王小芹,刘建新.笋壳中添加稻草和麸皮复合青贮对青贮料发酵品质和饲养价值的影响[J].动物营养学报, 1999, 11(3): 12-15.
    [11]林木森,蒋剑春.生物质快速热解技术现状[J].生物质化学工程, 2006, 40(1): 21-26.
    [12] Rrichard C, Bailie J. Results from commercial demonstration pyrolysis facilities extended to Producing synfuels from biomass, energy from biomass and wastes[J]. Sym Posium PaPers, 1981: 584一569.
    [13]刘守新,张世润.生物质的快速热解[J].林产化学与工业, 2004, 24(3): 95-101.
    [14] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable and Sustainable Energy Reviews, 2000, 4 (1): 1-73.
    [15] Luo Z Y, Wang S R, Chen Y, et al. Research on biomass fast pyrolysis for liquid fuel[J]. Biomass & Bioenergy, 2004, 26: 455-462.
    [16] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Organic Geochemistry, 1999, 30: 1479-1493.
    [23] Adam J,Antonakou E,Lappas A,et al. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials[J]. Microporous and Mesoporous Materials,2006,96(1-3):93-101.
    [18] Kersten S R, Wang X, Prins W, et al. Biomass Pyrolysis in a Fluidized Bed Reactor[J]. Part 1: Literature Revies and Model Simulations[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8773-8785.
    [10]王树荣,骆仲泱,董良杰,等.生物质闪速热裂解制取生物油的试验研究[J].太阳能学报, 2002, 23(1): 4~10
    [21] David C, Anja O, Yrjo S. Powe rgeneration using fast pyrolysis liquids f rom biomass[J]. Renewable and sustainable energy reviews, 2007, 11: 1056-1086.
    [22] Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of analytical and applied pyrolysis, 1999, 51: 3-22.
    [23] Jale Y, Christoph K, Mehmet S. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products[J]. Fuel Processing Technology, 2007, (88): 942-947.
    [24] Butt D A. Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata): Part I. Influence of molecular oxygen[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 38-47.
    [25] Kyung H L, Bo S K, Young K P. Influence of Reaction Temperature, Pretreatment, and a Char Removal System on the Production of Bio-oil from Rice Straw by Fast Pyrolysis, Using a Fluidized Bed[J]. Energy & Fuels, 2005(9): 2179-2184.
    [26] Gercel H F. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass[J]. Energy Sources, 2002, 24(7): 633-42.
    [27] Onay O, Kockar O M. Slow, fast and flash pyrolysis of rapeseed[J]. Renewable Energy. 2003, 28(15): 2417-33.
    [28]王杰广,吕雪松,姚建中,等.下行床煤拔头工艺的产品产率分布和液体组成[J].过程工程学报, 2005, 5(3): 1-5.
    [29] Branca C, Di B C, Russo C. Devolatilization in the temperature range 300-600 K of liquids derived from wood pyrolysis and gasification[J]. Fuel, 2005, 84(1): 37-45.
    [30] Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysisliquids from biomass[J]. Renew Sust Energy Rev, 2007, 11(6): 1056~1086.
    [31] Oasmaa A, Meie D. Norms and standards for fast pyrolysis liquids: 1.Round robin test [J]. Journal of Analytical and Applied Pyrolysis: 2005, 73(2): 323-334.
    [32] Sensoz S, Can M. Pyrolysis of pine chips: 1.effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources 2002, 24(4): 347-55.
    [33] Beis S H, Onay O, Kockar M. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy. 2002, 26: 21-32.
    [34] Ates F, Putun E, Putun A E. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 779-790.
    [35] Ates F, Putun A E, Putun E. Fixed bed pyrolysis of Euphorbia rigida with different catalysts[J]. Energy Conversion and Management. 2005, 46(3): 421-32.
    [36] Aclkgoz C, Onay O, Kockar O M. Fast pyrolysis of linseed: product yields and compositions[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 417-429.
    [37]宋春财,王刚,胡浩权.生物质热化学液化技术进展[J].太阳能学报, 2002(4): 27-29.
    [1] Michio I, Maria S, Ed H. Emulsifcation of pyrolysis derived bio-oil in diesel fuel[J]. Biomass and Bioenergy,2003,24:221-232.
    [2] Takanabe K, Aika K I, Philip H.S, et al. Sustainable hydrogen from bio-oil-steam reforming of acetic acid as a model oxygenate[J]. J. Catal.,2004, 227(1):101-108.
    [3] Dinesh M, Charles U, Pittman J, et al. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy&Fuels,2006,20:848-889.
    [4] Wang S R, Luo Z Y, Tan H, et al. The anlyses of characteristics bio-oil produced from biomass flash pyrolysis[J]. Journal of Engineering Thermophysics, 2004, 25(6): 1049-1052.
    [5] Ba T, Chaala A, Garcia-perez M, et al. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark storage stability[J] .Energy& Fuels, 2004, 18(1): 188-201.
    [6] Peacocke G V C, Russel P A, Jenkins J D, et al. Physical properties of flash pyrolysis liquids[J]. Biomass Bioenergy, 1994, 7: 169-178.
    [7] Daszkiewicz K.B, Voelkel A, Szejner M, et al. Extraction properties of new polymeric sorbents in SPE/GC analysis of phenol and hydroquinone from water samples[J]. Chemosphere, 2006, 62::890-898.
    [8] Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1): 87-92.
    [9] Das P, Streelatha T, Ganesh A. Bio-oil from pyrolysis of cashew nut shell characterisation and related properties[J]. Biomass and Bioenergy, 2004, 27(3): 265-275.
    [10] Sensoz S, Kaynar I. Bio-oil production from soybean (Glycine max L.); fuel properties of Bio-oil[J]. Industrial Crops and Products, 2006, 23(1): 99-105.
    [11] Ba T, Chala A, Garcila-Perez M, et al. Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark. Characterization of Water-Soluble and Water-Insoluble Fractions[J]. Energy Fuels, 2004, 18(3): 704-712
    [12] Jacques L, Francois B, Fatou T N, et al. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor[J]. Fuel, 2007(2): 1800-2180.
    [13] Lappas A A, Samolada M C, Iatridis D K, et al. Biomass Pyrolysis in a Circulating Fluid Bed Reactor for the Production of Fueles and Chemicals[J]. Fuel, 2002, 81: 2087-2095
    [14] Garcia P M, Chaala A, Bonini M, et al. Characterization of Bio-oils in Chemical Families[J]. Biomass and Bioenergy, 2007, 31(4): 222-242
    [15] Bridgeman T G, Darvell L I, Jones J M. Influence of particle size on the analytical and chemical peoperties of two energy crops[J]. Fuel, 2007, 86: 60-72.
    [16] Hans D, Manuel G P, Alain A, et al. Corrosion of Metals by Bio-oil Obtained byVacuum Pyrolysis of Softwood Bark Residues. An X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Study[J]. Energy & Fuels, 2004, 18: 1291-1301.
    [17]张素萍,颜涌捷,任铮伟,等.生物质快速裂解液体产物的分析[J].华东理工大学学报, 2001, 27(6): 666-668.
    [18]郭晓亚,颜涌捷,李庭琛,等.生物质油催化裂解中催化剂上焦碳前身物的分析[J].华东理工大学学报, 2003, 29(5): 534~536
    [19]周磊,丁明洁,宗营,等.生物油的组成和提质研究的进展[J].化工时刊, 2007, 21 (6): 69-71. [ 20 ] Rioche C, Kulkarn I S, Meunier F C, et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. App lied Catalysis (B): Environmental, 2005, 61 (1/2): 130- 139.
    [21] Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived io-oil in diesel fuel[J]. Biomass & Bioenergy, 2003, 24: 221-232.
    [22] Amen C C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar[J]. Biomass and Bioenergy, 1997, 13(1/2): 25-37.
    [23] Murwanashyaka J N, Pakdel H, Roy C. Separation of syringol from birch wood-derived vacuum pyrolysis oil[J]. Separation and Purification Technology, 2001, 24: 155-165.
    [24]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报, 2004 , 25 (6): 1049-1052.
    [25] Vitoloa S, Seggiania M, Fredianib P, et al. Catalytic upgrading of pyrolytic oils to fuel over different zeolites[J]. Fuel, 1999, 78(10): 1147-1159.
    [26] Boucher M E, Chaala A, Pakdel H, et al. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines.Part II:Stability and ageing of bio-oil and its blends with methanol as a pyrolytic aqueous phase[J]. Biomass and Bioenergy, 2000, 19(5): 351-361.
    [27]朱锡锋,郑冀鲁,郭庆祥,等.生物质热解油的性质与利用[J].中国工程科学, 2005, 7(9): 83-88.
    [28]张琦,常杰,王铁军,等.生物质裂解油的性质及研究进展[J].石油化工, 2006, 35 (5): 493-498.
    [29] Garcìa P M, Chaala A, Pakdel H, et al. Evaluation of the Influence of Stainless Steel and Copper on the Aging Process of Bio-Oil[J]. Energy & Fuels, 2006, 20: 786-795.
    [30] Aclkgoz C, Onay O, Kockar O M. Fast pyrolysis of linseed: product yields and compositions[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 417-429.
    [31]李继红,雷廷宙,宋华民,等. GC/MS法分析生物质焦油的化学组成[J].河南科学, 2005, 23(1): 41-43.
    [32]黄长荣,赵沁. GC/MS法测定玉米秸高温水蒸汽裂解产物的组成[J].质谱学报, 2000, 21(3): 53-54.
    [33] Piskorz J, Majerski P, Radlein D, et al. Conversion of lignins to hydrocarbon fuels[J]. Energy&Fuels, 1989, 3: 723-726.
    [34] Bridgwater A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003, 91: 87-102.
    [35] Elliott D C, Ferrero G L, Maniatis K, et al. Pyrolysis and gasification[J]. Elsevier, Amsterdam, 1989, p.1170.
    [36] Milne T, Agblevor F, Davis M, et al. Developments in thermochemical biomass conversion[J]. Blackie Academic and Professional, London, 1977, p.409.
    [37]李俊峰,时璟丽,王仲颖.欧盟可再生能源发展的新政策及对我国的启示[J].可再生能源, 2007, 25(3):1-3.
    [38]宋昭峥,丁宏霞,孙贵利,等.国外可再生能源发展现状与展望[J].现代化工, 2007, 27(5): 61-64.
    [39]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社, 2002.
    [40]史立山.中国能源现状分析和可再生能源发展规划[J].可再生能源, 2004, 5: 1-5
    [41] Md K J, Farid N A. Oil palm shell as a source of phenol[J]. Journal of Oil Palm Research, 2000, 12 (1): 86-94.
    [42]王树荣,骆仲泱,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J ].太阳能学报, 2004, 20 (2):42-49.
    [43]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化学学报, 2001, 29(1): 70-5.
    [44]王铁军,常杰,吴创之,等.生物质气化焦油催化裂解特性[J].太阳能学报, 2003, 24(3): 376-9.
    [45]陈明强,颜涌捷,任铮伟,等.导向喷动流化床生物质快速裂解制液体燃料[J].华东理工大学学报, 2004, 30 (2): 143-147.
    [46]王丽红,柏雪源.玉米秸秆热解生物油特性的研究[J].农业工程学报, 2006, 22(3): 108-111.
    [48]欧风.石油产品应用技术[M].北京:烃加工出版社, 1986.
    [49]陆强,朱锡锋,李全新,等.生物质快速热解制备液体燃料[J].化学进展, 2007, 19 (7/ 8): 1065-1071.
    [29]Wu Z.S.,Li C.,Sun X.F.,et al.Characterization,acid activation and bleaching performance of bentonite from Xinjiang.Chinese Journal of Chemical Engineering,2006,14(2):253-258.
    [51] Temuujin J, Senna M, Jadambaa T, et al. Characterization of nanoporous materials prepared from montmorillonite clay and its application to the decolorization of mare’s milk oil[J]. Journal of Porous Materials, 2006, 13(1): 49-53.
    [52] Cortright, R D, Davda, R R, Dumesic, J A. Hydrogen from Catalytic Reforming of Biomass Derived Hydrocarbons in Liquid Water[J]. Nature, 2002, 418: 964-967.
    [53] Wilson N G, Williams P T. Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio-oil[J]. International Journal of Energy Research, 2003, 27(2): 131-143.
    [54] Ramos M C, Navascues A I, Garcia L, et al. Hydrogen Production by Catalytic Steam Reforming of Acetol a Model Compound of Bio-oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(8): 2399-2406
    [55]李素梅,王铁冠,郭绍辉,等.原油中含氧化合物-烷基酚类[J] .石油学报, 2000, 21(1): 44-48.
    [56] Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathway[J]. Biomass & Bioenergy, 1995, 8(3): 131-149.
    [57] Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil[J]. Energy & Fuels, 1993, 7: 306-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700