用户名: 密码: 验证码:
皖南新元古界蓝田组碳酸盐岩沉积地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新元古代晚期气候剧烈变化,冰川事件广泛发育。冰期沉积物之上往往被碳酸盐岩直接覆盖,并且这些碳酸盐岩具有特殊的沉积结构、元素和同位素地球化学组成,因此它们已成为近年来国际地球科学研究的前沿和热点之一。中国华南地区发育完整的新元古代震旦系(Ediacaran system)地层,是研究“雪球地球事件”之后古环境变化、古气候变迁、沉积水体组成和生物演化等科学问题最理想的天然实验室。
     安徽南部震旦系雷公坞组对应于Marinoan冰期沉积,与华南其它地区的南沱组冰碛岩可以对比。蓝田组碳酸盐岩直接不整合地覆盖在雷公坞组冰碛岩之上,其生物标志、化学地层和年代学证据表明它与华南其它地区陡山沱组可进行对比。蓝田组发育上下两段碳酸盐岩地层,其中下段碳酸盐岩属于Marinoan冰期之后的帽碳酸盐岩,可与华南陡山沱组下部碳酸盐岩进行对比;而上段碳酸盐岩直接覆盖在黑色页岩之上,可与陡山沱组上部碳酸盐岩进行对比。由于蓝田组碳酸盐岩与华南其它地区同时期地层既具有相似性又存在一定的差别,因此对其形成环境的研究可为“雪球地球事件”之后的古沉积环境和古气候变迁提供重要线索。
     本学位论文采用多种地球化学分析手段,包括主量元素和微量元素分析以及C、O和Sr同位素分析,对皖南石盂和皮园村两个地点的震旦系蓝田组上下两段碳酸盐岩进行了系统的剖面采集及其对应的地球化学研究。由于这些碳酸盐岩中还发育细小的方解石脉体,因此对脉体的元素和同位素组成采用显微取样方法进行了研究。所获得的结果为理解蓝田组碳酸盐岩的沉积环境及其与“雪球地球事件”之间的关系提供了地球化学制约。
     蓝田组碳酸盐岩并不是由纯碳酸盐矿物组成,其中还含有少量非碳酸盐岩物质,如陆源硅质碎屑、FeMn氧化物、硫化物等。由于这些组分的物理化学性质不同,在化学沉积和成岩蚀变以及分析过程中,不同组分间会相互影响,因此本文应用不同强度的酸对碳酸盐岩进行了分步溶解。结果表明,0.5M醋酸溶解的物质(溶液Ⅰ)主要是方解石,其微量元素和锶同位素组成没有受到非碳酸盐岩物质及蚀变作用的影响,能够代表碳酸盐沉积时的地球化学特征。上下两段碳酸盐岩的溶液Ⅰ都表现为高锶含量、高~(87)Sr/~(86)Sr比值、LREE弱亏损、弱La正异常、弱Gd和Ce以及Er负异常、低Y/Ho比,而下段碳酸盐岩还有明显Eu正异常。这些特征说明,蓝田组上下两段碳酸盐岩具有相似的沉积环境,但是与海相碳酸盐岩的地球化学特征存在明显差别,因此是从淡水为主的环境中沉淀的,其中Ce负异常说明沉积水体呈氧化状态。大部分样品中3.4M醋酸溶解物质(溶液Ⅱ)的微量元素组成明显不同于溶液Ⅰ已经不同程度地受到硅酸盐矿物的污染,不能用来指示沉积环境。残渣中元素组成说明,上段和下段碳酸盐岩的硅酸盐物质来源于不同的陆源区。
     蓝田组上下两段碳酸盐岩中纯碳酸盐部分由不同矿物组成。为了更好识别这些矿物是否保存原始地球化学特征,本文应用温差法对碳酸盐岩碳氧同位素进行分析。通过共生白云石和方解石的热力学分馏和水岩交换模型,计算得到皮园村剖面上段碳酸盐岩的初始δ~(18)O值高于-11.9‰(PDB),初始δ~(13)C值为-10.5--9.5‰;石盂剖面上段碳酸盐岩的初始δ~(18)O值为-25.6--18.6‰(PDB),δ~(13)C值为-11.7--7.9‰;石盂剖面下段碳酸盐岩的初始δ~(18)O值为-12.8--10.9‰(PDB),初始δ~(13)C值为-5.3--3.5‰。石盂剖面上段碳酸盐岩中低δ~(18)O值与现代极地沉积碳酸盐岩的δ~(18)O相近,要求沉积水体的δ~(18)O值低达-30--18‰(SMOW)。这说明,该段碳酸盐岩可能在大陆边缘盆地中沉淀的,沉积水体中有大量低δ~(18)O值淡水的加入。δ~(18)O值相对较高的皮园村剖面上段碳酸盐岩和石盂剖面下段碳酸盐岩可能是在δ~(18)O值与海水相近的水体中沉淀的。由于上段碳酸盐岩中低的δ~(13)C值与低δ~(18)O值共生,因此低δ~(13)C值可能与陆源有机质的分解有关,而下段碳酸盐岩中δ~(13)C值可能与甲烷渗漏有关。
     皮园村剖面上段碳酸盐岩中围岩的稀土配分型式以及Sr同位素组成表明,有大量陆源物质加入沉积水体中。其相对较高的δ~(18)O值说明,沉积水体氧同位素组成可能与新元古代海水相近,因此其沉积时可能有δ~(18)O值与当时海水相近的海洋冰川融水加入;并且水体携带有陆源物质,结果使得沉积盆地中水体δ~(18)O值与海水相近,但是微量元素组成却受控于陆源物质。石盂剖面上段碳酸盐岩具有与皮园村剖面相似的稀土配分特征和Sr同位素组成,但是具有相对较低的δ~(18)O值,显示有大量低δ~(18)O值大陆冰川融水携带了陆源物质加入沉积水体中。由于上段碳酸盐岩是在Ediacaran生物群出现之前、Gaskiers冰期结束之后沉淀的,因此海洋冰川和大陆冰川可能都属于Gaksiers冰期产物。两个剖面在主微量元素和同位素组成之间的差异说明,碳酸盐岩是从不同氧同位素组成的沉积水体中快速沉淀的,因此当时海水与冰川融水之间没有达到氧同位素均一化。由此可以推测,当时皖南地区属于大陆边缘盆地,皮园村沉积盆地位于大洋一侧,沉积水体与大洋之间有充分交换;而石盂沉积盆地位于大陆一侧,与大洋之间缺乏连通。石盂剖面下段碳酸盐岩中围岩的稀土配分型式和Sr同位素组成表明有大量陆源物质的加入,其δ~(18)O值说明沉积水体氧同位素组成与新元古代海水相近。由于蓝田组下段碳酸盐岩是在全球性Marinoan冰期结束之后形成,其沉积时可能有δ~(18)O值与当时海水相近的海洋冰川融水加入。
     蓝田组上下两段碳酸盐岩中围岩和脉体的岩相学特征、元素组成和碳氧同位素特征显示,每一部分方解石脉的δ~(13)C值与各自微晶围岩的δ~(13)C值相近,指示成岩流体的碳主要来自于早期沉积的微晶围岩。从蓝田组上下两段碳酸盐岩中方解石脉的碳氧同位素和元素组成来看,成岩流体大部分都属于外部流体,但皮园村剖面上段碳酸盐岩中的一期成岩流体属于内部流体。三段碳酸盐岩中的一类方解石脉的δ~(18)O值比较低(-28.6--18.1‰),指示这类成岩流体来源于大陆冰川融水,但它们在各段岩石中具有不同的稀土配分型式,这说明了这些成岩流体受到不同陆源物质的影响。这类低δ~(18)O值的成岩流体在皮园村和石盂地区广泛分布。皮园村剖面的蓝田组上段碳酸盐岩中另一类方解石脉的δ~(18)O值比上一类的高,为-17.2--11.3‰,与围岩的相近,这指示了这类成岩流体属于内部流体,与沉积流体的组成相近。但脉体与围岩具有不同的稀土配分型式,说明了它们是受不同陆源区的物质控制的。
     皖南地区新元古代Marinoan冰期后沉积碳酸盐岩地层与华南及世界上其它地区地层可以对比,因此本文研究结果有助于理解Ediacaran时期大陆边缘沉积盆地的古环境、古气候、生物产率和水体组成等相关科学问题。尤其是对碳酸盐岩中细脉和围岩进行微区碳氧同位素和微量元素研究,为我们认识成岩/蚀变流体的地球化学特征及其源区性质打开了一扇新的窗户。由于这些碳酸盐岩的同位素和元素组成变化与生物地球化学循环改变密切相关,是沉积水体环境变化的指示剂,因此本文在解译这些变化的基础上提出了可能的成因模型,以期对于认识世界上其它地区同时代沉积环境及其生命辐射效应的都有重要意义。
The Late Neoproterozoic Eon was accompanied by drastic climate perturbations with serious glaciations. At least two glacial events (Sturtian and Marinan iceages) are well recorded in sediment rocks, which are usually covered by cap carbonate with no gap between them. In particular, the carbonate subsequent to the Marinoan glaciation exhibits unique sedimentary structures, major and trace elemental compositions and stable isotopes ratios, and has become a focus of much studies. The rocks of Sinian system (Ediacaran system) in the late Neoproterozic outcrop at many localities across the Yangtze Platform and provide good opportunities for the investigations of paleoenvironments, paleoclimate and depositional waters and biological evolution after the "snowball Earth event".
     The Leigongwu diamictite in southern Anhui belongs to deposition during the Marinoan glaciation, corresponding to the Nantuo diamictite on other profiles in South China. The Lantian Formation sharply and disconformably overlies the Leigongwu diamictite. Biostratigraphic, chemostratigraphic and geochronological studies have demonstrated that the Lantian Formation is equivalent to the Doushantuo Formation elsewhere in South China. Two distinct carbonate units occur in the Lantian Formation in southern Anhui. The carbonate in the lower unit directly follows the Leigongwu Formation and corresponds to the Marinoan cap carbonate. The carbonate in the upper unit of the Lantian Formation, conformably overlying the black shale, compared well with the top carbonate of the Doushantuo Formation elsewhere in South China. Because of the similarities and differences between the carbonates in the Lantian Formation and in equivalent sequences in other sections, the study of the Lantian Formation can provide a good opportunity to decipher paleoenvironmental and paleoclimatic evolution.
     In this thesis, a systematic study of major and trace elements as well as C-O-Sr isotopes in the carbonate of the Lantian Fornation was carried out. Veinlets are found in the carbonate, so that their elemental and isotopic compositions were analyzed together with their wallrock. The results provide geochemical constraints on the relationship between the depositional environments and the snowball Earth event.
     The upper and lower carbonate units in the Lantian Formation are impure and composed of various components. These components include main carbonate minerals, such as aragonite, calcite and dolomite, as well as non-carbonate materials such as siliciclastics, oxides and sulfides. Because these components have a variety of physical and chemical characteristics, they suggest possible interaction during sedimentary and diagenetic processes as well as laboratory analyses. Thus, we attempted to separate the different components by stepwise chemical leaching for the element concentrations and Sr isotopic compositions. The results show that the carbonate component dissolved in 0.5 M acetic acid (Dissolution I) is principally composed of calcite and almost free from non-carbonate contamination. Thus its elemental and isotopic compositions can be used to unravel the geochemical feature of the water from which the carbonate precipitated. The Sr concentrations and isotope ratios, and REE+Y concentrations and patterns of Dissolution I are similar to each other in the two units. They exhibit high Sr concentrations and high ~(87)Sr/~(86)Sr ratios, depletion of LREE relative to MREE and HREE, weak positive La anomalies, subtle negative Ce, Gd and Er anomalies, and near-chondritic Y/Ho ratios. There are obvious positive Eu anomalies in the lower unit of carbonate. These indicate that the two carbonate units were precipitated from the similar nature of basin water, which lack of trace element composition typical of normal marine carbonate but similar to those in freshwater carbonate. The negative Ce anomalies in the carbonate of the two units suggest oxygenation of the precipitation water.
     The selective acid extraction method was used to liberate CO_2 from calcite and dolomite in the Lantian carbonates. The results enable us to distinguish between primary and secondary carbonates for the purpose of constraining their origin. In view of trace element compositions and water-rock interaction modeling for coexisting dolomite and calcite, the primaryδ~(13)C andδ~(18)O values for the upper unit at Shiyu are -25.6 to -18.6‰and -11.8 to -7.9‰in PDB, respectively; and those at Piyuancun are higher than -11.9‰and -10.5 to -9.5‰, respectively. In this regard, the primary sedimentaryδ~(13)C andδ~(18)O values for the lower unit at Shiyu are -5.3 to -3.5‰and -12.8 to -10.9‰(in PDB), respectively. The very lowδ~(18)O values of-25.6 to -18.6‰(PDB) for the upper carbonate unit at Shiyu are comparable to those for modern Arctic carbonates, corresponding to waterδ~(18)O values as negative to -30 to -18‰in SMOW. This is interpreted as precipitation of carbonate from freshwater-derived fluid in a continental marginal basin. In contrast, the carbonate with less lowδ~(18)O values for the upper unit at Piyuancun and lower unit at Shiyu would precipitate from seawater-like fluid. Our interpretations are strengthened by terrigenous REE+Y patterns and high ~(87)Sr/~(86)Sr ratios for the both carbonate units of the Lantian Formation. Since the negative carbonateδ~(13)C excursion from -11.7 to -7.8‰in the upper unit is also associated with the extreme ~(18)O-depletion, the terrestrial dissolved organic carbon reservoirs is considered as a basic cause for the lowδ~(13)C values.
     The C, O and Sr isotopic ratios and elemental concentrations of carbonate in the upper and lower units of the Lantian Formation indicate that the precipitating water are composed not only of the seawater but also of the meltwater from glaciation. As for the upper carbonate unit at Piyuancun, the REE+Y patterns and Sr isotopic compositions indicate that a significant amount terrigenous materials pouring into the depositional basin. The relatively high carbonateδ~(18)O values imply that the O isotopic ratios of water are similar to those of Neoproterozoic seawater. This indicates that the precipitating water has the similar O isotopic compositions to the seawater, but terrigenous REE+Y patterns and high ~(87)Sr/~(86)Sr ratios. As for the carbonate in the upper unit at Shiyu, the precipitating water is characterized as extremely lowδ~(18)O values, terrigenous REE+Y patterns and high ~(87)Sr/~(86)Sr ratios. Since the upper unit predates the appearance of Ediacaran biota but postdates the Gaskiers iceage, the freshwater would probably originate from continental deglacial meltwater in the post-Gaskiers phase. The large differences in the concentrations of the trace elements and stable isotopes between the carbonate in the upper unit and the equivalent Neoproterozoic carbonates suggest that the precipitation rate of the upper carbonate would be high without the homogeneity between glacial meltwater and seawater. Thus, the continental marginal basin precipitating the Lantian carbonates may be one of rift basins between the Cathaysia and Yangtze Blocks with limited channel to the open ocean. Piyuancun was located at distal section whereas Shiyu was located at proximal section and thus was not connected with the open ocean. As for the lower carbonate unit, the REE+Y patterns and Sr isotopic compositions are similar to those infreshwater carbonate although theirδ~(18)O values are in the same range with those of Neoproterozoic marine carbonate in the equivalent carbonate elsewhere in the world. The carbonate in the lower unit deposited after the global Marinoan glaciation. The seawater-like fluid would be derived from global deglacial meltwater in the post-Marinoan phase and carry the terrigenous materials poured into the sedimentary basin. Thus the precipitating water has the similarδ~(18)O values to the seawater and terrigenous REE+Y patterns and high ~(87)Sr/~(86)Sr ratios.
     The differences in texture, elemental and isotopic compositions between wallrock and veinlet in the both lower and upper carbonate units indicates that the wallrock did not experience significant modification by diagenetic fluid. Theδ~(13)C values for the calcite veinlet are in the same range with the values for the micritic wallrock in both the upper and lower carbonate unit of the Lantian Formation, indicating that the carbon sources for the veinlets are probably the micrite carbonate in the wallrock. Theδ~(18)O values and REE+Y patterns are different between the calcite veinlets and micritic wallrock in most carbonate, which imples that the diagenetic fluids are external, except that other veinlets of the upper carbonate at Piyuancun is internal fluid. The veinlets of one group in not only the upper unit at Shiyu and Piyuancun and the lower unit at Shiyu have lowerδ~(18)O values of-28.6 to -18.1‰which were from the continental glacial meltwater, but different REE+Y patterns which were controlled by the different terregenous weathering materials. Such veinlets occur at both Shiyu and Piyuancun. The veinlets in the other group occur in the upper unit at Piyuancun, which have relatively higherδ~(18)O values of-17.2 to -11.3‰similar to the wallrocks. This indicates that the diagenetic fluids are internal and have the similar source to the precipitation fluids. But the REE+Y patterns are different in veinlets and wallrock, which implies that they influenced by the different terregenous weathering matterials.
     Correlating the chemical stratigraphy in southern Anhui with that elsewhere in South China and in the world can help us to understand the palaeoenvironment, palaeoclimate, atmospheric oxygen content, organic productivity and fluid compositions. Moreover, the elemental and isotopic compositions of the sedimentary carbonate rocks are closely associated with the circulation of geochemistry and biochemistry and thus can indicate the environmental evolution. In particular, the study of in-situ microanalyses of C-0 isotopes and trace elements in veinlet and its wallrock provides a new insight into the geochemistry of diageneic fluid, enabling us to trace its source. As a consequence, we have constructed a model for carbonate formation based on the change of elemental and isotopic compositions. Thus, our study can help to understand the palaeoenvironmental evolution during the Ediacaran phase, which is important to understanding of the radiation of the Ediacaran biota.
引文
安徽省地质矿产局,1987.安徽省区域地质志.北京:地质出版社.
    陈多福,陈先沛,陈光谦,2002.冷泉流体沉积碳酸盐岩的地质地球化学特征.沉积学报20,34-40.
    狄永军,郭正府,李凯明,于开宁,2003.天然气水合物成因探讨.地球科学进展18,138-143.
    甘晓春,赵风清,李惠民,1993.湖南板溪群的单颗粒锆石U-Pb年龄.地质出版社,北京,10-12.
    李双应.1998.皖南蓝田盆地蓝田组的沉积环境.合肥工业大学学报(自然科学版)21,64-70.
    陆松年,2002.关于中国新元古界划分几个问题的讨论.地质论评48,242-248.
    马国干,李华芹,张自超,1984.华南地区震旦纪时限范围的研究.宜昌地区矿产研究所所刊8,1-29.
    彭学军,刘耀荣,吴能杰,陈建超,李建清,2004.扬子陆块东南缘南华纪地层对比,地层学杂志28354-359.
    盛雪芬,杨杰东,李春雷,陈俊,涛仙聪,2000.黄土和沉积岩中分离方解石和白云石的方法试验.岩矿测试19,264-267.
    王剑,2000.华南新元古代裂谷盆地演化-兼论与Rodinia解体的关系.地质出版社,北京.
    王剑,刘宝珺,潘桂棠,2001.华南新元古代裂谷盆地演化-Rodinia超大陆解体的前奏.矿物岩石21,135-145.
    王金权,2004.皖南震旦系蓝田组沉积岩有积碳同位素记录.古生物学报43,424-432.
    刑裕盛,尹崇玉,高志林,1999.震旦系的范畴、时限及内部划分.现代地质13,202-204.
    薛耀松,曹瑞骥,唐天福,2001.扬子区震旦纪地层序列和南、北震旦系对比.地层学杂志25,207-216.
    伊海生,彭军,夏文杰,1995.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录.沉积学报13,131-137.
    尹崇玉,刘敦一,高林志,王自强,邢裕盛,简平,石玉若,2003.南华系底界与古城冰期的年龄:SHRIMPⅡ定年证据.科学通报48,1721-1725.
    尹崇玉,唐烽,柳永清,高志林,杨之青,王自强,刘鹏举,邢裕盛,宋彪,2005.长江三峡地区埃迪卡拉(震旦)纪锆石U-Pb新年龄对庙河生物群和马雷诺冰期时限的限定.地质通报24,393-400.
    尹崇玉,王砚耕,唐烽,万渝生,王自强,高志林,邢裕盛,刘鹏举,2006.贵州松桃南华系大塘坡组凝灰岩锆石SHRIMPⅡU-Pb年龄.地质学报80,273-278.
    余心起,孙卫国,程光华,杜森官,2002.皖南兰田组中发现滑塌砾岩层.地层学杂志26,137-138.
    余心起,舒良树,邓平,王德恩,支利赓,2003.皖南晚震旦世中、浅海沉积环境——以滑塌砾岩层、硅质风暴岩为例证.沉积学报21,398-403.
    袁训来,肖书海,尹磊明,安德鲁.诺尔,周传明,穆西南,2002.陡山沱期生物群:早期动物辐射前夕的生命.中国科学技术大学出版社p.17-128.
    张启锐,刘鸿允,陈孟莪,鲁刚毅,1993.皖南震旦系冰期地层的再认识.地层学杂志,17,186-193.
    张启锐,1996.皖南震旦系冰期地层沉积特征.地质科学,31,147-153.
    张同钢,储雪蕾,冯连君,张启锐,郭建平,2003.新元古代“雪球”事件对海水碳、硫同位素组成的影响.地球学报,24,487-493.
    赵自强,邢裕盛,马国干,余汶,王自强,1980.湖北峡东震旦系.王曰仑编:中国震旦亚界,天津科学技术出版社,天津,p.31-55.
    郑永飞,2003.新元古代岩浆活动与全球变化.科学通报48,1705-1720.
    郑永飞,2004.新元古代超大陆构型中华南的位置.科学通报49,715-717.
    周传明,1997.贵州瓮安地区上震旦统碳同位素特征.地层学杂志,21,124-129.
    周传明,张俊明,李国祥和虞子冶,1997.云南永善肖滩早寒武世早期碳氧同位素记录.地质科学,32:201-211.
    周传明,燕夔,胡杰,孟凡巍,陈哲,薛耀松,曹瑞骥,尹磊明,王金权,王金龙,肖树海,鲍惠铭,袁训来,2001.皖南新元古代两次冰期事件.地层学杂志25,247-253.
    周新民,朱云鹤,1992.江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质.中国科学(B)3,296-303
    周新民,邹海波,杨杰东,王银喜,1989.安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义.科学通报35,208-212.
    Akagi, T. et al., 2004. Variation of the distribution coefficients of rare earth elements in modern coral-lattice:species and site depenendencies. Geochim. Cosmochim. Acta 68,2265-2273.
    Al-Aasm, I.S., Taylor, B.E., South, B., 1990. Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol. 80,119-125.
    Aleinikoff, J.N. et al., 1995. U-Pb ages of metarhyolites of the Catoctin and Mount Rogers formations, central and southern Applachians: evidence for two pulses of Iapetan rifting Am. J. Sci. 295,428-454.
    Alene, M., Jenkin, G.R.T., Leng, M.J. and Darbyshire, D.P.F., 2006. The Tambien Group, Ethiopia: An early Cryogenian (ca. 800-735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield. Precambr.Res. 147, 79-99.
    Algeo, T.J., 2004. Can marine anoxic events draw down the trace lement inventory of seawater? Geology,32: 1057-1060.
    Algeo, T.J. and Lyons, T.W., 2006. Mo-tota organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions.Paleoceanography, 21: PA 1016.
    Alibo, D.S. and Nozaki, Y., 1999. Rare earth elments in seawater: particle association, shale-normalization,and Ce oxidation. Geochim. Cosmochim. Acta 63,363-372.
    Allen, P.A. Bowring, S., Leather, J., Braiser, M.D., Cozzi, A., Grotzinger, J.P., McCarron, G., Amthor, J.E.,2002. Chronology of Neoproterozoic glaciaitons: New insights from Oman: the 16th International sedimentological congress, Abstract volume. Johannesburg, South Africa, pp. 7-8.
    Allen, P.A., Leather, J. and Brasier, M.D., 2004. The Neoproteroozic Fiq glaciation and its aftermath, Huqt supergroup of Oman. Basin Res. 16, 507-534.
    Allen, P.A. and Hoffman, P.F., 2005. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433,123-127.
    
    Amthor, J.E., Grotzinger, J. P., Schroder, S., Bowring, S. A., Ramezani, J., Martin, M. W., Matter, A., 2003. Extinction of Cloudina and Namacalathus at the Precambrian- Cambrian boundary in Oman. Geology 31(5), 431-434.
    Anbar, A.D. and Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297,1137-1142.
    Anderson, S.P., Drever, J.I., Humphrey, N.F., 1997. Chemical weathering in glacial environments. Geology 25,399-402.
    Anderson, S.P., Drever, J.I., Frost, C.D. and Holden, P., 2000. Chemical weathering in the foreland of a retreating glacier. Geochim. Cosmochim. Acta 64,1173-1189.
    
    Andrews, J.E., Riding, R. and Dennis, P.F., 1993. Stable isotopic compositions of Recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls. Sedimentology, 40: 303-314.
    
    Andrews, J.E., Singhvi, A.K., Kailath, A.J., Dennis, P.F., Tandon, S.K. and Dhir, R.P., 1998. Do stable isotope data from calcrete record late Pleistocene monsoonal climate variation in the Thar Desert of India? Quat. Res. 50, 240-251.
    
    Andrews, J.E., Pedley, H.M. and Dennis, P.F., 2000. Palaeoenvironmental records in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives. Sedimentology, 47: 961-978.
    
    Andrews, J.E., Coletta, P., Pentecost, A., Riding, R., Dennis, S., Dennis, P.F. and Spiro, B., 2004. Equilibrium and disequirium stable isotope effects in modern charophyte calcites: implications for palaeoenvironmental studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204,101-114.
    Arnold, G.L., Anbar, A.D., Barling, J. and Lyons, T.W., 2004. Molybdenum Isotope Evidence for widespread anoxia in Mid-Proterozoic Oceans. Science 304, 87-90.
    
    Azmy, K., Sylvester, P. and de Oliveira, T.F., 2009. Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of Sa Francisco Basin, Brazil: Evidence from stable isotopes and REEs. Precambr. Res. 168,259-270.
    
    Babinski, M., Vieira, L.C. and Trindade, R.I.F., 2007. Direct dating of the Sete Lagoas cap carboante (Bambui Group, Brazil) and impications for the Neoproterozoic glacial events. Terra Nova 19, 401-406.
    
    Banner, J.L., Hanson, G.N. and Meyers, W.J., 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington- Keokuk Formation (Mississippian): implications for REE mobility during carbonate diagenesis. J. Sed. Petrol. 58,415-432.
    
    Banner, J.L. and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace-element variations during water-rock interaction and with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54, 3123-3137.
    Barfod, G.H. et al., 2002. New Lu-Hf and Pb-Pb age conxtraints on the earliest animal fossils. Earth Planet. Sci. Lett. 2001, 203-212.
    
    Bar-Matthews, M., Ayalon, A. and Kaufman, A.S., 1997. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quat. Res. 47, 155-168.
    
    Bartley, J.K., Kah, L.C., Mc Williams, J.L. and Stagner, A.F., 2007. Carbon isotope chmostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt. Chem. Geol. 237,211-232.
    Bau, M., 1996. Controls on fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123,323-333.
    Bau, M. and Dulski, P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155,77-90.
    Benus, A.P., 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland) Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary. Bulletin of the New York State Museum, 8-9 pp.
    Blum, J.D. and Erel, Y., 1995. A silicate weathering mechanism linking increase in marine ~(87)Sr/~(86)Sr with global glaciation. Nature 373, 415-418.
    Blum, J.D., Gazis, C.A., Jocobson, A.D., Chamberlain, C.P., 1998. Carbonate versus silicate weathering in the Raikhot watershed within the High Crystalline Series. Geology 26,411-414.
    Bolhar, R., Kambera, B.S., Moorbathb, S., Fedoc, C.M. and Whitehoused, M.J., 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 222,43-60.
    Bolhar, R. and Van Kranendonk, M.J., 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambr. Res. 155,229-250.
    Borg, G., Karner, K., Buxton, M., Armstrong, R. and Merve, S.W.v.d., 2003. Geology of the skorpion supergene zinc deposit, southern Namibia. Econ. Geol. 98,749-771.
    Bouch, J.E., Hole, M.J., Trewin, N.H. and Morton, A.C., 1995. Low-temperature aqueous mobility of the rare-earth elements during sandstone diagenesis. J. Geol. Soc. 152(6), 895-898.
    Bowen, G.J. and Wilkinson, B., 2002. Spatial distribution of δ~(18)O in meteoric precipitation. Geology 30(4), 315-318.
    
    Bowman, A.R. and Bralower, T.J., 2005. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian-Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Mar. Geol. 217, 305-321.
    Bowring, S., Myrow, P., Landing, E., Ramezani, J. and Grotzinger, J., 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. Geophys. Res. Abs. 5,13219.
    Bowring, S. Grotzing, J.P., Condon, D. J., Ramezani, J., Newall, M.J., Allen, P., 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup of Oman. Am.J. Sci. 307, 1097-1145.
    Brand, U., 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: and evaluation of original seawater-chemistry proxies. Chem. Geol. 204, 23-44
    Brasier, M. et al., 2000. New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28,175-178.
    Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., Nolvk, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol. Soc. Am. Bull. 115,89-104.
    
    Bristow, T.F., Kennedy, M.J., Derkowshi, A., Droser, M.L., Jiang, G. and Creaser, R.A., 2009. Mineralogical constraints on the plaeoenvironments of the Ediacaran DOushantuo Formation. PNAS, 106: 1-6.
    Calver, C.R., 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambr. Res. 100,121-150.
    Calver, C.R., Black, L.P., Everard, J.L. and Seymour, D.B., 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology 32(10), 893-896.
    Calvert, S.E. and Pedersen, T.F., 1993. Geochemistry of Recent oxic and anoxic marine sediments: implications for the geologic record. Mar. Geol., 113: 67-88.
    Campbell, K.A., Framer, J.D. and DES Marais, D., 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and paleao- environments. Geofluids 2, 63-94.
    Canfield, D.E. and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur isotope studies. Nature 382,127-132.
    Canfield, D.E., Poulton, S.W. and Marbonne, G.M., 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315,92-95.
    
    Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G, Goldberg, T. and Strauss, H., 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 32, 949-952.
    Cedric, M., John, M.M., 2005. Relative control of paleoceanography, climate, and eustasy over Heterozoan carbonates: a perspective from slope sediments of the marine plateau (ODP LEG 194). J. Sediment. Res. 75,216-230.
    Charvet, J., Shu, L.S., Shi, Y.S., Guo, L.Z., Faure, M., 1996. The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. J. Southeast Asian Earth Sci. 13, 223-235.
    Chen, D.F., Dong, W.Q., Zhu, B.Q. and Chen, X.P., 2004. Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in SOuth China: constraints on early metazoan evolution and glaciation event. Precambr. Res. 132, 123-132.
    Chen, J.F., Foland, K.A., Xing, F.M., Xu, X. and Zhou, T.X., 1991. Magmatism along the southeastern margin of the Yangtze block: precambrian collision of the Yangtze and Cathaysia blocks of China. Geology 19, 815-818.
    Chen, J.F. and Jahn, B.M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101-133.
    
    Chen, J.-Y., Bottjer, D.J., Oliveri, P., Dornbos, S.Q., Gao, F., Ruffins, S., Ci, H., Li, C.-W. and Davidson, E.H., 2004. Small Bilaterial Fossils from 40 to 55 Million Years before the Cambrian. Science 305, 218-222.
    Chu, X.L., Zhang, Q.R., Zhang, T.G. and Feng, L.J., 2003a. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Progr. Natur. Sci. 13, 875-880.
    Chu, X.L., Zhang, T.G., Zhang, Q.R. and Feng, L.J., 2003b. Secular variation in δ~(34)S and δ~(13)C values of late Neoproterozoic carbonates from southern China. Geochim. Cosmochim. Acta 67(18 sup.), A66.
    Chu, X.L., Todt, W., Zhang, Q.R., Chen, F.K., Huang, J., 2005. U-Pb zircon age for the Nanhua-Sinian boundary. Chin. Sci. Bull. 50, 716-718.
    Clayton, R.N., Jones, B.F., Berner, R.A., 1968. Isotope studies of dolomite formation under sedimentary conditions. Geochim. Cosmochim. Acta 32, 415-432.
    
    Colpron, M., Logan, J.M. and Mortensen, J.K., 2002. U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Can. J. Earth Sci. 39(2), 133-143.
    Compston, W., Wright, A.E. and Toghill, P., 2002. Dating the late precambrian volcanicity of England and Wales. J. Geol. Soc. 159, 323-339.
    Condon, D.C., Zhu, M.Y., Samuel, B., Wang, W., Yang, A.H., Jin, Y.G., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95-98.
    Corsetti, F.A. and Kaufman, A.J., 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death valley, California. GSA Bulletin 115,916-932.
    
    Corsetti, F.A., Awramik, S.M. and Pierce, D., 2003. A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death valley, USA. PNAS 100, 4399-4404.
    Danielson, A., Moller, P. and Dulski, P., 1992. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol., 97: 89-100.
    
    de Alvarenga, C.J.S., Dardenne, M.A., Santos, R.V., Brod, E.R., Gioia, S.M.C.L., Sial, A.N., Dantas, E.L. and Ferreira, V.P., 2008. Isotope stratigraphy of Neoproterozoic cap carbonates in the Araras Group, Brazil. Gondwana Res. 13,469-479.
    De La Rocha, C.L., 2006. In hot water. Nature 443, 920-921.
    Degens, E.T., Epstein, S., 1964. Oxygen and carbon isotope in coexisting calcites and dolomites from recent and ancient sediments. Geochim. Cosmochim. Acta 28, 23-44.
    Dempster, T.J. et al., 2002. Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland: constraints from U-Pb zircon ages. J. Geol. Soc. (London) 159, 83-94.
    
    Derry, L.A. and Jacobsen, S.B., 1990. The chemical evolution of Precambrian seawater: Evidence from REEs in banded formations. Geochim. Cosmochim. Acta, 54: 2965-2977.
    Deny, L.A., Kaufman, A.J., Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 56, 1317-1329.
    Dettman, D.L., Reische, A.K. and Lohnmann, K.C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonite freshwater bivalves (Unionidae). Geochim. Cosmochim. Acta 63(1049-1057).
    Dickens, G.R., O'Neil, J.R., Rea, D.K., 1995. Dissociation of oceanic methane hydrates as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10,965-971.
    Dickens, G.R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213,169-183.
    Elderfield, H., Kennedy, H., Klinkhammer and Sholkovitz, E.R., 1985. Rare earth elements distributions in marine pore waters and associated sediments. Terra Cognita 5,188-195.
    
    Elderfield, H., 1986. Strontium isotope stratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 57(1), 71-90.
    Elderfield, H. and Sholkovitz, E.R., 1987. Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet. Sci. Lett. 82,280-288.
    Epstein, S., Sharp, S., Gow, A.J., 1970. Antarctic ice sheet: stable isotope analyses of Byrd station cores and inter-hemispheric climate implications. Science 168,1570-1572.
    Evans, D.A.D., 2000. Stratigraphic, geochronological and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347-433.
    Evans, D.A.D., 2003. A fundamental Precambrian-Phanerozoic shift in earth's glacial style? Tectonophysics 375, 353-385.
    Evans, K.V., Lund, K., John, N.A. and Fanning, M., 1997. SHRIMP U-Pb age of late Proterozoic volcanism in central Idaho Geological Society of America Abstract Programs 29,196.
    Eyles, N. and Januszczak, N., 2004. 'Zipper-rift': a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci. Rev. 65,1-73.
    Fairchild, I.J., Spiro, B., 1990. Carbonate mineral in glacial sediments: geochemical clues to palaeoenvironment. Geol. Soc. J. 53,210-216.
    
    Fairchild, I.J., Bradby, L., Spiro, S., 1993. Carbonate diagenesis in ice. Geology 21, 901-904.
    Fanning, C.M. and Link, P.K., 2004. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 32, 881-884.
    Fanning, C.M. and Link, P.K., 2006. Constraints on the timing of the Sturtian glaciation from southern Australia: i.e. for the ture Sturtian GSA., Annu. Meeting Abs. Prog., pp. 115.
    Fanning, C.M., Link, P.K., 2008. Age constraints for the Sturtian glaciation: data from the Adelaide Geosyncline, South Australia and Pocatello Formation, Idaho, USA. Geological Society of Australia Abstracts, No. 91, Selwyn Symposium 2008,Melbourne, pp. 57-62.
    Faure, G., 1986. Principles od Isotope Geology, New York, 608 pp.
    Faure, G., Hoefs, J., Jones, L.M., Curtis, J.B., Pride, D.E., 1988. Extreme ~(18)O depletion in calcite and chert clasts from the Elephant Moraine on the East Antarctic ice sheet. Nature 332,352-354.
    Faure, K. and Cole, D.J., 1999. Geochemical evidence for lacustrine microbial blooms in the vast Permian Main Karoo, Parana, Falkland Islands and Huab basins of southwestern Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152,189-213.
    Fedonkin, M.A., 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontol. Res.7,9-41.
    
    Feng, H., Ling, H., JIANG, S. and Yang, J., 2004. δ~(13)C_(carb) and Ce_(anom) excursions in the post-glacial Neoproterozoic and Early Cambrian interval in Guizhou, South China. Progr. Natur. Sci. 14,188-192.
    Fetter, A.H. and Golberg, S.A., 1995. Age and geochemical characteristics of bimodal magmatism in the Neoproterozoic Grandfather Mountain rift basin. J. Geol. 103, 313-326.
    Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the Ediacaran ocean. Nature 444, 744-747.
    F6lling, J.A.D. and Frimmel, H.E., 2002. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Res. 13,1-37.
    
    Font, E., Nedelec, A., Trindade, R.I.F., Macouin, M., Charriere, A., 2006. Chemostratigraphy of the Neoproterozoic Mirassol d'Oeste cap dolostones (Mato Grosso, Brazil): An alternative model for Marinoan cap dolostone formation. Earth Planet. Sci. Lett. 250, 89-103.
    Frei, R., Gaucher, C, Poulton, S.W. and Canfield, D.E., 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461,250-253.
    Frimmel, H.E., Klotzli, U.S. and Seigfried, P.R., 1996. New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. J. Geol. 104,459-469.
    Frimmel, H.E., Foiling, P.G. and Eriksson, P.G., 2002. Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res. 14, 55-67.
    Frimmel, H.E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 258, 338-353.
    
    Gabrielli, P., Planchon, F., Barbante, C., Boutron, C.F., Petit, J.R., Bulat, S., Hong, S., Cozzi, G. and Cescon, P., 2009. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica. Geochim. Cosmochim. Acta 73, 5959-5974.
    
    Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E. and Saavedra, J., 2004. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications. Precambr. Res. 131, 55-71.
    Gammon, P.R., McKirdy, D.M. and Smith, H.D., 2005. The timing and environment of tepee formation in a Marinoan cap carbonate. Sediment. Geol. 177,195-208.
    
    Garzione, C.N., Dettman, D.L. and Horton, B.K., 2004. Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212,119-140.
    
    Giddings, J.A. and Wallace, M.W., 2009. Facies-dependent δ~(13)C variation from a Cryogenian platform margin, South Australia: evidence for stratified Neoproterozoic ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 196-214.
    Goldblatt, C., Lenton, T.M. and Watson, A.J., 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443,683-686.
    Goldstein, S.J. and Jacobsen, S.B., 1988. Nd and Sr isotope systems of river water suspend material: Implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249-265.
    Grotzinger, J.P. and Knoll, A.H., 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10,578-596.
    Grotzinger, J.P., Bowring, S.A., Saylor, B.Z. and Kaufman, A.J., 1995. Biostratigraphic and Geochronologic Constraints on Early Animal Evolution. Science 270,598-604.
    Guan, X.C., Li, X.H., Zhao, F.Q. and Wang, Y.X., 1996. U-Pb and Sm-Nd geochronology of spilites from the Danzhou Group of the Longsheng area, Guangxi Province. Geochim. Cosmochim. Acta 25, 270-276.
    Haley, B.A., Klinkhammer, G.P. and McManus, J., 2004. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 68 1265-1279.
    Halverson, G.P., Hoffman, P.F. and Schrag, D.P., 2002. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth? Geochem. Geophys. Geosyst. 3,1-24.
    Halverson, G.P., Maloof, A.C. and Hoffman, P.F., 2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res. 16, 297-324.
    Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C. and Rice, A.H.N., 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117,1181-1207.
    Halverson, G.P., Dudas, F.O., Maloof, A.C. and Bowring, S.A., 2007. Evolution of the ~(87)Sr/~(86)Sr composition of Neoproterozoic seawater. Palaeogeor. Palaeoclimatol. Palaeoecol. 256,103-129.
    Heaman, L.M., LeCheminant, A.N. and Rainbird, R.H., 1992. Nature and timing of Franklin igneous events, Canada: Implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet. Sci. Lett. 109,117-131.
    Hecht, L., Frerberger, R., Gilg, H.A., Grundmann, G., Kostitsyn, Y.A., 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Gopfersgrun (Fichtelgebirge, Germany). Chem. Geol. 155,115-130.
    Hein, J.R., Normark, W.R., Mclntyre, B.R., Lorenson, T.D., Powell II, C.L., 2006. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California. Geology 34, 109-112.
    
    Hendry, J.P., 2002. Geochemica trends and palaeohydrological significance of shallow burial calcite and ankerite cements in Middle Jurassic strata on the East Midlands Shelf (onshore UK). Sediment. Geol. 151, 149-176.
    Herbert, C.T. and Compton, J.S., 2007. Depositional environments of the lower Permian Dwyka diamictite and Prince Albert shale inferred from the geochemistry of early diagnetic concretions, southwest Karoo Basin, South Africa. Sediment. Geol. 194,263-277.
    Hess, J., Dender, M.L. and Schilling, J.G., 1986. Evolution of the ratio of Strontium 87 to Strontium 86 in seawater from Cretaceous to present. Science 231,979-984.
    
    Higgins, J.A. and Schrag, D.P., 2003. Aftermath of a snowball Earth. Geochem. Geophys. Geosyst. 4,1-20.
    Hodell, D.A., Mead, G.A. and Mueller, P.A., 1990. Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol.: Isotope Geoscience section 80, 291-307.
    
    Hoefs, J., 2004. Stable Isotope Geochemistry. Springer-Verlag, Heidelberg Berlin New York.
    Hoffman, P.F., Kauffman, A.J., Halverson, G.P. and Schrag, D.P., 1998a. A Neoproterozoic snowball earth. Science 281,1324-1346.
    Hoffman, P.F., Kaufman, A.J. and Halverson, G.P., 1998b. Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia. GSA Today 8,1-9.
    Hoffman, P.F., 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball earth. J. Afr. Earth Sci. 28(1), 17-33.
    Hoffman, P.F. and Schrag, D.P., 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129-155.
    Hoffman, P.F., Halverson, G.P. and Grotzinger, J.P., 2002. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? COMMENT. Geology 30, 286-287.
    
    Hoffman, P.F., 2009. Pan-glacial — a third state in the climate system. Geology Today 25, 107-113.
    Hoffman, P.F. and Li, Z.-X., 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 277,158-172.
    Hoffmann, K.H., Prave, A.R., 1996. A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones. Commun. .Geolog. Soc. Namibia 11,81-86.
    Hoffmann, K.H., Condon, D.J., Bowring, S.A. and Crowley, J.L., 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 32, 817-820.
    Holser, W.T., 1997. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 309-323.
    Hotinski, R.M., Bice, K.L., Kump, L.R., Najjar, R.G. and Arthur, M.A., 2001. Ocean stagnation and end-Permian anoxia. Geology 29, 7-10.
    
    Hurtgen, M.T., Arthur, M.A., Suits, N.S., Kaufman, A.J., 2002. The sulfur isotopic composition of Neoproterozic seawater sulfate: implicatios for a snowball Earth? Earth Planet. Sci. Lett. 203, 413-429.
    
    Hurtgen, M.T., Arthur, M.A. and Halverson, G.P., 2005. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology 33, 41-44.
    Hyde, W.T., Crowley, T.J., Baum, S.K. and Peltier, W.R., 2000. Neoproterozoic 'Snowball Earth' simulations with a coupled climate/ice sheet model. Nature 405,425-429.
    Ingerson, E., 1962. Problems of the geochemistry of sedimentary carbonate rocks. Geochim. Cosmochim. Acta 26, 815-847.
    Ingram, B.L., Deckker, P.D., Chivas, A.R., Conrad, M.E., Byrne, A.R., 1998. Stable isotopes, Sr/Ca, and Mg, Ca in biogenic carbonates from Petaluma Marsh, northern California, USA. Geochim. Cosmochim. Acta 62, 3229-3237.
    Ireland, T.R., Flottmann, T., Fanning, C.M., Gibson, G.M. and Preiss, W.V., 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital zicon ages across the Delamerian orogen. Geology 26,243-246.
    
    Ishikawa, T., Ueno, Y., Komiya, T., Samwaki, Y., Han, J., Shu, D., Li, Y, Maruyama, S. and Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res. 14,193-208.
    
    Jacobsen, S.B. and Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 161,37-57.
    
    Jacobsen, S.B., 2001. Gas hydrates and deglaciations. Nature 412, 691-693.
    Jaffres J.B.D., Shields, G.A., Wallmann, K., 2007. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83-122.
    James, N.P., Narbonne, G.M. and Kyser, T.K., 2001. Late Neoproterozoic cap carbonate: Mackenzie Mountains, northwestern Canada: Precipitation and global glacial meltdown. Can. J. Earth Sci. 38, 1229-1262.
    
    Jean-Baptiste, P., Charlou, J.L. and Stievenard, M., 1997. Oxygen isotope study of mid-ocean ridge hydrothermal fluids: implication for the oxygen-18 budget of the oceans. Geochim. Cosmochim Acta 61, 2669-2667.
    Jefferson, C.W. and Parrishi, R.R., 1989. Late proterozoic stratigraphy, U-Pb ages, and rift tectonics, Meckenzie Mountains, northwestern Can. J. Earth Sci. 26,1784-1801.
    Jenkins, R.J.F., Cooper, J.A. and Compston, W., 2002. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. J. Geol. Soc. 159, 645-658.
    Jiang, G., Sohl, L.E. and Christic-Blick, N., 2003a. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtz block (south China): Paleogeographic implications. Geology 31, 917-920.
    Jiang, G.Q., Kennedy, M.J. and Christie-Blick, N., 2003b. Stable isotopic evidence for methane seeps in Neoperoterozoic postglacial cap carbonates. Nature 426,18-25.
    Jiang, G.Q., Kennedy, M.J., Christie-Blick, N., 2006a. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in south China. J. Sed. Res. 76,978-995.
    Jiang, G.Q., Shi, X.Y., Zhang, S.H., 2006b. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chin. Sci. Bull. 51,1152-1173.
    Jiang, G.Q., Kaufman, A.J., Christie-Blick, N., Zhang, S.H., Wu, H.C., 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ~(13)C gradient. Earth Planet. Sci. Lett. 261, 303-320
    Jiang, G.Q., Zhang, S.H., Shi, X.Y., Wang, X.Q., 2008. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Sci. Chin. Series D: Earth Sci. 12,1481-1495.
    Johannesson, K.H. and Zhou, X., 1999. Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochim. Cosmochim. Acta 63, 153-165.
    Jones, C.E. and Jenkyns, H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 301, 112-149.
    Kah, L.C., Lyons, T.W. and Frank, T.D., 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834-838.
    Kamber, B.S. and Webb, G.E., 2001. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta 65, 2509-2525.
    Kamber, B.S., Bolhar, R. and Webb, G.E., 2004. Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambr. Res. 132, 379-399.
    Kamber, B.S., Greig, A. and Collerson, K.D., 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Austrila. Geochim. Cosmochim. Acta 69, 1041-1058.
    Karlstrom, K.E. et al., 2000. Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology 28,619-622.
    Kasemann, S.A., Hawkesworth, C.J., Prave, A.R., Fallick, A.E. and Pearson, P.N., 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet. Sci. Lett. 231, 73-86.
    Katz, A., Matthews, A., 1977. The dolomitization of CaCO_3: an experimental study at 252-295℃. Geochim. Cosmochim. Acta 41,297-308.
    Katz, M.E., Pak, D.K., Dickens, G.R. and Miller, K.G., 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286, 1531-1533.
    Kaufman, A.J., Jocobsen, S.B. and Knoll, A.H., 1993. The Vendian record of Sr- and C- isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 120,409-430.
    Kaufman, A.J. and Knoll, A.H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambr. Res. 73, 27-49.
    Kauffman, A.J., Knoll, A.H. and Narbonne, G.M., 1997. Isotopes, ice ages terminal Proterozoic earth history. Geology 94, 6600-6605.
    Kendall, A.C. and Tucker, M.E., 1973. Radiaxial fibrous calcite: a replacement after acicular carbonate. Sedimentology 20,365-389.
    Kendall, A.C., 1985. Radiaxial fibrous calcite: a reapraisal. Carbonate Cements:SEPM, 36. Special Publication, 59-77 pp.
    Kendall, B., Creaser, R.A. and Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of "Sturtian" glaciation. Geology 34,729-732.
    Kennedy, M.J., 1996. Stratigraphy, sedimentology and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ~(13)C excursions and carbonate precipitation. J. Sediment. Res. 66, 1050-1064.
    Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffman, K.H., Arthur, M.A., 1998. Two or four Neoproterozoic glaciations? Geology 26,1059-1063.
    Kennedy, M.J., Christic-Blick, N., Sohl, L.E., 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29,443-446.
    Kennedy, M., Mrofka, D., von der Borch, C., 2008. Snowball earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453,642-645.
    Key, R.M. et al., 2001. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralistion. Afr. Earth Sci. 33, 503-528.
    Kim, S.T. and O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461-3475.
    Kirschvink, J.L., 1992. Late proterozoic low-latitude global glaciation: the snowball Earth. The Proterozoic Biosphere. Cambridge University Press, Cambridge, 52-57 pp.
    Knauth, L.P., 2005. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53-59.
    
    Knauth, L.P. and Kennedy, M.J., 2009. The late Precambrian greening of the Earth. Nature, 460: 728-732.
    Knoll, A.H., Hayers, J.M., Kaufman, A.J., Swett, K., I.B., L., 1986. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832-838.
    Knoll, A.H., Walter, M.R., Narbonne, G.M. and Christic-Blick, N., 2004. A new period for the geologic time scale. Science 305, 621-622.
    Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S, Shibuya, T., Sawaki, Y. Ishikawa, T., Shu, D., Li, Y., Han, J., 2008. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res. 14,159-174.
    Krogh, T.E., Strong, D.F., O'Brien, S.J. and Papezik, V., 1988. Precise U-Pb zircon dates from the avalon terrane in Newfoundland. Can. J. Earth Sci. 25,442-453.
    Kump, L.R., Arthur, M.A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem.Geol. 161,181-198.
    Kvenvolden, K.A., 1995. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23, 997-1008.
    
    Lawrence, M.G. and Kamber, B.S., 2006. The behaviour of the rare earth elements during setuarine mixing- revisited. Mar. Chem. 100,147-161.
    Lawrence, M.G., Greig, A., Collerson, K.D. and Kamber, B.S., 2006. Rare earth element and Yttrium variability in South East Queensland waterways. Aqu. Geoch.12, 39-72.
    Le Guerroue, E., Allen, P.A. and Cozzi, A., 2006a. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in earth history: The neoproterozoic Shuram formation (Nafun Group, Oman). Precambr. Res. 146, 68-92.
    Le Guerroue, E., Philip, A.A., Cozzi, A., James, L., Etienne and Fanning, M, 2006b. 50 Myr recovery from the largest negative δ~(13)C excursion in the Ediacaran ocean. Terra Nova 18,147-153.
    Leather, J., Allen, P., Brasier, M. and Cozzi, A., 2002. Neoproterozoic snowball Earth under scrutiny; evidence from the Fiq Glaciation of Oman. Geology 30, 891-894.
    
    Lecuyer, C, Grandjean, P. and Sheppard, S., 1999. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135℃: inorganic versus biological fractionations. Geochim. Cosmochim. Acta 63, 855-862.
    Li, X.H., Zhou, G.Q., Zhao, J.X., Fanning, C.M. and Compston, W., 1994. SHRIMP ion microprobe zircon age and Sm-Nd isotopic characteristics of the NE Jiangxi ophiolite and its tectonic implications. Chin. J.Geochem. 13,317-325.
    Li, Z.X., Zhang, L. and Powell, C.M., 1995. South China in Rodinia: part of the missing linke between Australia-East Antarctica and Laurentia:. Geology 23,407-410.
    Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett. 173, 171-181.
    Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y. and Kinny, P.D., 2002a. U-Pb zircon geochronologic, geochemical and Nd isotopic studies of Neoproterozoic bimodal volcanism in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambr. Res. 136,51-66.
    Li, Z.-X., Li, X.-H., Zhou, H.W., and Kinny, P.D., 2002b. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163-166.
    Li, Z.X. Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H.W., 2003a. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and corrlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambr. Res. 122, 85-109.
    Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y.L., Michael, T.D.W., 2003b. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambr. Res. 122, 45-83.
    Li, Z.X., Evans, D.A.D. and Zhang S., 2004. A 90° spin on Rodinia: possible causual links between the Neoproterozoic suppercontinent, superplume, true polar wangder and low-latitude glaciation. Earth Planet. Sci. Lett. 220,409-421.
    Li, W.-X., Li, X.-H. and Li, Z.-X., 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambr. Res. 136, 51-66.
    Li, G.J., Chen, J., Ji, J.F., Liu, L.W., Yang, J.D., Sheng, X.F., 2007. Global cooling forced increase in marine strontium isotopic ratios importance of mica weathering and a kinetic approach. Earth Planet. Sci. Lett. 254,303-312.
    Li W.-X., Li X.-H., Li Z.-X. and Lou F.-S., 2008a. Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia Blocks. Gond. Res. 13, 288-301.
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008b. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambr. Res. 160,179-210.
    Li, Z.X., Li, X.H. and Wang, X.C., 2009. The South China piece in the Rodinian puzzle: A reply to the comment by Munteanu and Wilson. Precambr. Res. 171, 77-79.
    
    Ling, H.-F., Feng, H.-Z., Pan, J.-Y., Jiang, S.-Y., Chen, Y.-Q. and Chen, X., 2007. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 158-174.
    
    Link, P.K. et al., 1993. Middle and late proterozoic stratified rocks of the western U.S. ordillera, Colorado Plateau, and Basin Range province. The Geology of North America, 463-595 pp.
    Lorentz, N.J., Corsetti, F.A. and Link, P.K., 2004b. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Neoproterozoic earth system behavior. Precambr. Res. 130,57-70.
    
    Lund, K., Aleinikoff, J.N., Evans, K.V. and Fanning, C.M., 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol. Soc. Am. Bull. 115,349-372.
    Macouina, M., Besse, J., Ader, M., Gilder S., Yang Z., Sun Z., Agrinier, P., 2004. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the "snowball Earth" hypothesis. Earth Planet. Sci. Lett. 224,387-398.
    Magaritz, M., 1974. Lithification of chalky limestone: a case study in Senonian rocks from Israel. J. Sediment. Res. 44,947-954.
    Martin, M.W. et al., 2000. Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution. Science 288,841-845.
    McDermott, F., Mattey, D.P. and Hawkesworth, C., 2001. Centernial-scale Holocene climate variability revealed by a high-resolution speletherm δ~(18)O record from SW Ireland. Science 294,1328-1331.
    McDonough, M.R. and Parrish, R.R., 1991. Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U-Pb ages and Nd isotopic signatures. Can. J. Earth Sci. 28,1202-1216.
    McFadden, K.A., Huang, J., Chu, X.L., Jiang, G.Q., Kaufman, A.J., Zhou, C.M., Yuan, X.L. and Xiao, S.H., 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl. Acad. Sci. 105,3197-3202.
    McIlreath, I.A., Marrow, D.W., 1990. Diagenesis. Geological Association of Canada, Geoscience Canada, p13-112.
    
    McKenzie, J.A. and Hollander, D.J., 1993. Oxygen-isotope records in recent carbonate sediments from Lake Greifen, Switzerland (1750-1986): application of continental isotopic indicators for evaluation of changes in climate and atmospheric circulation patterns. Climate Change in Continental Isotopic Records, Geophysical Monograph. American Geophysical Union, Washington DC, 101-111 pp.
    McKirdy, D.M., Burgess, J.M., Lemon, N.M., Yu, X., Cooper, A.M., Gostin, V.A., Jenkins, R.J.F., Both, R.A., 2001. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia. Precambr. Res. 106, 149-186.
    McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N., 1993. Geochemical appproches to sedimentation, provenance and tectonics. Processes Controlling the Composition of Clastic Sediments, Special Paper. Geol. Soc. Am., 21-40 pp.
    McLennan, S.M., Hemming, S., Taylor, S.R. and Eriksson, K.A., 1995. Early proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southeastern North America. Geochim. Cosmochim. Acta 59, 1153-1177.
    McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2,2000GC000109.
    McLennan, S.M., Bock, B., Hemming, S.R., Hurowiz, J.A., Lev, S.M., McDaniel, D.K., 2003. The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. Geochemistry of sediments and sedimentary tocks: evolutionary considerations to mineral deposit-forming environments Geotext4. Geological Association of Canada.
    Melezhik, V.A., Fallick, A.E., Pokrovsky, B.G., 2005. Enigmatic nature of thick sedimentary carbonates depleted in ~(13)C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle. Precambr. Res. 137,131-165.
    Michard, A., Albarede, F., Michard, G., Minster, J.F. and Charlou, J.L., 1983. Rare-Earth Elements and uranium in high-temperature solutions from East Pacific rise hydrothermal vent field (13°N). Nature 303, 795-797.
    
    Michard, A. and Albarede, F., 1986. the REE content of some hydrothermal fluids. Chem. Geol., 55: 51-60.
    Muhs, D.R. and Budahn, J.R., 2009. Geochemical evidence for African dust and volcanic ash inputs to terra rossa soils on carbonate reef terraces, northern Jamaica, West Indies. Quat. Int. 196,13-35.
    Munteanu, M. and Wilson, A., 2009. The South China piece in the Rodinian puzzle—comment on "assembly, configuration, and break-up history of Rodinia: a synthesis" by Li et al. (2008) [Precambrian Res. 160, 170-210]. Precam. Res. 171,74-76.
    Myrow, P. and Kaufman, A.J., 1998. A newly discovered cap carbonate above Varanger age glacial deposits in Newfoundland, Canada. J. Sed. Res. 69, 784-793.
    Nesbitt, H.W., 1979. Mobility and fractionation of rare-earth elements during weathering of a Granodiorite. Nature 279, 206-210.
    Nothdurft, L.D., Webb, G.E. and Kamber, B.S., 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 68,263-283.
    Nozaki, Y., Zhang, J. and Amakawa, H., 1997. The fractionation between Y and Ho in the marine environment. Earth Planet. Sci. Lett. 148, 329-340.
    Nozaki, Y., Lerche, D., Alibo, D.S. and Snidvongs, A., 2000. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochim. Cosmochim. Acta 64, 3983-3994.
    Oglesby, R.J. and Ogg, J.G., 1999. The effect of large fluctuations in obliquity on climates of the late Proterozoic. Paleoclimates 2, 293-316.
    Ohno, T., Komiya, T., Ueno, Y., Hirata, T. and Maruyama, S., 2008. Determination of ~(88)Sr/~(86)Sr mass-dependent isotopic fractionation and radiogenic isotope variation of ~(87)Sr/~(86)Sr in the Neoproterozoic Doushantuo Formation. Gond. Res. 14,126-133.
    Olcott, A.N., Sessions, A.L. and Corsetti, F.A., 2005. Biomarker evidence for photosynthesis during Neoproterozoic glaciation. Science 310,471-474.
    Olivarez, A.M. and Owen, R.M., 1991. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the ocean. Chem. Geol., 92:317-328.
    O'Neil, J.R., 1987. Preservation of H, C, and O isotopic ratios in the low temperature environment. MAC Short Course in Stable Isotope Geochemistry of Low Temperature Fluids (ed. T.K. Kyser), Saskatoon, v. 13, p. 85-128.
    Palmer, M.R. and Elderfield, H., 1985. Sr isotope composition of sea water over the past 75Myr. Nature 314,526-528.
    Palmer, M.R., Edmond, J.M., 1989. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92,11-26.
    
    Park, J.K., Buchan, K.L. and Harlan, S.S., 1995. A proposed giant radiating dyke swarm fragmented by the seperation of Laurentian and Australia based on paleomagnetism of ca. 780 Ma mafic intrusion in western North American. Earth Planet. Sci. Lett. 132,129-139.
    Park, J.K., 1997. Paleomagnetic evidence of low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzic Mountains, N.W.T., Canada. Can. J. Earth Sci. 34,34-49.
    Paul, D. and Skrzypek, G., 2006. Flushing time and storage effects on the accuracy and precision of caron and oxygen isotope ratios of sample using the Gasbench II technique. Rapid Commun. Mass Spectr. 20,2033-2040.
    Paul, D. and Skrzypek, G., 2007. Assesssment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass Spectrometry. Internat. J. Mass Spectr. 262, 180-186.
    Paull, C.K., Hecker, B., Commeau, R., Freeman-Lynde, K.P., Newmann, C., Corso, W.P., 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226,965-967.
    Peckmann, J., Goedert, J.L., Thiel, V., Michaelis, W. and Reitner, J., 2002. A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentol. 49, 855-873.
    
    Peckmann, J. and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chem. Geol. 205,443-467.
    Peral, L.E.G., Poire, D.G., Strauss, H., Zimmermann, U., 2007. Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bays Group, Tandilia System, Argentina. Chem. Geol. 237, 127-146.
    Peucker-Ehrenbrink, B. and Miller, M.W., 2006. Marine ~(87)Sr/~(86)Sr record mirrors the evolving upper continental crust. Geochim. Cosmochim Acta 70, A487.
    Porter, S.M., Knoll, A.H., Affaton, P., 2004. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambrian Res. 130,99-112.
    Prave, A.R., 1999. Two diamictites, two cap carbonates, two δ~(13)C excurtions, two rifts; the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27, 339-342.
    Preiss, W.V., 1998. The Adelaide geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambr. Res. 100,21-63.
    Preiss,W.V., 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res. 100,21-63.
    Revesz, K.M. and Landwehr, J.M., 2002. δ~(13)C and δ~(18)O isotope composition of CaCO3 measured by continuous flow isotope ratio mass Spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite. Rapid Commun. Mass Spectr. 16,2102-2114.
    Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem. Geol., 373-391.
    Robert, F., Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 920-921.
    Rosales, I., Robles, S., Quesada, S., 2004. Elemental and oxygen isotope composition of early Jurassic Belemnites: salinity vs. temperature signals. J. Sediment. Res. 74, 342-354.
    Ross, G.W. and Villeneuve, M.E., 1997. U-Pb geochronology of strange stones in Neoproterozoic diamictites, Canadian Cordillera: implications for provenance and ages of deposition. Report 10, Geologial Survey of Canada Current Research.
    Rothman, D.H., Hayes, J.M., Summons, R.E., 2003. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl.Acad.Sci. 100,8124-8129.
    Saltzman, M.R., Davidson, J.P., Holden, P., Runnegar, B. and Lohmann, K.C., 1995. Sea-level-driven changes in ocean chemistry at an Upper Cambrian extinction horizon. Geology 23, 893-896.
    Saltzman, M.R., 2003. The late Paleozoic age: oceanic gateway or pCO_2. Geology 31,151-155.
    Schaefer, B.F. and Burgess, J.M., 2003. Re-Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the "Snowball Earth". J. Geol. Soc. (London) 160, 825-828.
    Schmidt, P.W., Williams, G.E. and Embleton, B.J.J., 1991. Low palaeolatitude of Late Proterozoic glaciation: early timing of remanence in haematite of the Elatina Formation, South Australia. Earth Planet. Sci. Lett. 105, 355-367.
    Schmidt, P.W. and Williams, G.E., 1995. The Neoproteorozic clamatic pradox: equatorial paleolatitude for Marinoan glaciation near sea level in South AUstration. Earth Planet. Sci. Lett. 134,107-124.
    Schwalb, A., Lister, G.S. and Kelts, K., 1994. Ostracode carbonate δ~(18)O- and δ~(13)C-signatures of hydrological and climate changes ajecting lake Neuchatel, Switzerland, since the latest Pleistocene. J. Paleolimnol. 11,3-17.
    Shapiro, R.S., 2002. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?: Comment and Reply: COMMENT. Geology 30(8), 761.
    Shemesh, A., Charles, CD. and Fairbanks, R.G., 1992. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science 256,1434-1436.
    Shen, Y., 2002. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambr. Res. 113,121-133.
    Shen, Y., Knoll, A.H. and Walter, M.R., 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423(6940), 632-635.
    Shen, Y., Zhang, T.G. and Chu, X.L., 2005. C-isotopic stratification in a Neoproterozoic postglacial ocean. Precambr. Res. 137,243-251.
    Shen, Y., Zhang, T., and Hoffman, P.F., 2008. On the coevolution of Ediacaran oceans and animals. Proc. Natl.Acad.Sci. 105,7376-7381.
    Sheppard, S.M.F., Schwarcz, H.P., 1970. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Mineral. Petrol. 26,161-198.
    Shields, G. and Veizer, J., 2002. Precambrian marine carbonate isotope: version 1.1. Geochem., Geophys., Geosyst. 3(6), 1031, doi: 10.1029/2001GC000266.
    Shields, G.A. and Webb, G.E., 2004. Has the REE composition of seawater changed over geological time? Chem.Geol. 204,103-107.
    Shields, G.A., 2005. Neoproterozoic cap carbonates: A critical appraisal of existing models and the plumeworld hypothesis. Terra Nova 17,299-310.
    Shields, G.A., 2007. A normalized seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2, 35-42.
    Sholkovitz, E.R., Piepgras, D.J. and Jacobsen, S.B., 1989. The pore water chemistry of rare elements Buzzard Bay sediments. Geochim. Cosmochim. Acta 53,2847-2856.
    Sohl, L.E., Christic-Blick, N. and LKent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia; implicatons for the duration of low-latitude glaciation in Neoproteroozic time. GSA Bulletin 111, 1120-1139.
    Spotl, C. and Vennemann, T.W., 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. Mass Spectr. 17,1004-1006.
    Stern, R.J. Avigad, D., Miller, N.R., Beyth, M., 2006. Evidence for the snowball Earth hypothesis in the Arabian-Nubian Shield and East African Orogen. J. African Earth Sci. 44,1-20.
    Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542-545.
    Tanaka, K. and Kawabe, I., 2006. REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution. Geochem. J. 40, 425-435.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.
    Thompson, M.D. and Bowring, S.A., 2000. Age of the Squantum "tillite", Boston basin, Masschusetts: U-Pb Zircon constraints on terminal Neoproterozoic glaciation. Am. J. Sci. 300,630-655.
    Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A., 2006. Trace metal as paleoredox and paleoproductivity proxies: an update. Chem. Geol., 232: 12-32.
    Trindade, R.I.F., Macouin, M., 2007. Paleolatitude of glacial deposits and paleogeography of Neoproterozoic ice ages. C. R. Geoscience 339,200-211.
    Tucker, ME., 1982. Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 10, 7-12.
    Valladares, M.J., Ugidos, J.M., Barba, P., Fallick, A.E., Ellam, R.M., 2006. Oxygen, carbon and strontium isotope records of Ediacaran carbonates in Central Iberia (Spain). Precambr. Res. 147,354-365.
    Van Kranendonk, M.J., Webb, G.E. and Kamber, B.S., 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiol. 1, 91-108.
    Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999.~(87)Sr/~(86)Sr, δ~(13)C and δ~(18)O evolution of Phanerozoic seawater. Chem. Geol. 161, 59-88.
    Vernhet, E., Heubeck, C, Zhu, M.Y., Zhang, J.M., 2006. Large-scale slope instability at the southern margin of the Ediacaran Yangtze platform (Hunan province, central China). Precambr. Res. 148, 32-44.
    Von Grafenstein, U., Erlenkeuser, H., Muller, J. and Kleinmann-Eisenmann, A., 1992. Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwissenchaften 79,145-152.
    Von Grafenstein, U., Eicher, U., Erlenkeuser, H., Ruch, P., Schwander, J. and Ammann, B., 2000. Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnologic interpretation based on bulk and biogenic carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159,215-229.
    Wallmann, K., 2001. The geological water cycle and the evolution of marine δ~(18)O values. Geochim. Cosmochim. Acta 65, 2469-2485.
    Walter, M.R., Veevers, J.J., Calver, C.R., Gorjan, P. and Hill, A.C., 2000. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambr. Res. 100, 371-433.
    Wang, J., 2000. History of Neoproterozoic rift basins in South China: implication for Rodinia break-up (in Chinese). The Geological Publishing House, Beijing, p. 33-77.
    Wang, J. and Li, Z.X., 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambr. Res. 122, 141-158.
    Wang, J., Jiang, G., Xiao, S., Li, Q. and Wei, Q., 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology 36, 347-350.
    Wang, X.F., Erdtmann, B,-D., Chen, X.H. and Mao, X.D., 1998. Integrated sequence-, bio- and chemostratigraphy of the terminal Proterozoic to Lowermost Cambrian "black rock series" from central South China. Episodes 21, 178-189.
    Wang, Y.L., Liu, Y.G. and Schmitt, R.A., 1986. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochim. Cosmochim. Acta 50, 1337-1355.
    Webb, G.E. and Kamber, B.S., 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Cosmochim. Acta 64,1557-1565.
    Wedepohl, K.H., Correns, C.W., Shaw, D.W., Turekian, K.K. and Zemann, J., 1978. Handbook of Geochemistry, 1-11. Springer-Verlag, New York.
    
    Wenzel, B., Lecuyer, C. and Joachimski, M., 2000. Comparing oxygen isotope records of Silurian calcite and phosphate — 8 0 compositions of brachiopods and conodonts. Geochim. Cosmochim. Acta 64,1859-1872.
    Wignall, P.B. and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass exctinction Science, 272: 1155-1158.
    
    Wu, R.X., Zheng, Y.F., Wu, Y.B., Zhao, Z.F, Zhang, S.B., Liu, X.M, Wu, F.Y., 2006. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambr. Res. 146, 179-212.
    Wu, Y.-B., Zheng, Y.-F., Tang, J., Gong, B., Zhao, Z.-F., Liu, X.M., 2007. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chem. Geol. 246, 65-86.
    Xiao, S.H., Bao, H. M., Wang, H. F., Kaufman, A.J., Zhou, C. M., Li, G. X., Yuan, X.L., Ling, H. F., 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambr. Res. 130, 1-26.
    
    Xu, B., Jian, P., Zheng, H. F., Zou, H.B., Zhang, L. F., Liu, D.Y., 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambr. Res. 136, 107-123.
    
    Xu, B., Xiao, S.H., Zou, H.B., Chen, Y, Li, Z.X., Song, B., Liu, D.Y., Zhou, CM., Yuan, X.L., 2009. SHRIMP zircon U-Pb constratints on Neoproterzoic Quruqtagh diamictites in NW China Precambr. Res. 168,247-258.
    
    Yang, J.D., Sun, W.G., Wang, Z.R., Xue, Y.S. and Tao, X., 1999. Variations in Sr and C isotopes and Ce anomalies in sucessions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambr. Res. 93, 215-233.
    Yang, Z.Y., Sun, Z.M., Yang, T.S., Pei, J.L., 2004. A long connection (750~380 Ma) between South China and Australia: paleomagnetic constraints. Earth Planet. Sci. Lett. 220, 423-434.
    
    Yoshioka, H., Asahara, Y., Tojo, B. and Kawakami, S.-I., 2003. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a galcial to interglacial transition. Precambr. Res. 124,69-85.
    Yuan, X.L., Li, J., Cao, R., 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia 32, 143-55.
    
    Zhang, Q.R., and Piper, J.D.A., 1997. Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangtze Block: paleaolatitude and configuration of South China in the late Proterozoic supercontinent. Precambr. Res. 85,173-199.
    Zhang, R., Follows, M.J., Grotzing, J.P. and Marshall, J., 2001. Could the Late Permian deep ocean have been anoxic? Paleoceanography 16, 317-329.
    Zhang, S.H., Jiang, G.Q., Zhang, J.M., Song, B., Kennedy, M.J., Christie-Blick, N., 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology 33,473-476.
    Zhang, Q.R., Li, X.H., Feng, L.J., Huang, J. and Song, B., 2008. A new age constraint on the onset of the Neoproteorzoic glaciations in the yangtze platform, South China. J. Geol. 116,423-429.
    Zhang, Q.R., Chu, X.L.,Feng, L.J., 2009. Discussion on the Neoproterozoic glaciations in the South China Block and their related paleolatitudes. Chinese Sci. Bull. 54,1786-1796.
    Zheng, Y.-F., Fu, B., Gong, B., Wang, Z.-R., 1998. Carbon-isotope anomaly in marble associated with eclogites from the Dabie Mountains in China. J. Geol. 106, 97-104.
    Zheng, Y.-F., 1999. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33, 109-126.
    Zheng, Y.-F., Gong, B., Zhao, Z.-F., Fu, B., Li, Y.-L., 2003. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos 70, 321-343.
    Zheng, Y.-F., Wu, Y.-B., Chen, F.-K., Gong, B., Li, L., Zhao, Z.-F., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale ~(18)O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68,4145-4165.
    Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang, S.-B, Liu, X.-M. and Wu, F.-Y., 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol. 231,135-158.
    Zheng, Y.-F., Wu, Y.-B., Gong, B., Chen, R.-X, Tang, J., Zhao, Z.-F., 2007. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sci. Lett. 256,196-210.
    Zheng, Y.-F., Gong, B., Zhao, Z.-F., Wu, Y.-B. and Chen, F.-K., 2008a. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-~(18)O magmatism during supercontinental rifting in south China: implications for the snowball earth event. Am. J. Sci. 308,484-516.
    Zheng, Y.-F., Wu, R.-X., Wu, Y.-B., Zhang, S.-B., Yuan, H., Wu, F.-Y. 2008b. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambr. Res. 163, 351-383.
    Zhong, S. and Mucci, A., 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solution at 25℃ and 1 atm, and high dissolved REE concentrations. Geochim. Cosmochim. Acta 59, 443-453.
    
    Zhou, C.M., 1997. Upper Sinian carbon isotope profile in Weng'an, Guizhou. J. Stratigr. 21, 125-129.
    Zhou, M.-F., Yan, D.-P., Kennedy, A.K., Li, Y.-Q., Ding, J., 2002a. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 196, 51-67.
    Zhou, M.-F., Kennedy, A.K., Sun, M., Maipas, J., Lesher, C.M., 2002b. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J. Geol. 110,611-618.
    Zhou, C.M., Tucker, R., Xiao, S.H., Peng, Z.X., Yuan, X.L., Cheng, Z., 2004a. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32,437-440.
    Zhou, J.C., Wang, X.L., Qiu, J.S. and Gao, J.F., 2004b. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: Arc or plume magmatism? Geochem. J. 38, 139-152.
    Zhou, G.T., Zheng, Y.F., 2006. On the direction and magnitude of oxygen isotope fractionation between calcite and aragonite at thermodynamic equilibrium. Aquat. Geochem. 12,239-268.
    Zhou, C.M., Xiao, S.H., 2007. Ediacaran δ~(13)C chemostratography of South China. Chem. Geol. 237, 107-126.
    Zhu, M.Y., Zhang, J.M., Steiner, M., Yang, A.H., Li, G., and Erdtmann, B.-D., 2003. The Sinian and Early Cambrian stratigraphic frameworks from shallow- to deep-water facies of the Yangtze Platform: an integrated approach. Progr. Natur. Sci. 13, 951-960.
    Zhu, M.Y., Xiao, S.H. and Yin, C.Y., 2006. The Cryogenian and Ediacaran of South China: ice ages, animal embryos, acritarchs, and algae. The Second International Paleontological Congress Pre-Meeting Field Trip A8, 6-95 pp.
    Zhu, M.Y., Zhang, J.M. and Yang, A.H., 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr. Palaeoclimat. Palaeoecol. 254, 7-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700