用户名: 密码: 验证码:
乙烷裂解炉烧焦过程安全区的计算与优化操作的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析乙烷裂解炉模拟研究的历史、现状和发展趋势的基础上,进行乙烷裂解炉炉膛与炉管之间热传递和管内反应过程的数值模拟以及操作条件优化的研究。研究内容包括以下几个方面:
     (1).以区域法为基础,建立炉膛与炉管之间传热的数学模型。编制直接交换面积的计算程序。通过对比文献数据,验证了计算程序的可靠性。
     (2).采用耦合法对KTI-SMK乙烷裂解炉进行数值模拟。此方法能够描述热炉膛与炉管之间热传递及管内反应过程相互间耦合关系:分别以活塞流、缩壳模型以及区域法描述管内流体流动、气固非均相反应以及炉膛传热。将工业生产中所得的现场数据与模拟计算结果进行比较,两者基本吻合,从而证明了所建立的乙烷裂解炉管烧焦过程数学模型以及计算程序的合理性。模拟计算获得了裂解炉管内详细的温度、焦炭厚度、热通量分布等参数,揭示了裂解炉管内传热、传质及反应过程的基本特征及其相互作用规律,为乙烷裂解炉烧焦程序的优化提供了依据。
     (3).流体在流经炉管弯头处的返混程度加强,因此采用CSTR模型描述此处流体的流动,即采用PFR与CSTR串连的反应器模型对烧焦过程进行模拟计算。
     (4).恒定炉膛操作条件,调整炉管入口气体流量和温度,对烧焦过程进行模拟计算,得到:①入口温度分别是580℃,670℃,管材耐受的极限温度1100℃条件下,安全烧焦允许的最大空气流量曲线。②在入口温度在620℃时,得到预测烧焦过程管壁最高温度的拟合方程,拟合方程的计算值与烧焦模拟的计算值的误差最大为15℃。对采用恒定炉管入口空气、水蒸汽流量方式烧焦的裂解炉,该拟合方程对优化其烧焦程序,保证安全烧焦,有一定的指导意义。
     (5).结合后续废热锅炉的操作特性,提出了设计烧焦程序的基本步骤,以及调优目前烧焦程序的新方法:根据炉管出口温度调节进口气体流量和入口温度,得到非恒定炉管入口气体流量、炉管入口温度方式下的新烧焦程序。模拟结果表明:新程序的烧焦时间与目前实际烧焦时间相仿,但管内残碳量、空气及水蒸汽的累计消耗量有所降低,炉管出口CO2体积分率和空气与水蒸汽的流量比都在允许的生产控制范围内,最高管壁温度低于管材的极限温度。
     (6).保持裂解炉炉膛的操作条件,利用复形调优的优化方法,针对恒定炉管入口气体流量和温度的烧焦方式,求出了以烧焦时间最短为目标的最优操作条件。该操作条件下,烧焦时间明显缩短,管壁最高温度小于管材的极限耐受温度,属安全烧焦操作范围。
     本文所得结果,对改进现有气体原料裂解炉烧焦程序及在新型和新建裂解炉设计与开发建设中提出科学、合理的烧焦程序具有指导意义。
Based on a detailed review of literatures about simulation and analysis of status and development trends of ethylene pyrolysis furnace, a comprehensive numerical simulation and operating optimizations were done in this paper after combining heat transfer between furnace and coil with the details of decoking process. The main points of this thesis are as follows:
     (1). The mathematic model of heat transfer between furnace and coils was built on the basis of zone methods. The calculation program for direct heat transfer areas was edited and used to calculate and compare with the data from book, the results had a good agreement with the reference.
     (2). The industrial ethane pyrolysis furnace was simulated by coupling heat transfer between furnace and coils as well as reactions in coils The plug flow reactor model and the shrinking core model and zonal approach method were used to describe the fluid flow, gas–solid heterogeneous reactions of decoking in coils and heat transfer in furnace, respectively, a general model, can fully and almost accurately describe heat transfer between furnace and coils in decoking process, was obtained. Because of an agreement of the simulation results with the plant data, the correctness of the coupled model and calculation program can be certified. The profiles of temperature, coke thickness, heat flux and so on can be acquired from simulation, these results revealed the basic characters of heat and mass transfers as well as their inherent and interactional rules that provides basises for the optimization of decoking operation.
     (3). There are some enhanced back-mixing of fluid in bend sections of the coil, and therefore, in the tube elbow, a CSTR model was used to describe fluid mixing, that is, PFR and CSTR in series was used to describe the coil in decoking process with the coupling method.
     (4) Adjusting tube inlet gas flow and temperature with invariable furnace operating conditions, simulations were done and results were:
     ①under the condition of inlet temperature 580℃, 670℃, external tube skin temperature limitation 1100℃, the biggest security decoking air flow rate curve was gained and under these curves are safe operating zones.
     ②A fitting equations in order to forecast external tube skin maximum temperature when the inlet temperature at 620℃.the maximum calculated value error of fitting equation with the simulated value is 15℃. This fitting equation can help decoking procedure optimization and ensure safety to the pyrolysis furnace which adopt the inlet temperature 620℃and the unchanged gas flowrate.
     (5). Considering the operation demand of waste heat boiler that is just behind of colis, a basic steps for design of decoking procedure was proposed, a new optimization method was put forward by adjusting coil inlet process gas flowrate and/or CIT once COT was not satisfied.Using the new approach, decoking procedures as well as simulation results could be obtained simultaneously. At the same usage of fuel and air in furance, the new decoking procedure derived from the above method gave approximately the same decoking time with the plant present operation, but total consumptions of steam and air was less than the plant present, residue coke is less than that of the plant present procedure, CO2 volume fraction at coil outlet and the ratio of steam and air were in the control range, the temperatures on external tube skin were below the up limitation of coil material.
     (6). Keeping pyrolysis furnace operation as well as gas flow rate and the temperature at coil inlet no changes from the beginning to the end, a complex optimization was used to get the shortest decoking time, an optimum operation condition was obtained, in the meantime the maximum external tube skin temperature is less than the uplimit of tolerance of coil material
     This work provided valuable fundamentals for developing an advanced on-line coke-burning procedure for the ethylene production and directing the design of a novel pyrolysis process.
引文
[1] Albright L F, Marek J C, Coke formation during pyrolysis: roles of residence time, reactor geometry, and time of operation, Ind Eng. Chem.Res, 1988, 27 (5): 743~751.
    [2] Albright L F, Marek J C, Mechanistic model for formation of coke in pyrolysis units producing ethylene, Eng.Chem.Res, 1988, 27 (5): 755~759.
    [3]王际东,朱相春,孙景辉,乙烯裂解结焦机理及结焦抑制剂,齐鲁石油化工, 1996, 25 (4): 275~278.
    [4] B.Lohr D, New gas-oil model calculates ethylene yield, Oil & Gas Journal 1977, (4) : 53~58.
    [5] Shu W R R L L, Pang K H, Naphtha pyrolysis model proves out over wide range of feedstocks Oil & Gas Journal ,1979 (3): 72 ~ 79.
    [6] Sundaram K M, Froment G F, Modeling of thermal cracking kinetic - I : Thermal cracking of ethane ,propane and their mixtures, Chem. Eng. Sci. , 1977, 32: 601~ 608.
    [7] Hirato M, Yoshioka S, Simulations of the pyrolysis of naphtha, Kerosene, and gas oil with a tubular reactor Int Chem Eng, 1973, 13 (12): 347~ 354.
    [8]侯凯湖,王宗祥,大庆馏分油蒸汽裂解制烯烃反应动力学模型,石油化工, 1986, 15 (3): 145~155.
    [9]钱锋, USC型乙烯裂解炉的建模与优化---工业过程程模型化及控制, 1992, 4: 187~195.
    [10] Depeyre D, Modeling of thermal steam cracking of an atom spheric gas oil Ind Eng Chem Res 1989, 28 (7): 967~976.
    [11] Depeyre D, Modeling of thermal steam cracking of n- hexadecane Ind Eng Chem Res , 1991, 30 (6): 1116 ~1130.
    [12] Dominique D, Chantal F, Modeling of thermal steam of n-hexadecane, Ind. Eng. Chem. Res, 1991, 30 1116~1130.
    [13] Guozhong W, Yosuke K, Chihiro M, et al., Radiation effect on the thermal cracking of -hexadecane 2 A kinetic approach to chain reaction Ind Eng Chem Res, 1997, 36: 3498 ~3504.
    [14]倪力军,张立国,倪进方,乙烷工业炉裂解动力学模型与模拟,石油学报(石油加工) 1997, 13 (4): 70~77.
    [15]郑生明,乙烯裂解炉对流段工艺设计及数学模型,石油化工, 1986, 15 (6): 353~360.
    [16]刘庆吉,杨元一,混合烃类热裂解反应动力学模型中参数最优值的计算问题[大庆石油学院学报, 1981, (4): 73~84.
    [17]茅文星,烃类热裂解的结焦反应,石油化工, 1985, 14 (1): 45~52.
    [18]刘惠才,娄强昆,邹仁均,丙烷裂解结焦动力学的研究,石油学报(石油加工), 1987, 3 (2): 21~28.
    [19]许敏,石油化工中的焦炭燃烧过程研究,博士论文,上海,2001.
    [20]沙兴中,杨南星,煤的气化与应用, 1995: 33~34.
    [21] Gray D, Cogoli J G, Essenhigh R H, Problems in pulverized coal and char combustion, Am. Chem. Soc., Div. Fuel Chem., Prepr, 1976, 18 (1): 131~172.
    [22] Walker P L, Rusinko F, Austin L G, Gas reactions of carbon, Adv. Catal., 1959, 11: 133~221.
    [23]刘彦丰,煤粉在高浓度CO2下的燃烧与气化,(博士学位论文):河北:华北电力大学,2001
    [24]范辅弼等译,煤利用化学:化学工业出版社, 1991
    [25] Bonnetain L, Duval X, The Role of Surface Oxides in the Graphite-Oxygen Reaction Proc. 4th conf. Carbon, 1960, 107~114.
    [26] Grabke H J, Transfer and carbon gasification in the Reaction of different Carbons with CO2, Carbon, 1972, (10): 587~599.
    [27] Laurendeau N M, Heterogeneous Kinetics of Coal Char Gasification and Combustion, Prog.Energy Combust. Sci., 1978: 221~270.
    [28] Mitchell R E, On the products of the heterogeneous oxidation reaction at the surfaces of burning coal char particles, delivered at the 22nd Symposium (International) on Combustion, Pittsburgh, Pennsylvania, 1988.
    [29] Waters B J, Squires R G, Laurendeau N M, Evidence for Formation of CO2 in the Vicinity of Burning Pulverized Carbon Particles by Various Forms of Calcium Additives, Energy Fuels, 1989, 3: 28~37.
    [30] Tognotti L, Longwell J P, Sarofim A F, The Products of the High Temperature Oxidation of a Single Char Particle in an Electrodynamic Balance, delivered at the 23rd Symposium (International) on Combustion, Pittsburgh, Pennsylvania, 1990.
    [31] Arthur J R, Reactions between carbon and oxygen, Transactions of theFaraday Society, 1951, 47: 164-178.
    [32] Rossberg, M, Experimental results concerning the primary reactions in the combustion of carbon, Electrochem,1956,(60):952~956.
    [33]曾桃芳,傅维标,关于碳/炭粒表面氧化反应生成物CO/CO2比值及其通用表达式的研究,中国科学: A辑, 1993, 23 (6): 631~640.
    [34]曾桃芳,傅维标,关于碳/炭粒表面氧化反应生成物CO/CO2比值的研究,工程热物理学报, 1993, 14 (2): 197~202.
    [35] Zeng T, Fu WB. The ratio CO/CO2 of oxidation on a burning carbon surface. Combust Flame 1996,107:197–210.
    [36] Hurt R.H., Calo J M. , Semi-Global Intrinsic Kinetics for Char Combustion Modeling, Combust Flame,2001,125:1138~1349.
    [37] Campbell PA, Mitchell RE, Ma L. Characterization of coal char and biomass char reactivities to oxygen, Proc Comb Inst, 2002, 29:519~26.
    [38] Relf A.E. The mechanism of the carbon dioxide-carbo reaction , J.Phys.Chem., 1952,56:785~788
    [39]岑可法,高等燃烧学,浙江大学出版社,2002
    [40] Strange J.F., Carbon-Carbon Dioxide Reaction: Langmuir-Hinshelwood Kinetics at Intermediate Pressures, Carbon, 1976, 14(6):345~350
    [41] Ergun S, Kinetics of the reaction of carbon dioxide with carbon, J. Phys. Chem, 1956, 4:480~485
    [42] Calo JM, Perkins MT ,A Heterogeneous surface model for the "steady state" kinetics of the Boudouard reaction, Carbon, 1987,25:395~407
    [43] Yang K.L.,Yang R.T., Absolute Rates of the Carbon-Carbon Dioxide reaction, AlChE J, 1985, 31(8):1313~1321
    [44] Walker,P.L. Rusinko F, Austin LG,Gas reactions of carbon, ADV CATAL, 1959, 11:133~221
    [45] Hurt R H, Mitchell R E, Unified high-temperature char combustion kinetics for a suite of coals of various rank, 24th Symsosium( Int.) on Combustion, 1991, 5 (10).
    [46] Mitchell R E, Kee R J, Glarborg P, et al., The effect of CO conversion in the boundary layers surrounding pulverized coal-char particles, 23rd Symposium (International) on Combustion, 1990: 1169–1176.
    [47] Bartok W, Sarofim A F, Fossil fuel combustion, New York, 1991,866.
    [48] Hottel H C, Williams G C, Nerheim N M, et al., Kinetic Studies on StirredReactors, Combustion of Carbon Monoxide and Propane, Proc. of the 10th Int. Symp. on Combustion, The Combustion Institute, 1965,975~986.
    [49] Marxman G A, Boundary layer combustion in propulsion, 11th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pennsylvania, 1967, 269-289.
    [50] M.A. Fielde章明川等译,煤粉燃烧:水利电力出版社, 1983
    [51] Caram H S, Amundson N R, Diffusion and Reaction in a Stagnant Boundary Layer about a Carbon Particle, Ind. Eng. Chem. Fundam., 1977,16(2): 171~181.
    [52]章明川,徐旭常, CO气相反应对碳颗粒燃烧的影响-连续膜理论的一种简化模拟方法,工程热物理学报, 1990, 11: 438~443.
    [53] Ducarne E D, Christophe J, Dolignier ,et.al.Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse,Fuel, 1998, 77(13):1399~1410.
    [54]李政,王天骄,韩志明等,,Texaco煤气化炉数学模型的研究——建模部分,动力工程,2001,4:1161~1167
    [55] Heynderickx G J, Schools E M, Marin G B, Coke combustion and gasification kinetics in ethane steam crackers, AIChE Journal, 2005, 51 (5): 1415-1428.
    [56] Gavalas G R, Analysis of Char Combustion Including the Effect of Pore Enlargement, Combust Sci Technol, 1980, 24 (5): 197~210.
    [57] Gavalas G R, A random capillary model with application to char gasification at chemically controlled rates, AIChE Journal, 1980, 26 (4): 577~585.
    [58] Loewenberg M, Bellan J, Gavalas G R, A Simplified Description of Char Combustion, Chem Eng Commun 1987, 58 (1): 89~103.
    [59] Sotirchos S V, Amundsen N R, Diffusion and reaction in a char particle and in the surrounding gas phase. Two limiting models, Ind Eng. Chem. Fundam, 1984, 23 (2): 180-191.
    [60] Sotirchos S V, Amundson N R, Diffusion and Reation in a Char Particle and in the Surrounding Gas Phase. A Continuous Model, Ind Eng. Chem. Fundam, 1984, (23): 191~200.
    [61] Srinivas B, Amundson N R, A single-particle char gasification model, AIChE Journal, 1980, 26 (3): 487-496.
    [62] Simons G A, The role of pore structure in coal pyrolysis and gasification, PROG ENERG COMBUST, 1983, 9 (4): 269~290.
    [63] Lewis P F, Simons G A, Char Gasification: Part II. Oxidation Results, Combust Sci and Tech, 1979, 20 (3): 117~124.
    [64] Simons G A, Char Gasification: Part I. Transport Model, Combust Sci and Tech, 1979, 20 (3): 107~116.
    [65] Simons G A, The Structure of Coal Char: Part II.—Pore Combination, Combust Sci and Tech, 1979, 19 (5): 227~235.
    [66] Zygourakis K, Sandmann Jr C W, Pore Structure Evolution During Noncatalytic Gas Solid Reactions Development and Applications of Discrete Structural Models, AIChE J, 1988, 34 (12): 2030.
    [67]陈鸿,孙学信,煤粉粒燃烧模糊孔模型,热能动力工程, 1994,9(6): 329~335.
    [68] Lobo W E, Design of furnaces with flue gas temperature gradients, CHEM ENG PROG, 1974, (1): 70~82.
    [69]钱锋,大型乙烯装置中裂解炉模型化与优化的研究(博士学位论文),上海:华东理工大学,1995.
    [70] McAdams W H, Heat Transmission: McGraw-Hill New York, 1954
    [71] Hottel H C, Cohen E S, Radiant heat exchange in a gas filled enclosure :allowance for non-uniformity of gas temperature, AIChE J, 1958, 4 (1): 3~14.
    [72] Hottel H C, Sarofim A F, Radiative Transfer: McGraw-Hill New York, 1967
    [73] Lowe A, Wall T F, A zone heat transfer model of a large tangentially fired pulverized coal boiler, Proc. of the 15th Int. Symp. on Combustion, The Combustion Institute, 1974,1261~1270.
    [74] Bueters K A, al. e, Performance prediction of tangentially fired utility furnaces by computer model, 15th Symsosium( Int.) on Combustion, 1974, 1245~1260.
    [75] Gürüz H K, A Simple Method for Predicting the Overall Performance of Fuel-Oil Fired Boilers, Combustion Science and Technology, 1977, 17 (3): 163-168.
    [76]于遵宏,沈才大,在方箱炉,圆筒炉中区域法计算辐射传热的数学模型及应用,化工学报, 1980, 2: 143~163.
    [77]黄苏南,钱锋,区域法在SRT—Ⅲ型裂解炉模拟计算中的应用,华东化工学院学报, 1992, 18: 160~166.
    [78]祁胜利,蒋哲,用区域法解非灰体系辐射换热问题,工业炉, 1995, 17 (1): 51~54.
    [79]于遵宏,潘惠琴,延迟焦化炉的数学模拟: I.梯形截面立式炉中辐射传热计算,石油学报(石油加工), 1997, 13 (001): 82~87.
    [80]孙杏元,潘惠琴,延迟焦化炉的数学模拟:Ⅲ.焦化炉的模拟计算,石油学报(石油加工), 1997, 13 (3): 78~87.
    [81] Roesler F C, Theory of radiative heat transfer in co-current tube furnaces, CHEM ENG SCI, 1967, 22 (10): 1325~1336.
    [82]严向奎,唐建华,延迟焦化炉辐射换热直接交换面积的计算,新疆石油学院学报, 2000, 12 (004): 71-74.
    [83]母建益,严向奎,延迟焦化炉温度场的分析软件(一)—理论基础,新疆石油学院学报, 2001, 13 (4): 56~61.
    [84]郭宏伟,严向奎,延迟焦化炉温度场的分析软件(二)—应用实例,新疆石油学院学报, 2001, 13 (004): 62~66.
    [85] Niaei A, Towfighi J, Sadrameli S M, et al., The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces, Appl Therm Eng, 2004, 24 (14~15): 2251~2265.
    [86] Froment G F, Kinetics and reactor design in the thermal cracking for olefins production, Chem Eng Sci, 1992, 47 (9~11): 2163~2177.
    [87] Rao R, Coupled simulation of heat transfer and reaction in a pyrolysis furnace, Chem Eng Sci, 1988, 43 (6): 1223~1229.
    [88] Sadrameli M, Heat transfer calculation in the firebox of the ethylene plant furnaces, Int. J. Eng, 1997, 10 (4): 219~226.
    [89] Niaei A, Towfighi J, Sadrameli M, Prediction of furnace run length for the pyrolysis of naphtha by a PC based simulator, Scientia Iranica, 2003, 10 (3): 287~299.
    [90] Kopinke F D, Zimmermann G, Nowak S, On the mechanism of coke formation in steam cracking-conclusions from results obtained by tracer experiments, Carbon, 1988, 26 (2): 117~124.
    [91] Heynderickx G J, Froment G F, Simulation and comparison of the run length of an ethane cracking furnace with reactor tubes of circular and elliptical cross sections, Ind Eng Chem Res, 1998, 37 (3): 914~922.
    [92] Heynderickx G J, Cornelis G G, Froment G F, Circumferential tube skin temperature profiles in thermal cracking coils, AIChE Journal, 1992, 38 (12): 1905~1912.
    [93] Plehiers P M, Froment G F, Firebox Simulation of Olefin units, Chem EngCommun, 1989, 80 (1): 81~99.
    [94] Schools E M, Froment G F, Simulation of decoking of thermal cracking coils by steam/air-mixtures, AIChE Journal, 1997, 43 (1): 118~126.
    [95] Plehiers P M, Reyniers G C, Froment G F, Simulation of the run length of an ethane cracking furnace, Ind Eng Chem Res, 1990, 29 (4): 636~641.
    [96] Heynderickx G J, Schools E M, Marin G B, Simulation of the decoking of an ethane cracker with a steam/air mixture, Chem eng sci, 2006,61(6): 1779~1789.
    [97] Heynderickx G J, Schools E M, Marin G B, Optimization of the decoking procedure of an ethane cracker with a steam/air mixture, Ind Eng Chem Res, 2006, 45 (22): 7520~7529.
    [98] Howell J R, Application of Monte Carlo to heat transfer problems, Advances in Heat Transfer, 1968, 5 (1): 1~54.
    [99] Howell J R, Perlmutter M, Monte Carlo solution of thermal transfer through radiant media between gray walls, J. Heat Transfer, 1964, 86 (1): 116~122.
    [100]孙昭星,胡西一,锅炉燃烧室辐射传热的Monte Carlo解法,电机工程学报, 1984, 4 (4): 67~70.
    [101]徐旭常,火焰三元传热过程数学模拟在电站锅炉中的应用,工程热物理学报, 1982, 3 (2): 162~168.
    [102]赵永福,徐旭常,圆筒形燃烧室传热过程的数学模拟方法,工程热物理学报, 1983, 4 (3): 27~30.
    [103]曹汉鼎,朱国庆, 1025t/h亚临界锅炉屏区冷态三维流场计算,动力工程, 1996, 16 (6): 5~7.
    [104] Keramida E P, Liakos H H, Founti M A, et al., Radiative heat transfer in natural gas-fired furnaces, Int J Heat Mass Tran, 2000, 43 (10): 1801~1809.
    [105] Lockwood F C, Shah N G, New radiation solution method for incorporation in general combustion prediction procedures, 18thSymp.(Int.) on Combust, 1980, 18: 1405~1414.
    [106] Ozisik M N, Radiative Transfer and Interactions with Conduction and Convection: Wiley New York, 1973
    [107] Fiveland W A, Three-dimensional radiative heat-transfer solutions by the discrete- ordinates method, J Thermophys Heat Tr, 1988, 2 (4): 309~316.
    [108] Adams B R, Smith P J, Three dimensional discrete ordinates modelling of Radiative transfer in a geometrically complex furnace, Combust Sci Technol,1993, 88 (5): 293~308.
    [109] Jamaluddin A S, Smith P J, Predicting Radiative Transfer in Rectangular Enclosures Using the Discrete Ordinates Method, Combust Sci Technol, 1988, 59 (4): 321~340.
    [110] Truelove J S, Three-dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinates approximation, J Quant Spectrosc Ra, 1988, 39 (1): 27~31.
    [111]刘林华,谈和平,吸收散射性三维矩形介质内辐射源项的反问题,工程热物理学报, 2000, 21 (1): 71~75.
    [112] Park H M, Yoon T Y, Solution of the inverse radiation problem using a conjugate gradient method, Int J Heat Mass Tran, 2000, 43 (10): 1767~1776.
    [113] Park H M, Yoo D H, A multidimensional inverse radiation problem of estimating the strength of a heat source in participating media, Int J Heat Mass Tran, 2001, 44 (15): 2949~2956.
    [114] WeiXiaolin, XuTongmo, Huishi'en, Three-dimensional radiation in abosorbing-emiting-scatering medium using the discrete-ordinates approximation, J Therm Sci, 1998, 27 (4): 7~26.
    [115] Thurgood C P, Pollard A, Becker H A, The TN quadrature set for the discrete ordinates method, J. Heat Transfer, 1995, 117 (4): 1068~1070.
    [116]李本文,魏小林,离散坐标SRAPN法及其与TN法的比较,计算物理, 1998, 15 (6): 735~741.
    [117] Coelho P J, Goncalves J M, Carvalho M G, et al., Modelling of radiative heat transfer in enclosures with obstacles, Int J Heat Mass Tran, 1998, 41 (4): 745~756.
    [118] Smith T F, Shen Z F, Friedman J N, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer, 1982, 104 (4): 602~608.
    [119] Edwards D K, Matavosian R, Scaling rules for total absorptivity and emissivity of gases, J heat transfer, 1984, 106 (4): 684~689.
    [120] Edwards D K r, Advances in Heat Transfe: New York: Academic Press, 1976
    [121] Leckner B, Spectral and total emissivity of water vapor and carbon dioxide, Combust Flame 1972, 19 (1): 33~48.
    [122] Liu F, Smallwood G J, Gülder L, Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2–H2O mixtures: approximate treatments of overlapping bands, J Quant Spectrosc Ra, 2001, 68(4): 401~417.
    [123] Goutiere V, Liu F, Charette A, An assessment of real-gas modelling in 2D enclosures, J Quant Spectrosc Ra, 2000, 64 (3): 299~326.
    [124] Lower S K, Maurice P A, Traina S J, et al., A comparative study of radiative heat transfer modelling in gas-fired furnaces using the simple grey gas and the weighted-sum-of-grey-gases models, Int J Heat Mass Tran, 1998,41(22): 3357~3371.
    [125]金永慧,热管式空气预热器整体优化及CAD研究,硕士论文,大连,2003
    [126]王英民,最优化技术及其在水声信号中的应用,博士论文,西安,2002
    [127]邢文训,谢金星,现代优化计算方法,清华大学出版社
    [128]邢慧明,黄兴仁,陈卫东.化工设备优化设计.华南理工大学出版社,1995
    [129]李作政,乙烯生产与管理,中国石化出版社
    [130]张玉明,程振民,乙烯裂解炉的蒸汽-空气烧焦过程模拟,石油学报(石油加工),2003,19(2):50~57
    [131] Heynderickx G J., Schools E M., Marin G B., Coke Combustion and Gasification Kinetics in Ethane Steam Crackers, AIChE J, 2001,51(5):1415~1 429
    [132]钱家麟,于遵宏,王兰田,管式加热炉,烃加工出版社
    [133]黄祖祺,杨光炯,于遵宏等,石油化工管式炉的模拟与计算机计算,化学工业出版社
    [134]韩小良,辐射管炉炉膛辐射换热计算方法,工业炉,2000,22(2):55~60
    [135] A. Charette, A. Larouche ,Y. S. Kocaefe, Application of the imaginary planes method to three-dimensional systems, Int.J.Heat Mass Transfer,1990,33 (12) ,2671~2681.
    [136]臧德平,煤柴油裂解炉不停炉烧焦新工艺,乙烯工业,1997,9(3):55~59
    [137] BEWS I. M., HAYHURST A. N., RICHARDSON S. M., et al., The Order, Arrhenius Parameters, and Mechanism of the Reaction Between Gaseous Oxygen and Solid Carbon, Combust Flame 2001,124:231~245
    [138] Geankoplis, C.J., 1993. Transport Processes and Unit Operations. third ed. Prentice-Hall, NJ.
    [139]卢焕章等,石油化工基础数据手册,化学工业出版社
    [140]蓝兴英,乙烯裂解炉内燃烧、传热及裂解反应等过程的综合数值模拟研究,博士论文,北京,2004
    [141]李荣华,偏微分方程数值解法,高等教育出版社
    [142]杨尔辅,胡益锋,周强等,乙烯生产过程建模及控制和优化技术综述,石油化工自动化,2002,2:1~7
    [143]徐士良,Fortran常用算法程序集,清华大学出版社
    [144]戴煜,馏分油蒸汽裂解系统的建模,博士论文,南京,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700