用户名: 密码: 验证码:
含油气盆地生烃增压演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油气盆地古超压普遍存在,超压的发育与压实不均衡、烃类生成、构造挤压、孔隙流体热膨胀、黏土矿物脱水等多种因素有关。超压演化与油气生成、运移、聚集具有密切关系,不同成因机制所形成的超压演化过程也不尽相同。对于非挤压型盆地,压实不均衡和烃类生成是可以独立形成大规模超压的两种主要机制。本文在建立生烃增压方程的基础之上,通过物理模拟实验验证生油增压成因机制和建立的生油增压方程,利用盆地模拟技术恢复烃源岩埋藏史、热史和成熟生烃史,同时采用流体包裹体确定油气充注期次和时间以及捕获压力,计算东营凹陷沙四上段和沙三下段烃源岩生油作用以及白云凹陷恩平组烃源岩生气作用形成的超压演化过程。论文主要研究内容和取得的主要成果认识如下。
     1、烃源岩生油增压物理模拟实验显示在生油过程中可以产生强超压,证实了生油作用可以使含油气盆地产生大规模超压,是一种重要的超压成因机制。生烃超压的形成主要是因为烃源岩中相对密度较大的干酪根转化为密度较小的石油和天然气而使孔隙流体体积膨胀。依据此原理建立了生油增压方程,方程不但考虑了地层压实对石油密度的变化、生油作用产生的超压对孔隙水压缩和干酪根的压实作用,而且考虑了生油过程中水和油的渗漏、氢指数对生油量的影响以及排烃对烃源岩生油增压的影响。通过生油增压物理模拟实验所测的烃源岩生油作用形成的超压与采用建立的生油增压方程计算的超压大小相当,反映了建立的生油增压方程的可靠性,可以用于研究生油增压演化过程。通过分析烃源岩有机碳含量、氢指数和石油残留系数(α)对生油增压的影响发现这三个参数中以氢指数的影响最小,石油残留系数(α)的影响最大。当烃源岩生油过程中,如果排出(渗漏)的油量达到生成石油总量的25%,则不能产生超压。生气增压方程的建立考虑了烃源岩生烃过程中天然气的渗漏、石油和天然气的排出、原油裂解成气、氢指数对生烃量的影响、生烃作用产生的超压对孔隙水压缩和干酪根的压实作用、压力对石油和天然气密度的影响、天然气在孔隙水和石油中的溶解作用以及高温高压下天然气中重烃相态的变化。烃源岩有机碳、氢指数和天然气残留系数(β)三个对生气增压影响的参数中,以烃源岩氢指数影响最大,而天然气残留系数(β)影响最小,当p>0.2时就可以产生超压。
     2、东营凹陷是一个新生代生油凹陷,烃源岩为始新统沙三下段和沙四上段灰黑色泥岩、钙质泥岩和油页岩,有机质丰度高,有机质类型以Ⅰ型和Ⅱ1型为主。实测地层压力和测井资料均显示在东营凹陷沙三段和沙四段存在异常高压,最大压力系数可以达到1.99。泥岩超压与声波时差具有很好的响应关系,超压段对应异常高的声波时差值,而且泥岩声波时差随垂直有效应力的增加而减小,但泥岩电阻率和密度与超压的响应不明显。生油作用为东营凹陷泥岩超压主要成因,主要证据有:①超压段泥岩不具有低密度特征;②超压段泥岩密度与岩石颗粒有效应力没有正相关关系;③超压段砂岩不具有异常高的原生孔隙度;④超压段与常压段具有相似的地温梯度。⑤超压顶界面深度为2000-3000米,随着烃源岩埋深的增加而增大,所对应的成熟度Ro(%)为0.5-0.75%,温度大约为87-123℃;⑥超压封闭条件好;⑦超压带内的烃源岩现今仍具有很强的生烃能力;⑧烃源岩中发育大量的裂缝;⑨超压储层主要为油层,水层很少。砂岩超压主要是由于从烃源岩中排出的高压流体运移至储层中而发生超压传递的结果。烃源岩成熟生烃史模拟结果表明:①沙四上段烃源岩最早在距今37Ma就可以开始生烃,在距今大约32Ma就可以达到生烃高峰;沙三下段烃源岩最早在距今35Ma也开始生烃,但只有在深埋藏地区距今大约2Ma达到生烃高峰,大部分地区现今还没有达到生烃高峰;②东营凹陷烃源岩生油主要发生在两个阶段,第一个阶段为距今37-20Ma,第二阶段为距今5-0Ma;③现今沙四上段烃源岩转化率都比较高,最大已经接近100%,一般都在60%以上,转化率最早在距今35Ma就达到10%,距今32Ma达到60%,在距今27Ma已经达到90%;沙三下段底界烃源岩转化率变化比较大,转化率最大在90%以上,最低的不到10%,烃源岩转化率最早在距今29Ma达到10%,距今5Ma达到60%。在东营凹陷北带所取得砂岩样品中,观察大量发黄色至发蓝白色荧光的油包裹体,发蓝白色荧光的油包裹体荧光光谱主波长均小于500nm,发黄色荧光的包裹体荧光光谱主波长大于500nm;颜色坐标CIE_X和CIE_Y几乎呈现出连续分布的特征,而且随着油包裹体荧光光谱主波长的增加IE_X和Q值也逐渐增大,反映东营凹陷北带油包裹体成分和成熟度具有连续分布的特征。流体包裹体研究结果表明在东营凹陷北带沙三段和沙四段储层发生过两期油气充注,第一期油气充注发生在东营组沉积末期,大约距今24-20Ma,第二期发生在明化镇组沉积末期,时间为大约距今3-2Ma。运用激光扫描共聚焦显微镜分析东营凹陷的12块砂岩样品中的68个油包裹体气液体积比结果反映在常温条件下油包裹体气液体积比分布范围在2.6%到14%之间,所测的油包裹体均—温度与气液体积比具有正相关关系。在采用澳大利亚CSIRO实验室开发的包裹体在线压碎分析方法和色谱-质谱连用测定发蓝白色和黄色荧光的油包裹体成分的基础之上模拟了油包裹体捕获压力,结合东营凹陷沙三段和沙四段储层超压成因为高压流体传递的特点分析认为储层孔隙流体压力演化分为5种类型,类型一:储层只接受第二期油气充注,油气充注到储层中时为超压,保存到现今依然是超压;类型二:储层也只接受第二期油气充注,由于油气充注到储层中使储层形成的超压强度不大到现今降低为常压;类型三:油气充注到储层中时为常压,保存到现今也为常压;类型四:储层只接受第一期油气充注,油气充注到储层中时为超压,到现今仍为超压;类型五:储层接受两期油气充注,储层接受第一期油气充注时为超压,但由于从东营组沉积末期到明化镇组沉积末期这段保存时间里流体渗漏使孔隙流体压力降低甚至降低到常压,在明化镇组沉积末期接受第二期油气充注使储层孔隙流体压力再次增大,保存到现今也为超压。利用建立的生油增压模型计算的东营凹陷烃源岩生油增压演化过程反映出东营凹陷沙三下段和沙四上段烃源岩生油增压可以分为三种类型。类型一为超压在距今25Ma发育,在东营组沉积末期之后为常压,现今为常压;类型二为超压在距今25Ma之前和2Ma之后均发育;类型三的特征是烃源岩只在晚期发育超压。生油增压演化剖面显示东营凹陷沙三下段和沙四上段烃源岩在地史时期发育过三个超压旋回:第一个旋回为东营组沉积末期之前,第二个旋回为馆陶组至明化镇组沉积时期,第三个旋回是从明化镇组沉积时期到现今。
     3、白云凹陷是珠江口盆地最大的一个深水凹陷,具有巨大的天然气勘探潜力。气源岩主要为恩平组泥岩和煤系地层,有机质类型主要为Ⅱ2型和Ⅲ型,以生气为主。砂岩实测压力、泥岩声波时差和地震层速度均反映现今白云凹陷地层属于常压。但在白云凹陷发现大量的底辟构造,底辟构造的顶部和和周围可见“亮点”,在白云凹陷北坡的钻井已经证实了这些“亮点”与气层存在很好的对应关系。镜质体反射率(Ro)、蒙脱石-伊利石矿物不正常转化和流体包裹体均—温度揭示了在底辟构造区可能存在热异常,这种热异常是深部高温高压热流体沿底辟构造垂向运移到浅层作用的结果。白云凹陷西凹、主凹和东凹恩平组烃源岩开始生烃时间分别为距今20Ma、30Ma和22Ma,达到生烃高峰时间分别为距今10Ma、22Ma和8Ma,达到高成熟阶段的时间分别为距今8Ma、17Ma和1Ma。白云凹陷西凹恩平组烃源岩现今转化率绝大部分在80%以下,大约在距今14Ma达到5%;在距今10Ma其转化率可达到30%,在距今5Ma转化率最大达到45%;主凹恩平组烃源岩烃源岩转化率均在70%以上,在距今25Ma达到5%,在距今15Ma转化率最大就可达到60%,在距今5Ma转化率最大超过90%;东凹恩平组烃源岩转化率大部分地区在50%以上,在距今16Ma达到5%,在距今10Ma转化率最大只有45%,在距今5Ma最大达到65%。生气增压模型计算白云凹陷恩平组烃源岩生气增压演化结果表明经历了两个阶段的压力增加和释放过程:第一个阶段是发生在东沙运动之前,第二个阶段是距今5Ma到现今。由于恩平组烃源岩埋藏深度的差异导致开始形成生气增压时间上的差异。白云凹陷西凹、主凹和东凹恩平组烃源岩由于生气作用开始形成超压的时间分别为距今15Ma、30Ma和19Ma。
Overpressures which the fluid pressures exceed hydrostatic values are common in many Petroliferous Basins. Many mechanisms can contribute to the development of overpressures include compaction disequilibrium, hydrocarbon generation, aquathermal pressuring, the release of fluid during dehydration reactions, and tectonic compression. The overpressure evolution plays an important role in hydrocarbon generation, migration an accumulation and there are different evolution processes for overpressure generation by different mechanisms. In the extensional tectonic environment of basins, compaction disequilibrium and hydrocarbon generation are the most potential mechanisms for overpressure generation. In this paper, overpressure evolution caused by hydrocarbon Generation was performed in four steps:(1) reconstruction of hydrocarbon generation overpressure model; (2) confirm the oil generation can be the major mechanism of overpressure generation; (3) hydrocarbon generation modeling based on the reconstruction of the burial, thermal and maturity history; (4) determine the time of hydrocarbon charge and evolution of the overpressure regime through PVT modeling using fluid inclusion data; (5) calculate the overpressure evolution cause by hydrocarbon generation in Dongying and Baiyun depression by using the reconstructed overpressure model caused by hydrocarbon generation. The following conclusions can be drawn.
     1. Oil generation can be the major mechanism of overpressure generation in petroliferous basin because the strong overpressure can be developed during the oil generation which is evidenced from physical simulation experiments of oil generated overpressure. Hydrocarbon generated overpressures are generated in the source rocks when the rate of volume increase generated by the transformation of high-density organic matter to oil is more rapid than the rate of volume loss by flow. Therefore, oil generated overpressure model was constructed with consideration of the change of oil density during the compaction, the compaction of water and kerogens due to the oil generated overpressure, the leakage of oil and water during the oil generation, the effect of hydrogen index on oil generation and oil expulsion. A very good correlation between the calculated overpressure caused by oil generation using the oil generate overpressure equation and physical simulation experiments of oil generated overpressure, whicl indicate that the oil generated overpressure equation is reliable and can be used to study the overpressure evolution caused by oil generation. Among the TOC (Total Organic Carbor Content), hydrogen index and the residual coefficientαresponse to overpressure, the oil residua coefficientαdisplays the more sensitive to oil generated overpressure than TOC and hydroger index. The hydrogen index show the less sensitive to oil generated overpressure than TOC Overpressure can not be generated if the residual coefficientαis less than 0.75 during oi generation of the source rocks. Gas generated overpressure model was constructed based or taking into account the leakage of natural gas and water during the hydrocarbon generation, the thermal cracking of oil to gas, the effect of hydrogen index on hydrocarbon generation, the compaction of water and kerogens due to the hydrocarbon generated overpressure, the change of oil, gas and water density during the compaction, the natural gas solution in oil and water, the C2+in natural gas is liquid for the high pressure condition and hydrocarbon expulsion. Among the TOC (Total Organic Carbon Content), hydrogen index and the natural gas residual coefficientβresponse to overpressure, the natural gas residual coefficientβhave the less sensitive to hydrocarbon generated overpressure than TOC and hydrogen index and the hydrogen index show the more sensitive to hydrocarbon generated overpressure than TOC. Overpressure can generate when the natural gas residual coefficientβis over 0.2 during hydrocarbon generation for the source rocks.
     2. The Dongying Depression of the Bohai Bay Basin is a Cenozoic basin with a prolific oil-producing province in China. The gray to black mudstones, calcareous mudstones and oil shales in the third and fourth members of the Eocene Shahejie formation has been considered as the important source rocks which are dominated by typeⅠkerogens with high TOC contents. Overpressure has been identified in the source rocks formation with pressure coefficients up to 1.99 by the drill stem test (DST) and well log data. The sonic log displays the obvious response to overpressure in Dongying Depression because overpressured mudstones have higher acoustic travel time values than the normally pressured mudstones for a given depth and the acoustic travel-time of normally pressured and overpressured mudstones decrease with the vertical effective stress increasing. The resistivity and density data displays no obvious response to overpressure. the disequilibrium compaction can not be the main cause of overpressure generation in Dongying Depression because overpressured sediments are normal compaction which are evidenced from overpressured mudstones without anomalously low density, the apparent lack of correlation between density and effective stress, overpressured sandstones without anomalously high matrix porosities and geothermal gradient. Oil generation is the main origin of overpressure for the mudstones in Dongying Depression. the observed specific characteristics are:(1):the pressuring phase of overpressured reservoirs in the Es3 and Es4 formations of Dongying Depression is predominantly oil and oil-bearing, overpressured water reservoirs are rare; (2):the depth to the top of overpressure is ranged from 2000m to 3000m and increases with the burial depth of the source rocks, with the temperature of approximately 87-123℃and an estimated vitrinite reflectance (Ro) of 0.5-0.75%; (3):The organic-rich source rocks in Es3 and Es4 formations of Dongying Depression are still capable of oil generation; (4): Natural microfractures are widespread in the low-permeability source rocks of Es3 and Es4 formations in Dongying Depression; (5):Calcareous mudstones in the Es3 formation can reduce the seal rock porosity and permeability to form a mudstone pressure seal. Overpressure in the sandstones is generated by pressure transmission resulting from the overpressured fluids which expel from the source rocks of Es3 and Es4 formations in Dongying Depression charging into the reservoir rocks by means of active faulting and fracturing. Maturity and hydrocabon generation histories modeling indicate:①the oil generation for the Es4s source rocks began from about 37Ma and peak oil generation occurred at 32Ma; oil generation for the Es3s source rocks began from about 35Ma and reach peak oil generation at 2Ma.②oil generation in Dongying depression can be summarized into two stages, the first stage occurred at approximately 37-20 Ma and the second stage is from 5Ma to the present.③the Es4s source rocks have the high transformation ratio up to 100% at present and the transformation ratio of the Es4s source rocks in the most of the study area is over 60%. The transformation ratio for the deepest source rocks reached 10%,60% and 90% at 35Ma,32Ma and 27 Ma respectively. The transformation ratio of the Es3x source rocks is ranged from about 10-90% at present. The deepest source rocks transformation ratio reached 10% and 60% at 29Ma and 5 Ma respectively. Many oil inclusions with the fluorescence colour of yellow or near yellow and blue or near blue are observed in the sandstone samples of Dongying depression. The wavelength at max of the fluorescence spectra for the oil inclusions with the fluorescence colour of yellow or near is over 500nm, oil inclusions with the fluorescence colour of blue or near blue, the wavelength at max is less than 500nm. The value of CIE_X increases continuously with the value of CIE_Y increasing and the wavelength at max increases with the value of CIE_ X and Q increasing gradually, which indicate that the maturity and composition for the oil inclusions in the northern of Dongying depression change continuously. Two episodes of hydrocarbon charge have been determined in the sandstones of the Es4s and Es3x in northern of Dongying depression:the first charge took place between at 24 Ma and 20Ma and the second charge occurred between at 3 Ma and 2Ma. The gas/oil ratios of 68 oil inclusions in 12 sandstone samples in Donying depression are ranged from 2.6% to 14% at 20℃using confocal laser scanning microscopy (CLSM) and increase with the homogenization temperature increasing. Paleopressures of individual petroleum inclusions are modeled based on measuring the composition of oil inclusions with the fluorescence colour of yellow and blue using the analysis method of MSVV which was developed by CSIRO petroleum lab in Australia. Five types of overpressure evolution for the reservoir rocks in the Es3 and Es4 of Dongying depression are identified by combination the origin of the overpressure. Type 1:the overpressure is developed in the reservoir rocks by the second oil charge until at present; Type 2:the overpressure generation in the reservoir rocks by the second oil charge is not strong and the reservoir rocks belong to the normal pressure at present because of the leakage of oil and water Type 3:the overpressure is not developed in the reservoir rocks by the second oil charge until a present; Type 4:the overpressure is developed in the reservoir rocks by the first oil charge until a present; Type 5:the overpressure is developed in the reservoir rocks by the first oil charge and overpressure release occurred from the end of the Ed formation deposition to the end of the Nrr formation deposition to cause the decreasing of overpressure because the leakage of fluids overpressure is generated again at the end of the Nm formation deposition due to the second oi charge until at present. Three types of overpressure evolution for the source rocks in the Es3x and Es4s of Dongying depression are identified using the oil generated overpressure model. Type 1: the overpressure is generated 25Ma ago and the source rocks belong to normal pressure until at present because of the oil expulsion at the end of the Ed formation deposition; Type 2:the overpressure is generated at 25Ma ago and after 2 Ma; Type 3:the overpressure begin to generate at the end of the Nm formation deposition. The overpressure evolution caused by oil generation for the sections indicate that there were three episodic stages of overpressure generation and release for the source rocks in the Es3x and Es4s of Dongying Depression. The first episodic stage of overpressure generation and release occurred before the end of the Ed formation deposition, the second stage is from the time of the Ng to Nm formation deposition and the third stage is from the end of the Nm formation deposition to OMa.
     3. Baiyun Depression is the biggest depression in Pearl River Mouth Basin and has good exploration foreground for the natural gas. The coal and mudstones in Enping formation are the major source rocks for the natural gas which are dominated by typeⅡ2 andⅢkerogens. It is confirmed that the present formation pressures are normal even in the deepest subsiding center of the Baiyun Depression by the drill stem test (DST), well log data and seismic interval velocity calculations. However, wide distribution of gas chimneys was discovered in the Baiyun Depression according to the 2D seismic wipeout features. Bright spots are found in the top or both sides of the diapiric structures and have a positive relationship with the nature gas reservoir that is confirmed by the drilled wells in the north of the Baiyun Depression. Hot fluid intrusions occurred in the diapiric structure as evidenced from elevated vitrinite reflectance (Ro) values, high levels of smectite-illite transformation, and elevated fluid inclusion homogenization temperatures, which is caused by the vertical migration of the high temperature and pressure fluid through faults within the diaper structures. The Enping source rock in the western sag, the middle sag and the eastern sag of the Baiyun depression begins to generate hydrocarbon about at 20Ma、30Ma and 22Ma, reaches the hydrocarbon generation peak about at 10 Ma、22 Ma and 8 Ma, reaches the high maturity about at 8Ma,17Ma and 1Ma respectively. The transformation ratio of the Enping formation source rocks in the most area of the western sag are below 80% at present and the transformation ratio reached 5%,30% and 45% at 14Ma, 10Ma and 5 Ma respectively. In the middle sag, the transformation ratio of the source rocks in Enping formation is over70% at present and reached 5%,60% and 90% at 25Ma,15Ma and 5 Ma respectively. The transformation ratio of the Enping formation source rocks in the most area of the eastern sag is over 50% at present and the transformation ratio reached 5%,10% and 45% at 16Ma, 10Ma and 5 Ma respectively. The overpressure evolution caused by hydrocarbon generation for the source rocks of Enping formation in Baiyun depression are divided into two episodic stages of overpressure generation and release by the calculation of overpressure using gas generated overpressure model. The first episodic stage of overpressure generation and release occurred before the Dongsha tectonic movement and the second stage is from 5 Ma to 0Ma. The overpressure generation in the western sag, the middle sag and the eastern sag of the Baiyun depression begins at 15Ma,30Ma and 19Ma.
引文
[1]Amyx, J. W., Bass, D. M. and Whiting, R. L. Petroleum reservoir engineering, physical properties [M]. New York, McGraw-Hill,1960,610.
    [2]Aplin, A. C., MacLeod, G., Larter, S. R., et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology,1999,16:97-110.
    [3]Athy, L. F. Density, porosity, and coMPaction of sedimentary rocks [J]. AAPG Bulletin,1930, 14(1):1-24.
    [4]Bachu, S. and Underschultz, J. R. Large-scale underpressuring in the Mississippian-Cretaceous succession, southwestern Alberta Basin [J]. AAPG Bulletin,1995,79: 989-1004.
    [5]Barker, C. Aquathermal pressuring-role of temperature in development of abnormal-pressure zones [J]. AAPG Bulletin,1972,56:2068-2071.
    [6]Barker, C. Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs [J]. AAPG Bulletin,1990,74:1254-1261.
    [7]Bastow, T. P., Alexander, R., Sosrowidjojo, I. B, et al. Pentamethylnaphthalenes and related compounds in sedimentary organic matter [J]. Organic Geochemistry,1998,28:585-595.
    [8]Beaumont, C., Boutilier, R., Mackenzie, A. S. Isomerization and aromatization of hydrocarbons and the paleothermometry and burial history of the Alberta Foreland Basin [J]. AAPG Bulletin,1985,69:546-566.
    [9]Bessis, F. Some remarks on subsidence study of sedimentary basins:application to the Gulf of Lions margin (Western Mediterranean)[J]. Marine and Petroleum Geology,1986,3: 37-63.
    [10]Brandley, J. F. Abnormal Formation pressure [J]. AAPG Bulletin,1975,59:957-973.
    [11]Bruce, C. H. Smectite dehydration-its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico Basin [J]. AAPG Bulletin,1984,68:673-683.
    [12]Burnham, A. K., and Sweeney, J. J. A chemical kinetic model of vitrinite maturation and reflectance [J]. Geochimica et Cosmochimica Acta,1989,53(10):2649-2656.
    [13]Burst, J. F. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration [J]. AAPG Bulletin,1969,53:73-79.
    [14]Chapman, R. E. Geology and Water, Developments in Applied Earth Sciences [M]. Nijhoff-Junk Publishers, The Hague,1981,1:228.
    [15]Chapman, R. E. Mechanical versus thermal cause of abnormally high pressures in shales: Reply [J]. AAPG Bulletin,1980,64:179-2183.
    [16]Cochran, J. R. Effects of finite rifting times on the development of sedimentary basins [J]. Earth Plant Science Letters,1983,66:289-302.
    [17]Colton-Bradley, V. A. C. Role of pressure in smectite dehydration-effects on geopressure and smectite-to-illite transition [J]. AAPG Bulletin,1987,71:1414-1427.
    [18]Daines, S. R. Aquathermal pressuring and geopressure evaluation [J]. AAPG Bulletin,1982, 66(7):931-939.
    [19]Dan Mckenzie. Some remarks on the development of sedimentary basins [J]. Earth and Planetary Science Letters,1978,40:25-32.
    [20]Dickey, P. A. Abnormal formation pressure:Discussion [J]. AAPG Bulletin,1976,60: 1124-1128.
    [21]Dickey, P. A. and Cox, W. C. Oil and gas reservoirs with subnormal pressures [J]. AAPG Bulletin,1977,61,2134-2142.
    [22]Dickinson, G. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana [J]. AAPG Bulletin,1953,37:410-432.
    [23]DuBow, J. Temperature effects[C], in K. P. Chong and J. W.Smith, eds., Mechanics of oil shale [A]:London, Elsevier Applied Science Publishers,1984,523-577.
    [24]Falvey, D. A., and Middleton, M. F. passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidence mechanism[C].25th international geological congress, colloque C3.3. Geology of Continental Margins [A],1981, Supplement to 4: 103-114.
    [25]Freed, R. L, Peacor, D. R. Geopressured shale and sealing effect of smectite to illite transition [J]. AAPG Bulletin,1989,73(10):1223-1232.
    [26]George, S. C., Ruble, T. E., Dutkiewicz, A., et al. Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colors [J].2001, Applied Geochemistry,16:451-473.
    [27]Guidish, T. M. Basin evaluation using burial history calculation:An Overview [J]. AAPG Bulletin,1985,69:92-105.
    [28]Hagemann, H. W. and Hollerbach, A. The fluorescence behavior of crude oils with respect to their thermal maturation and degradation [J]. Organic Geochemistry.1986,10:473-480.
    [29]Hermanrud, C., Wensaas, L., Teige, G M. G, et al. Shale porosities from well logs on Haltenbanken (Offshore Mid-Norway) show no influence of overpressuring. Abnormal Pressures in 14ydrocarbon Environments [J]. AAPG Memoir,1998,70:65-85.
    [30]He, S., Middleton, M., Kaiko, A., et al. Two case studies of thermal maturity and thermal modeling within the overpressured Jurassic rocks of Barrow Sub-basin, North West Shelf of Australia [J]. Marine and Petroleum Geology,2002,19:143-159.
    [31]Honghan Chen, Changmin Chen, Xiong Pang, et al. Natural gas sources, migration and accumulation in the shallow water area of the Panyu lower uplift:An insight into the deep water prospects of the Pearl River Mouth Basin, South China Sea [J]. Journal of Geochemical Exploration,2006,89:47-52.
    [32]Hsin-Yi, T., Robert, J. P. Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn-South Brent petroleum system, northern North sea [J]. Marine and Petroleum Geology,2002,19:797-809.
    [33]Hubbert, M. K., Rubey, W. W. role of fluid pressure in mechanics of overthrust faulting I [J]. Geological Society of American Bulletin,1959,70:115-166.
    [34]Hunt, J. M. Generation and migration of petroleum from abnormally pressured fluid coMPartments [J]. AAPG Bulletin,1990,72:1-12.
    [35]Hunt, J. M., and Lewan, M. D. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation [J]. AAPG Bulletin,1991,75 (4):795-807.
    [36]Jarvis, G. T., Mckenzie, D. P. Sedimentary basin formation with finite extension rates [J]. Earth Plant Science Letters,1980,48:42-52.
    [37]Keen, C. E. and Lewis, T. Measured radiogenic heat production in sediments from continental margin of Eastern North America:Implications for petroleum generation [J]. AAPG Bulletin,1982,66:1402-1407.
    [38]Keyu Liu, Peter Eadington Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history [J]. Organic Geochemistry,2005,36: 1023-1036.
    [39]Keyu Liu, Peter Eadington, David Coghlan. Fluorescence evidence of polar hydrocarbon interaction on mineral surfaces and implications to alteration of reservoir wettability [J]. Journal of Petroleum Science and Engineering,2003,39:275-285.
    [40]Keyu Liu, Peter Eadington, Heather Middleton, Stephen Fenton, Tyson Cable Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea [J]. Journal of Petroleum Science and Engineering,2007,57:139-151.
    [41]Khavari, K. G. Novel development in fluorescence microscopy of complex organic mixtures:application in petroleum geochemistry [J]. Organic Geochemistry,1987,11: 157-168.
    [42]Law, B. E., Dickinson, W. W. Conceptual model of origin of abnormally pressured gas accumulations in low permeability reservoirs [J]. AAPG Bulletin,1985,69:1295-1304.
    [43]Lee, Y. M., and Deming, D. Overpressures in the Anadarko basin, southwestern Oklahoma: Static or dynamic? [J]. AAPG Bulletin,2002,86(1):145-160.
    [44]Lerche, I., Yarzab, R. F., and Kendall, C. G. Determination of paleo-heat flux from vitrinite reflectance data [J]. AAPG Bulletin,1984,68 (11):1704-1717.
    [45]Li SuMei, Pang Xiongqi, Liu Keyu, et al. Formation mechanisms of heavy oils in the Liaohe Western Depression,Bohai Gulf Basin [J]. Science in China Series D:Earth Sciences, 2008,51(2):156-169.
    [46]Linye Zhang, Qing Liu, Rifang Zhu, et al. Source rocks in Mesozoic-Cenozoic continental rift basins, east China:A case from Dongying Depression, Bohai Bay Basin [J]. Organic Geochemistry,2009,40:229-242.
    [47]Liu, D. H., Xiao, X. M., Mi, J. K., et al. Determination of trapping pressure and temperature of petroleum inclusions using P VT simulation software-a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin [J]. Marine and Petroleum Geology, 2003,20:29-43.
    [48]Lopatin, N. V. Temperature and geological time as factors of carbonification. Izvestiya Akademii Nauk SSSR, Seriya gelogicheskaya,1971, (3).
    [49]Lumb D. M. Organic luminescence [C]. In LuminescenceSpectroscopy (ed. D.M. Lumb) [A]. Academic Press, NewYork,1978,93-148.
    [50]Luo, X. R., and Vasseur, G. Modelling of pore pressure evolution associated with sedimentation and uplift in sedimentary basin [J]. Basin Research,1995,7:35-52.
    [51]Luo, X. R., Wang, Z. M., Zhang, L. Q., et al. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China [J]. AAPG Bulletin,2007,91(8):1123-1139.
    [52]Luo, X., and Vasseur, G. Contributions of coMPaction and aquathermal pressuring to geopressure and the influence of environmental conditions [J]. AAPG Bulletin,1992,76, 1550-1559.
    [53]Magara K. CoMPaction and Fluid Migration:Practical Petroleum Geology [M]. New York: Elsevier Scientific Publishing CoMPany,1978.1-313.
    [54]Magara K. Importance of aquathermal pressuring effect in Gulf coast [J]. AAPG Bulletin, 1975,59:2037-2045.
    [55]Mark R. P. T., Richard, R. H., Richard, E. S., et al. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei [J]. AAPG Bulletin,2009,93(1):51-74.
    [56]McCain, W. D. The properties of petroleum fluids [M]. Tulsa, Oklahoma, PennWell,1990, 248.
    [57]McPherson, B., and Garven, G. Hydrodynamics and overpressure:Mechanisms in the Sacramento basin, California [J]. American Journal of Science,1999,299 (6):429-466.
    [58]Meissner, F. F. Abnormal electric resistivity and fluid pressure in Bakken Formation, Williston basin, and its relation to petroleum generation, migration, and accumulation (abs.) [J]. AAPG Bulletin,1976,60:1403-1404.
    [59]Meissner, F. F. Petroleum geology of the Bakken Formation, Williston basin, North Dakota and Montana[C]. in 24th annual conference, Williston basin symposium, Montana Geological Society,1978,207-227.
    [60]Mouchet, J. P., and Mitchell, A. Abnormal pressures while drilling [M]. Boussens, France, Elf Aquitaine,1989,255.
    [61]Munz, I. A. Petroleum inclusions in sedimentary basins:Systematics, analytical methods and applications [J]. Lithos,2001,55:195-212.
    [62]Munz, I. A., Johansen, H., Holm, K., et al. The petroleum characteristics and filling history of the Fry field and the rind discovery, Norwegian north sea [J].Marine and Petroleum Geology,1999,16:633-651.
    [63]Nakayama, K., and VanSiclin, D. C. Simulation Model for Petroleum Exploration [J]. AAPG Bulletin,1981,65:1230-1255.
    [64]Okubo, S. Effects of thermal cracking of hydrocarbons on the homogenization temperature of fluid inclusions fromthe Niigata oil and gas fields, Japan [J]. Applied Geochemistry, 2005,20:255-260.
    [65]Osborne, M. J., and Swarbrick, R. E. Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpressure prediction [J]. Marine and Petroleum Geology,1999,16:337-353.
    [66]Osborne, M. J., and Swarbrick, R. E. Mechanisms for generating overpressures in sedimentary basins:a reevaluation [J]. AAPG Bulletin,1997,81:1023-1041.
    [67]Oxtoby, N. H. Comments on:Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours [J]. Applied Geochemistry,2002,17:1371-1374.
    [68]Perrier, R., and Quilbier, J. Thickness changes in sedimentary layers during coMPaction history [J]. AAPG Bulletin,1974,58:507-520.
    [69]Peter, V. R., Richard, H., and Peter, T. The origin of overpressure in the Carnarvon Basin, Western Australia:implications for pore pressure prediction [J]. Petroleum Geoscience, 2004,10:247-257.
    [70]Pickering, L. A., and Indelicato, G. J. Abnormal formation pressure:a review [J]. The Mountain Geologist,1985,22(2):78-89.
    [71]Pironon, J., and Bourdet. J. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequencesfor overpressure estimates [J]. Geochimica et Cosmochimica Acta,2008,72:4916-4928.
    [72]Powers, M. C. Fluid-release mechanisms in coMPacting marine mudrocks and their importance in oil exploration [J]. AAPG Bulletin,1967,51(1):1240-1254.
    [73]Robert, R. B., and F. G. Anthony. Primary Migration by Oil-Generation Microfracturing in Low-Permeability Source Rocks:Application to the Austin Chalk, Texas [J]. AAPG Bulletin,1999,83(5):727-756.
    [74]Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentitatio [J]. Geochim Cosmochim Acta,1992,56:5-20.
    [75]Rowley, D. B., Shagian, D. Depth-dependentstretching:adififferent approach [J]. Geology, 1986,14:32-35.
    [76]Roy, R. F., Blackwell, D. D., and Birch, F. Heat generation of plutonic rocks and continental heat flow provinces [J]. Earth Planet Science Letters,1968,5:1-12..
    [77]Royden, L., and Keen, C. E. Rifting processes and thermal evolution of eastern Canada determined from subsidence curves [J]. Earth Plant Science Letters,1980,51:343-361.
    [78]Royden, L., Sclater, J. G, and Von Herzen, R. P. Continental margin subsidence and heat flow:Important parameters in formation of petroleum hydrocarbons [J]. AAPG Bulletin, 1980,64(2):173-187.
    [79]Rubey, W. W., Hubbert, M. K. Role of fluid pressure inmechanics of overthrust faulting II [J]. Geological Society of American Bulletin,1959,70:166-205.
    [80]Russell, W. L. Pressure-depth relations in Appalachian region [J]. AAPG Bulletin,1972,56, 528-536.
    [81]Sibson, R. H. Conditions for fault valve behaviour[C], in R. J.Knipe and E. H. Rutter, eds., Deformation mechanisms, rheology and tectonics [A]. Geological Society Special Publication,1990,54,15-28.
    [82]Sleep, N. H., and M. L. Blanpied. Creep, coMPaction and theweak rheology of major faults [J]. Nature,1992,359,687-692.
    [83]Spencer, C. W. Hydrocarbon generation as a mechanism for overpressing in Rocky Mountain Region [J]. AAPG Bulletin,1987,71(4):368-388.
    [84]Spencer C W. Overpressure reservoirs in Rocky Mountain region (abs.) [J]. AAPG Bulletin,1983,67:1356-1357.
    [85]Stasiuk, L. D., and Snowdon. L. R. Fluoresence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusion:Crude oil chemistry,density and application to petroleum migration [J]. Applied Geochemistry,1997,12:229-241.
    [86]Stasiuk, L. D., and Snowdon. L. R. Fluoresence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusion:Crude oil chemistry, density and application to petroleum migration [J]. Applied Geochemistry,1997,12:229-241.
    [87]Steckler, M. S., and Watts, A. B. Subsidence history and tectonic evolution of Atlantic-type continental margins [A]. Serutton R A, Dynamics of passive continental margins[C]. American Geophysical Union Geodynamics Series,1982,184-196.
    [88]Sweeny, J. J., and Burnham, A. K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG Bulletin,1990,74(10):1559-1570.
    [89]Teige, G. M. G., Hermanrud, C., Wensaas, L., et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales [J]. Marine and Petroleum Geology,1999,16(4):321-335.
    [90]Teinturiera, S., Pironona, J., and Walgenwitz, F. Fluid inclusions and PVTX modeling: examples from the Garn Formation in well 6507/2-2, Haltenbanken, Mid-Norway [J]. Marine and Petroleum Geology,2002,19:755-765.
    [91]Terzaghi, K. Theoretical soil mechanics [M]. New York, John Wiley and Sons,943,510.
    [92]Thierya, R., Pirononb, J., Walgenwitzc, F., et al. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy:inferences from applied thermodynamics of oils [J]. Marine and Petroleum Geology,2002,19,847-859.
    [93]Tissot, B. P., Pelet, R., and Ungerer, P. H. Thermal history of sedimentary basin, maturation indices, and kinetics of oil and gas generation [J]. AAPG Bulletin,1987,71(12): 1445-1466.
    [94]Ungerer, P. State of the art of research in kinetic modelling of oil formation and explusion[J]. Organic Geochemistry,1990,16(1-3):1-25.
    [95]Ungerer, P., Behar, E., and Discamps, D. Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data[C]: implications for primary migration, in M. Bjorφy et al., eds.,Advances in organic geochemistry [A]. Chichester, John Wiley,1983,129-135.
    [96]Waples, D. W. Time and temperature in petroleum formation:application of Lopatin's method to petroleum exploration [J]. AAPG Bulletin,1980,64:916-926.
    [97]Watts, A., and Ryan, W. B. F. Flexure of the lithosphere and continental margin basins [J]. Tectonophysics,1976,36:25-44.
    [98]Welte, D., and Ykler, H. Petroleum origin and accumulation in basin evolution-A quantitative model [J]. AAPG Bulletin,1981,65:1387-1396.
    [99]Wood, D. A. Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method:Implications for petroleum exploration [J]. AAPG Bulletin, 1988,72:115-134.
    [100]Xiaowen Guo and Sheng He. Aromatic hydrocarbons as indicators of the origin and maturity of light oils from Panyu Lower Uplift in Pearl River Mouth Basin [J]. Journal of Earth Science,2009,20(5):824-835.
    [101]Xie, X. N., Li, S. T., Dong, W. L., et al. Overpressure development and hydrofracturing in the Yinggehai basin, South China Sea[J]. Journal of Petroleum Geology,1999,22, 437-54.
    [102]Xie, X., Bethke, C. M., Li, S., et al. Overpressure and petroleum generation and accumulation in the Dongying Depression of the Bohaiwan Basin, China [J]. Geofluids, 2001,1:257-271.
    [103]Yardley, G. S., and Swarbrick, R. E. Lateral transfer:a source of additional overpressure? [J]. Marine and Petroleum Geology,2000,17(4):523-537.
    [104]Yassir, N. A., and Bell, J. S. Abnormal high fluid pressures and associated porosities and stress regimes in sedimentary basins [J]. SPE Formation Evaluation,1996,28139.
    [105]Zhang, L. X., and Li, M. Diagenesis of sandstone of Sangonghe formation of Lower Jurassic and its influence on porosity eastern Zhungaer basin [J]. Journal of Mineralogy, 2000,20(1):61-65.
    [106]Schmidt, W. R., and Fisher, Q. J. Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic) [J]. Marine and Petroleum Geology,2004,21(3):299-315.
    [107]Zhang, Y. G., Frantz, J. D. Determination of the homogenization tempera-tures and densities of supercritical fluids in the system NaCl-KCl-Ca-Cl2-H2O using synthetic fluid inclusions[J]. Chemical Geology,1987,64:335-350.
    [108]包友书,张林哗,张守春,等.东营凹陷深部异常高压与岩性油气藏的形成[J].新疆石油地质,2008,29(5):585-587.
    [109]鲍晓欢,郝芳,方勇.东营凹陷牛庄洼陷地层压力演化及其成藏意义[J].地球科学.中国地质大学学报,2007,32(2):241-246.
    [110]陈勇,周瑶琪.一种获取包裹体内压的新方法[J].地球化学与岩石圈动力学开放实验室年报,2002,86-91.
    [111]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].科学出版社,2003.
    [112]陈冬霞,庞雄奇,邱楠生,等.东营凹陷隐蔽油气藏的成藏模式[J].天然气工业,2005,25(12):12-15.
    [113]陈荷立,罗晓容.砂泥岩中异常高流体压力的定量计算及其地质应用[J].地质论评, 1988,34(1):54-62.
    [114]陈红汉,董伟良,张树林,等.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质,2004,23(3):207-211.
    [115]陈红汉,李纯泉,张希明,等.运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J].地学前缘,2003,10(1):265-270.
    [116]陈筱康.东营凹陷胜坨油田成藏过程分析[J].油气地质与采收率,2007,14(4):29-32.
    [117]陈中红,查明,金强.东营凹陷超压系统的幕式排烃[J].石油与天然气地质,2004,25(4):444-447.
    [118]陈中红,查明.东营凹陷流体超压封存箱与油气运聚[J].沉积学报,2006,24(4):607-612.
    [119]程本合,项希勇,穆星.济阳坳陷沾化凹陷东部热史模拟研究[J].石油实验地质,2002,22(2):172-175.
    [120]崔洁,何家雄,周永章,等.珠江口盆地白云凹陷天然气成因及油气资源潜力分析[J].天然气地球科学,2009,20(1):125-130.
    [121]傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报,2007,28(3):32-38.
    [122]龚育龄,王良书,刘绍文,等.济阳坳陷大地热流分布特征[J].中国科学(D辑),2003,33(4):383-391.
    [123]郭汝泰,王建宝,高喜龙,等.应用激光探针技术评价烃源岩成熟度-以东营凹陷生油岩研究为例[J].自然科学进展,2003,13(6):626-630.
    [124]郭小文,何生,石万忠.珠江口盆地番禺低隆起轻质原油芳烃地球化学特征[J].石油学报,2008,29(1):52-57.
    [125]郭小文,何生.珠江口盆地番禺低隆起轻质原油地球化学特征及对比研究[J].地质科技情报,2006,25(5):63-67.
    [126]郭小文,何生,陈红汉.甲基双金刚烷成熟度指标讨论与运用[J].地质科技情报,2007,26(1):71-76.
    [127]郭小文,何生.珠江口盆地白云凹陷烃源岩热史及成熟史模拟[J].石油实验地质,2007,29(4):420-425.
    [128]郭小文,何生.珠江口盆地番禺低隆起轻质原油地球化学特征及其对比研究[J].地质科技情报,2006,25(5):63-67.
    [129]郝芳,蔡东升,邹华耀,等.渤中坳陷超压-构造活动联控型流体流动与油气快速成藏[J].地球科学·中国地质大学学报,2004,29(5):518-524.
    [130]何生,何治亮,杨智,等.准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J].地球科学-中国地质大学学报,2009,34(3):457-470
    [131]何惠生,叶加仁,陈景阳.准噶尔盆地腹部超压演化及成因[J].石油天然气学报,2009,31(1):87-81.
    [132]何家雄,陈胜红,刘海龄,等.珠江口盆地白云凹陷北坡.番禺低隆起天然气成因类型及其烃源探讨[J].石油学报,2009,30(1):16-21.
    [133]胡圣标,汪集肠.沉积盆地热体制研究的基本原理和进展[J].地学前缘,1995,2(3):171-180.
    [134]姜福杰,庞雄奇,姜振学,等.东营凹陷沙三段源岩排烃特征及潜力评价[J].西南石油大学学报,2007a,29(4):7-11.
    [135]姜福杰,庞雄奇,姜振学,等.东营凹陷沙四上亚段烃源岩排烃特征及潜力评价[J].地质科技情报,2007b,26(2):60-74.
    [136]蒋启贵,李志明,张彩明,等.东营凹陷烃源岩轻烃特征研究[J].地质科技情报,2008,27(5):87-91.
    [137]蒋有录,刘华,张乐,等.东营凹陷油气成藏期分析[J].2003,24(3):215-218.
    [138]解习农,李思田,胡祥云,等.莺歌海盆地底辟带热流体输导系统及其成因机制[J].中国科学(D辑),1999.29(3):247-256.
    [139]李昌存,韩秀丽,邹继兴.栾木场金矿石英流体包裹体及成矿预测[J].矿物岩石,1999,19(1):55-57.
    [140]李丕龙.陆相断陷盆地缓坡带油气运聚规律研究.中国科学院兰州地质所,2001
    [141]李荣西,金奎励,廖永胜.有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学,1998,27(3):244-245.
    [142]李善鹏,邱楠生,曾溅辉.利用流体包裹体分析东营凹陷古压力[J].东华理工学院学报,2004,27(3):209-212.
    [143]李善鹏,邱楠生,尹长河.利用流体包裹体研究沉积盆地古压力[J].矿产与地质,2003,17(95):161-165.
    [144]李善鹏,邱楠生.利用盆地模拟方法分析昌潍坳陷古压力[J].新疆石油学院学报,2003,15(4):5.
    [145]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-351.
    [146]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999.
    [147]刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,31(18):1432-1436.
    [148]刘华,蒋有录,宋西云,等.东营凹陷东辛油田油源对比研究[J].石油人学学报(自然科学版),2005,29(4):1-5.
    [149]刘华,蒋有录,杨万琴,等.东营凹陷中央隆起带油—源特征分析[J].石油与天然气地质,2004,25(1):39-43.
    [150]刘震,金博,贺维英,等.准噶尔盆地东部地区异常压力分布特征及成因分析[J].地质科学,2002,37(增刊):91-104.
    [151]刘震,张万选,张厚福,等.辽西凹陷下第三系异常地层压力分析[J].石油学报,1993,14(1):56-61.
    [152]刘福宁.异常高压区的古沉积厚度和古地层压力恢复方法探讨[J].石油与大然气地质,1994,15(2):180-185.
    [153]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊—陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-230.
    [154]刘林玉,柳益群,陈刚.吐鲁番坳陷中-上侏罗统碎屑岩中的白生粘土矿物特征及其成岩意义[J].岩石学报,1998,14(2):258-268.
    [155]刘士忠,查明,曲江.东营凹陷沙三段泥岩盖层超压演化及其对油气成藏的影响[J]. 油气地质与采收率,2008,15(6):19-21.
    [156]刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学-中国地质大学学报,2008,33(3):337-341.
    [157]刘晓峰.超压传递:概念和方式[J].石油实验地质,2002,24(6):533-536.
    [158]刘震,许晓明,谢启超,等.渤海湾盆地异常高压晚期形成特征分析[J].现代地质,2006,20(2):259-267.
    [159]柳少波,顾家裕.包裹体在石油地质研究中的应用与问题讨论[J].石油与天然气地质,1997,18(4):326-331.
    [160]罗晓容,肖立新,李学义,等.准噶尔盆地南缘中段异常压力分布及影响因素[J].地球科学-中国地质大学学报,2004,29(4):404-412.
    [161]罗晓容,杨计海,王振峰.渗透性地层超压形成机制及钻前压力预侧[J].地质论评,2000,46(1):22-31.
    [162]马红强,陈强路,陈红汉,王恕一,钱一雄,陈跃 盐水包裹体在成岩作用研究中的应用-以塔河油田下奥陶统碳酸盐岩为例[J].石油实验地质,2003,25(增刊):601-606.
    [163]麦碧娴,汪本善.泌阳凹陷下第三系流体包裹体特征及其应用-流体包裹体研究[J].地球化学,1991,(4):331-341.
    [164]孟祥适,姜印平,刘玉杰,等.基于天然气压缩系数Z提高天然气计量准确度的方法[J].测控技术,2004,23(6):16-17.
    [165]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力-以鄂尔多斯盆地上古生界深盆气藏为例[J].中国科学(D辑),2003,33(7):679-685.
    [166]米立军,张功成,傅宁,等.珠江口盆地白云凹陷北坡-番禺低隆起油气来源及成藏分析[J].中国海上油气,2006,18(3):161-168.
    [167]潘长春,周中毅.液体流体包裹体在准噶尔盆地油气资源评价中的应用[J].石油实验地质,1990,13(4):399-407.
    [168]庞雄,陈长民,朱明,等.南海北部陆坡白云深水区油气成藏条件探讨[J].中国海上油气,2006,18(3):145-149.
    [169]邱桂强,凌云,樊洪海.东营凹陷古近系烃源岩超压特征及分布规律[J].石油勘探与开发,2003,30(3):71-75.
    [170]邱楠生,苏向光,李兆影,等.济阳坳陷新生代构造-热演化历史研究[J].地球物理学报,2006,49(4):1127-1135.
    [171]任拥军,周瑶琪,查明,等.东营凹陷古近系烃源岩成熟度特征[J].中国石油大学学报(自然科学版),2006,30(2):6-10.
    [172]施和生,秦成岗,高鹏,等.珠江口盆地番禺低隆起-白云凹陷北坡天然气晚期成藏特征[J].中国海上油气,2008,20(2):73-76.
    [173]施和生,吴建耀,朱俊章,等.应用定量荧光技术判识番禺低隆起-白云凹陷北坡残余油藏并重构烃类充注史[J].中国海上油气,2007,19(3):149-153.
    [174]施继锡,李本超,傅家谟,等.有机包裹体及其与油气的关系[J].中国科学(B辑),1987,(3):318-325.
    [175]石广仁.油气盆地模拟数值模拟方法(第三版)[M].北京:石油工业出版社,2004.
    [176]石万忠,陈红汉,陈长民,等.珠江口盆地白云凹陷地层压力演化与油气运移模拟[J].地球科学-中国地质大学学报,2006,31(2):229-236.
    [177]石万忠,陈红汉,何生.库车坳陷构造挤压增压的定量评价及超压成因分析[J].石油学报,2007,28(6):59-65.
    [178]石万忠,陈红汉,张希明,等.阳霞凹陷超压成因及与油气成藏关系探讨[J].地球科学-中国地质大学学报,2005,30(2):221-227.
    [179]石万忠,宋志峰,王晓龙,等.珠江口盆地白云凹陷底辟构造类型及其成因[J].地球科学-中国地质大学学报,2009,34(5):778-784.
    [180]史建南,郝芳,姜建群.大民屯凹陷超压演化的多因素耦合[J].石油勘探与开发,2006,33(1):40-43.
    [181]史建南,姜建群,陈富新,等.大民屯凹陷超压发育机制及其成藏意义[J].吉林大学学报(地球科学版),2005,35(6):745-750.
    [182]苏玉山,王生朗,张联盟,等.超压异常对东濮凹陷深层油气成藏的控制作用[J].石油勘探与开发,2002,29(2):49-52.
    [183]隋风贵.东营断陷盆地地层流体超压系统与油气运聚成藏[J].石油大学学报(自然科学版),2004,28(3):17-21.
    [184]谭丽娟,蒋有录,苏成义,等.东营凹陷博兴地区烃源岩和油源特征[J].石油大学学报(自然科学版),2002,26(5):1-4.
    [185]万晓龙,邱楠生,李亮,等.东营凹陷古近系沙三段异常高压及成藏响应[J].天然气地球科学,2004,15(1):95-98.
    [186]王存武,陈红汉,陈长民,等.珠江口盆地白云深水扇特征及油气成藏主控因素[J].2007,32(2):247-252
    [187]王存武,陈红汉,施和生,等.珠江口盆地番禺低隆起天然气成因研究[J].天然气工业,2005,25(8):6-8.
    [188]王家豪,庞雄,王存武,等.珠江口盆地白云凹陷中央底辟带的发现及识别[J].地球科学-中国地质大学学报,2006,31(2):209-213.
    [189]王良书,刘绍文,肖卫勇,等.渤海盆地大地热流分布特征[J].科学通报,2002,47(2):151-155.
    [190]王震亮,张立宽,施立志,等.塔里木盆地克拉2气田异常高压的成因分析及其定量评价[J].地质论评,2005,51(1):55-62.
    [191]夏新宇,宋岩,房德权.构造抬升对地层压力的影响及克拉2气田异常压力成因[J].天然气工业,2001,21(1):30-34.
    [192]谢文彦,姜建群,史建南,等.大民屯凹陷压力场演化及其成藏意义[J].石油学报,2004,25(6):48-52.
    [193]徐国盛,王威,徐兴友.沾化凹陷渤南洼陷沙四段~孔店组的热史及超压演化[J].物探化探计算技术,2007,29(6):524-529.
    [194]徐士林,吕修祥,皮学军,等.新疆库车坳陷克拉苏构造带异常高压及其成藏效应[J].现代地质,2002,16(3):282-287.
    [195]徐思煌,何生,袁彩萍.烃源岩演化与生、排烃史模拟模型及其应用[J].地球科学-中国地质大学学报,1995,20(3):335-341.
    [196]徐思煌,梅廉夫,袁彩萍.成烃增压数值模拟[J].石油实验地质,1998,20(3):287-291.
    [197]许晓明,刘震,谢启超,等.渤海湾盆地济阳坳陷异常高压特征分析[J].石油实验地质,2006,28(4):345-349.
    [199]杨智,何生,武恒志,等.准噶尔盆地南缘超压地球物理特征与成因响应关系研究[J].中国西部油气地质,2006,2(3):286-288.
    [199]应凤祥,罗平,何东博,等著.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M].北京:石油工业出版社,2004.
    [200]于水明, 梅廉夫,施和生,等.番禺低隆起-白云凹陷北坡超晚期天然气成藏特征[J].天然气工业,2007,27(4):6-10.
    [201]张洪,姜振学,庞雄奇.克拉2气田超压成因的物理模拟实验研究[J].石油学报,2006,27(4):59-62.
    [202]张洪,庞雄奇,姜振学.库车坳陷克拉2气田超压成因研究[J].地球学报,2005,26(2):163-168.
    [203]张厚福,方朝亮,高先志,等.石油地质学(第二版)[M].北京:石油工业出版社,1999.
    [204]张林哗,蒋有录,刘华,等.东营凹陷油源特征分析[J].石油勘探与开发,2003,30(3):61-64.
    [205]张庆春,石广仁,田在艺.盆地模拟技术的发展现状与未来展望[J].石油实验地质,2001,23(3),312-317.
    [206]张善文,张林晔,张守春,等.东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J].科学通报,2009,54(11):1570-1578.
    [207]张守春.东营凹陷第三系烃源岩排烃机理研究[D].西北大学,硕士学位论文,2004.
    [208]张卫海,陈中红,查明,等.秀东营凹陷烃源岩排油机理[J].石油学报,2006,27(5):46-50.
    [209]张义杰.准噶尔盆地断裂控油的流体地球化学证据[J].新疆石油地质,2003,24(2):100-106.
    [210]赵焕欣,高祝军.用声波时差预测地层压力的方法[J].石油勘探与开发,1995,22(2):80-85.
    [211]赵靖舟.前陆盆地天然气成藏理论及应用[M].石油工业出版社,2003.
    [212]郑和荣,黄永玲,冯有良.东营凹陷下第三系地层异常高压体系及其石油地质意义[J].石油勘探与开发,2000,27(4):67-70.
    [213]周兴熙.塔里木盆地克拉2气田成藏机制再认识[J].天然气地球科学,2003,14(5):354-360.
    [214]朱俊章,施和生,庞雄,等.珠江口盆地白云凹陷深水区珠海组烃源岩评价及储层烃来源分析[J].中国海上油气,2008b,20(4):223-227.
    [215]朱俊章,施和生,何敏,等.珠江口盆地白云凹陷深水区LW3-1-1井天然气地球化学特征及成因探讨[J].天然气地球科学,2008a,19(2):229-233.
    [216]朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起天然气成因和气源分析[J].2005,26(4):456-459.
    [217]朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起天然气成因和气源分析[J].天然气地球科学,2005,16(4):456-459.
    [218]朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起凝析油地球化学特征及油源分析[J].中国海上油气,2006,18(2):103-106.
    [219]朱玉新,邵新军,杨思玉,等.克拉2气田异常高压特征及成因[J].西南石油学院学报,2000,22(4):9-13.
    [220]祝厚勤,庞雄奇,姜振学,等.东营凹陷岩性油藏成藏期次与成藏过程[J].地质科技情报,2007,26(1):65-70.
    [221]卓勤功,蒋有录,隋风贵.渤海湾盆地东营凹陷砂岩透镜体油藏成藏动力学模式[J].石油与天然气地质,2006,17(5):620-629.
    [222]卓勤功,隋风贵.东营凹陷砂岩透镜体油藏油源新认识及其石油地质意义[J].油气地质与采收率,2007,14(5):8-11.
    [223]卓勤功.异常高压对烃源岩成烃机理和油气运聚成藏的影响[J].石油实验地质,2005,27(2):169-172.
    [224]宗国洪.济阳坳陷构造演化及其大地构造意义[J].高校地质学报,1999,5(3):275-282.
    [225]邹海峰.大港探区前第三系古流体和古温压特征及演化[D].吉林大学博士学位论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700