用户名: 密码: 验证码:
液相直接沉淀法制备分散纳米金属氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采纳液相直接沉淀法以建立简单、成本低、效率高、易于工业化生产、无污染、产品无团聚的制备纳米金属氧化物的工艺。
     在传统的沉淀法制备纳米金属氧化物中,通常采用水为反应介质或以水为主要反应介质,硬团聚的产生是不可避免的。为此,本课题利用沉淀表面吸附的铵盐的静电作用、隔离作用和热解气体对沉淀起到的一定阻隔作用克服团聚。实验以ZrOCl_2水溶液为滴定液、NH_3·H_2O水溶液为被滴定液,在室温下进行沉淀反应,所获沉淀不经水洗,直接干燥和焙烧,获得分散纳米ZrO_2。从干燥开始到焙烧400℃左右,沉淀表面吸附的NH_4Cl一直存在,对产品起到分散作用,500℃时NH_4Cl完全分解,不影响产品纯度,产品为四方相;超过600℃时,产品为单斜和四方相共存,产品平均粒度在13-35nm之间。沉淀经水洗,产品则团聚。使用合适用量的表面活性剂聚乙二醇使沉淀反应溶液的表面张力和粘度都接近最低值,和NH_4Cl共同作用,能进一步提高产品的分散性。
     因为沉淀颗粒表面的吸附水所形成的氢键是硬团聚产生的根源,所以本课题用乙醇取代水作反应介质来降低硬团聚产生的可能性。把反应物均配成乙醇溶液,即可使沉淀反应在乙醇介质中进行,使沉淀从一开始形成时就避免因大量水分子的带来的团聚问题。
     本实验以氯氧化锆和氨水为原料,乙醇为介质,进行沉淀反应得到ZrO(OH)_2胶体,经过滤、乙醇洗涤、干燥、焙烧等过程制备均匀分散的纳米ZrO_2。用均匀设计法考察了反应物摩尔比、乙醇含量、氯氧化锆浓度、反应温度、表面活性剂五因素对产品粒径、分散性和产率的影响,结果表明:乙醇含量是主要影响因素,其用量增大,有利于获得粒径小、分散性好、产率高的纳米ZrO_2。实验过程中使用的乙醇,包括沉淀反应母液和用作洗涤液的乙醇,都可经过蒸馏回收并可循环使用,同时得到NH_4Cl。本工艺过程属于绿色化学过程。为了控制经高温焙烧后粉体粒径的长大,可采取先将胶体低温焙烧,用盐酸浸泡处理再高温焙烧的方法或分阶段热处理的方法。
     本实验以ZrOCl_2·8H_2O为原料,Y(NO_3)_3·6H_2O、MgCl_2·6H_2O、AlCl_3·6H_2O、Ca(NO_3)_2·4H_2O分别为掺杂剂,NH_3·H_2O为沉淀剂,采用乙醇沉淀法制备Y_2O_3-ZrO_2、MgO-ZrO_2、Al_2O_3-ZrO_2、CaO-ZrO_2陶瓷粉体。用干压成型法在一定的压力下压制素坯后进行烧结。考察了反应介质、焙烧温度对粉体粒径、分散性的影响以及粉体性质、掺杂剂加入量、成型压力等因素对素坯及烧结体密度的影响。结果表明:乙醇为反应介质制备的ZrO_2陶瓷粉体粒径均小于30nm,尺寸分布范围窄,分散性好,粉体烧结活性高,zrO_2主要以四方晶型存在,并含有少量单斜相。由这些陶瓷粉体制得的烧结体断裂面平整,且无裂缝。Y_2O_3-ZrO_2、MgO-ZrO_2、Al_2O_3-ZrO_2、CaO-ZrO_2陶瓷烧结体的最佳成型压力分别为10MPa、7MPa、20MPa、20MPa。3%(mol)Y_2O_3、5%(mol)MgO、20-60%(mol)Al、5-20%(mol)CaO的ZrO_2陶瓷素坯相对密度均在50%左右,3%(mol)Y_2O_3、10%(mol)MgO、20-80%(mol)Al、5-15%(mol)CaO的ZrO_2陶瓷烧结体相对密度均在95%以上,接近理论值。
     本实验以三氯化铝为原料,氨水为沉淀剂,乙醇为介质,在室温条件下进行液相沉淀反应,得到Al(OH)_3胶体,经过乙醇洗涤、干燥、焙烧等过程了均分散的纳米γ-Al_2O_3。考察了三氯化铝的浓度、三氯化铝与氨水的摩尔比、焙烧温度对产率和比表面积的影响,结果表明:前两者决定产品的产率,后者决定产品的粒度、晶型、比表面积。焙烧温度为686-1029℃时,获得均匀分散的γ-Al_2O_3纳米粉,粒径5-9nm,比表面积为204-102 m~2/g。
     采用乙醇为介质的直接沉淀法还可应用于其他纳米氧化物如氧化镁、氧化锡、氧化钛的制备。
     论文中利用热重—差热分析(TG-DTA)和红外光谱(IR)分析前驱体的热处理过程;用透射电子显微镜(TEM)观察粉体的形貌、大小及其分布;用X射线衍射光谱(XRD)检测粉体的相组成;用扫描电子显微镜(SEM)研究烧结体的显微结构。
This paper adopted direct liquid phase precipitation in order to establish a facile technique to prepare dispersed metal oxides and this technique has the advantages of simple operation, low cost,high efficiency,no pollution and free-agglomeration of the product and is easy to be industrialized.
     In terms of the traditional precipitation to prepare nano metal oxide,water was usually used as a reaction medium or major medium,unavoidable hard agglomeration occurred.Our research overcame this agglomeration phenomenon by separating function and electrostatic interaction caused by ammonium salt absorbed on the precipitate surface,and isolation of pyrolytic gas to the precipitate.With ZrOCl_2 aqueous solution as the titrant and NH_3·H_2O aqueous solution as the titrate,nano ZrO_2 powder was prepared via precipitation at room temperature followed by a drying-calcining treatment.From the beginning of the drying process up to the calcining process of 400℃,NH_4Cl was absorbed on the precipitate surface and played a role of dispersive action.When at 500℃,NH_4Cl was fully decomposed and had no influence on product purity and the product existed in tetragonal form.Calcined over 600℃,the products coexisted in monoclinic and tetragonal forms and their average sizes were between 13-35 nm.If the precipitate was washed with water,the product agglomerated. Adding suitable amount of surface active agent PEG made the values of surface tension and viscosity of the precipitation solution access to the lowest and the product dispersity was improved via the synergism of NH_4Cl and PEG.
     Because the hydrogen bond formed via absorbed water on the precipitate surface is the origin to cause hard agglomeration,alcohol was used as reaction medium instead of water to reduce this possibility in this research.Dissolving the reactants in alcohol,we avoided the agglomeration caused by the great amount of water from the beginning of the formation of the precipitate.
     By using ZrOCl_2 and NH_3·H_2O as raw materials,nano ZrO_2 was prepared via a series processes of ZrO(OH)_2 gel precipitated in ethanol,filtrated,washed with alcohol,dried and calcined.The influences of five experimental parameters upon the mean size,dispersity and yield of the product were investigated via uniform design.These parameters were molar ratio of NH_3·H_2O to ZrOCl_2,C_2H_5OH percentage in reacting and washing solutions,ZrOCl_2 concentration,precipitation temperature and surfactant PEG-800 dosage.The condition experiments demonstrated that the C_2H_5OH percentage was the major factor and the higher the C_2H_5OH percentage,the smaller the size,the better the dispersity and the higher the yield of the product.In the precipitation and washing process,the mother liquor and the filtrate could be distilled to recycle ethanol and gain byproduct NH_4Cl simultaneously.This was a simple green process.In order to prohibit the powder size from getting larger after calcinated at high temperature,we applied the approach in which the gel was calcinated at low temperature beforehand,marinated in HCl(aq),then calcinated at high temperature again or the other method of grading heat treatment.
     This kind of alcohol precipitation was adopted to prepare Y_2O_3-ZrO_2,MgO-ZrO_2, Al_2O_3-ZrO_2 and CaO-ZrO_2 composite ceramic powder by using ZrOCl_2·8H_2O as the raw material,Y(NO_3)_3·6H_2O,MgCl_2·6H_2O,AlCl_3·6H_2O,and Ca(NO_3)_2·4H_2O as the dopant respectively,and NH_3·H_2O as the precipitant.The green compacts were formed by dry pressing under certain pressure and then sintered.The effects of the reaction media and calcining temperature on the size and dispersity of the powders as well as the property of the powders,the dosage of the dopant and the compacting pressure on the density of the green compacts and sintered bodies were studied.,The experiment findings showed that when ethanol was used as the reaction medium the sizes of the nano-zirconia composite powders were less than 30 nm and the powders had the narrow size distribution,good dispersity and high sintering activity.The form of ZrO_2 was major tetragonal with minor monoclinic.The fractured surfaces of the sintered bodies prepared by the composite ceramic powders were smooth without any cracks.The optimal pressure for Y_2O_3-ZrO_2,MgO-ZrO_2,Al_2O_3-ZrO_2 and CaO-ZrO_2 sintered bodies were 10MPa,7MPa,20MPa and 20MPa,respectively.The relative densities of the ZrO_2 green compacts respectively doped with 3%(mol)Y_2O_3,5%(mol)MgO, 20~60%(mol)Al and 5~20%(mol)CaO were about 50%.The relative densities of the ZrO_2 sintered bodies respectively doped with 3%(mol)Y_2O_3,10%(mol)MgO,20~80%(mol)Al and 5~15%(mol)CaO exceeded 95%and were close to the theoretical value.
     Nanosizedγ-alumina powder was prepared via precipitation of AlCl_3 and NH_3·H_2O ethanol solution followed by the process of alcohol washing,drying treatment and calcination.The effects of the reactant concentration,the molar ratio of reactants and the calcination temperature upon the yield and the specific surface area of the product were explored.The experimental results showed that the former two factors determined the product yield and the latter determined the size,phase and specific surface area of the product etc.When the calcination temperatures were controlled between 686-1029℃,the highly dispersed nano-sizedγ-alumina particles with a size range of 5-9 nm and specific surface area of 204-102m~2/g were obtained.
     The direct precipitation process in which ethanol was used as the medium could be applied to synthesize other nano oxides such as magnesium oxide,stannic oxide,aluminum oxide and some stable ZrO_2 ceramic powder.
     In this paper,the heat treatment process of the precursors was analyzed by thermogravimetry differential thermal analysis(TG-DTA) and infrared spectrum(IR),the morphology,the size and distribution of the particles were observed by transmission electron microscopy(TEM),the phase composition of the powders was detected by X-ray diffraction (XRD),the microstructure of sintered bodies was studied by scanning electron microscopy (SEM).
引文
1.Louie S G.Thermodynamics-Nanoparticles behaving oddly[J],Nature,1996,384(6610):612-613.
    2.Bethell D,Schiffrin D J.Supramolecular chemistry - Nanotechnology and nucleotides[J],Nature,1996,382(6592):581-581.
    3.Siegel R,Amasamy S,Hahn H,et al.Synthesis,characterization,and properties of nanophase TiO_2[J],J.Mater.Res.,1988(3):1367-1372.
    4.田明原,施尔畏,仲维卓,庞文琴,郭景坤.纳米陶瓷与纳米陶瓷粉末[J],无机材料学报,1998,(2):130-131.
    5.Kim B -N,Hiraga K,Morita K,Sakka Y.A high-strain-rote superplastic ceramic[J],Nature,2001,413(20):288-291.
    6.曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J],材料工程,2003,43(2):34-36.
    7.张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状与展望[J],武汉大学学报(理学版),2003,49(6):680-684.
    8.Huang M H,Mao S,Feick H,et al.Room-temperature ultraviolet nanowire nanolasers[J],Science,2001,292(5523):1897-1899.
    9.Wang Z L,Song J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J],Science,2006,312(5771):242-246.
    10.李强,韩翀,吴聪颖.有机凝胶法制备纳米氧化镍及金属镍粉[J],电子元件与材料,2007,26(12):56-58.
    11.Lu A H,Salabas E L,Schuth F.Magnetic nanoparticles:Synthesis,protection,functionalization,and application[J],Angew.Chem.Int.Ed.2007,46:1222-1244.
    12.邓鹏图.纳米过渡金属氧化物的制备及其在固体火箭推进剂燃烧中的应用[D],长沙:国防科技大学,1997.
    13.Ying J Y,Tschope A.Synthesis and characteristics of nonstoichiometric nanocrystalline cerium oxide-based catalysts[J],Chemical Engineering Journal,1996,64(2):225-237.
    14.汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展[J],无机化学学报,2000,16(2):213-217.
    15.Chen D J,Mayo M J.Rapid rate sintering of nanocrystalline ZrO_2-3mol%Y_2O_3[J],J.Am.Ceram.Soc.,1996,79:906-912.
    16.郭景坤.先进陶瓷研究及其展望[J],材料研究学报,1997,11(6):594-600.
    17.a) Rajesh,Ahuja T,Kumar D.Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications[J],Sensors and Actuators B-Chemical,136(1):275-286.
    b) Tan O K,Cao W,Hu Y,et al.Nano-structured oxide semieonductormaterials for gas-sensing applications[J],Ceramics International,2004;30(7):1127-1133.
    18.Li X L,Lou T J,Sun XM,et al.Highly sensitive WO_3 hollow-sphere gas sensors[J],Inorganic Chemistry,2004,43(17):5442-5449.
    19.甘志峰,姜继森.单分散磁性纳米颗粒的制备及生物高分子在其上的组装[J].化学进展,2005,17(6):978-986.
    20.魏衍超,杨连生.生物高分子磁性微球的制备、结构、性质和应用[J],磁性材料及器件,1999,30(6):18-21.
    21.Kuhara M,Takeyama H,Tanaka T,et.al.Magnetic cell separation using antibody binding with protein A expressed on bacterialmagnetic particle[J],Anal Chem,2004,76:6207-6213.
    22.谭强强,张中太,唐子龙等.有机添加剂.超强碱共沉淀法制备纳米氧化锆粉体的研究[J],功能材料,2003,3(34):323-325.
    23.王小兰,李历历,段学臣.氧化钇粉末得制备[J],稀有金属与硬质合金,2004,32(1):26-28.
    24.许迪春,郝晓春,朱宣惠.湿化学法制备Zr02(Y203)超细粉末过程中团聚状态的控制[J],硅酸盐学报,1992,20(1):48-54.
    25.陈智巧,贺卫卫,李玉平,黄志彬,李杰.低温一步液相法合成ZnO纳米棒[J],无机化学学报,2007,23(1):177-180.
    26.刘胜峰,吴春艳,韩笑钊.高分子网络法制备纳米NiO超细粉的研究[J],无机化学学报,2003,5(2):46-57.
    27.潭立新,蔡一湘.超细粉体粒度分析的分散条件比较[J],中国粉体技术,2000,6(1):23-26.
    28.孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响[J],无机材料学报,1999,14(3):365-369.
    29.朱俊杰.超声化学法合成金属硫族半导体纳米材料[J],微纳电子技术,2002,12:21-25.
    30.Suslick K S,Hammerton D A,Cline R E.The sonochemical hot spot[J],J.Am.Chem.Soc.,1986,108:5641-5642.
    31.Susliek K S.Sonochemistry[J],Science,1990,247:1439-1445.
    32.沈国柱,徐政.超声沉淀.热分解二步法制备棒状Co_3O_4纳米粒子[J],材料科学与工程学报,2005,123(13):353-355.
    33.Chaumont D,Craievich A,Zarzycki A.Effect of ultrasound on the formation of ZrO_2 sols and wet gels[J],Journal of Non-crystalline solids,1992,41:147-148.
    34.Kaliszewsk M S,Heuer A H.Alcohol Interaction with Zirconia Powders[J],J.Am.Ceram.Soc.,1990,73(6):1504-1509.
    35.酒金婷,葛钥,张涑戎等.无团聚纳米氧化锆的制备及应用[J],无机材料学报,2001,16(5): 867-871.
    36.潘秀红,戚凭,陈沙鸥等.沉淀法制备ZrO_2微粉[J],青岛大学学报,2002,17(1):35-38.
    37.仇海波,高濂,冯楚得等.纳米氧化锆粉体的共沸蒸馏法制备及研究[J],无机材料学报,1994,9(3):365-370.
    38.许国花,李先国,冯丽娟,溶胶—凝胶法与冷冻干燥技术结合制备氧化铁[J],青岛科技大学学报,2003,24(4):354-357.
    39.Kim Tae-Hoon,Lim Dae-Young,Yu Byung-Seok,Lee Jong-Heon,Goto Motonobu.Effect of stirring and heating rate on the formation of TiO_2 powders using supercritical fluid[J],Ind Eng Chem Res.,2000,39:4702-4706.
    40.朱伯铨,孟卫松.前驱体-超临界流体干燥法制备纳米氧化铝粉[J],稀有金属材料与工程,2005,34(1):33-36.
    41.梁丽萍,侯相林,吴东.超临界CO_2流体干燥合成ZrO_2气凝胶及其表征[J],材料科学与工艺,2005,13(15):552-555.
    42.吴勘,赵郁彬,余锦晖.萃取-超临界法制备纳米TiO_2[J],广州化工,2006,34(1):28-31.
    43.徐鹏.超临界水解制备金属氧化物微粒的实验研究[D],大连理工大学硕士学位论文,2006,6.
    44.Dai X,Li Q.Study of phase formation in spray pyrolysis of ZrO_2 and ZrO_2-Y_2O_3 powder[J].J.Am.Ceram.Soc.,1993,76(3):760-765.
    45.张渊明,霍慧芳.ZrO_2超细粒子的制备与表征[J],暨南大学学报,1998,19(3):64-68.
    46.Zhang S C,Messing G L,Borden M.Synthesis of solid spherical zirconia particles by spray pyrolysis[J],J.Am.Ceram.Soc.,1990,73(1):61-63.
    47.王作山,张景林.无团聚纳米α-Al_2O_3粉体的制备方法[P],中国发明专利,ZL200310114455.8.
    48.李建功,杜雪莲,沈利亚,寇昕莉,秦勇.一种单分散纳米α一氧化铝颗粒粉体的制备方法[P],ZL200610104871.3.
    49.陈云华,林安,甘复兴渗透水解TiCl_4制备纳米TiO_2[J],无机材料学报,2007,22(1):53-58.
    50.陆俊,何雨舟,郭艳辉,陈纪忠.水解法制备纳米α-Fe_2O_3[J],浙江化工,2006,376:6-8,33.
    51.Wei Yu,Liu Hui.Preparation of nano-needle hematite particles in solution[J],Materials Research Bulletin,1999,34(8):1227-1231.
    52.章天金,彭芳明.溶胶.凝胶工艺合成ZrO_2超微粉末的研究[J],无机材料学报,1996,11(3):435-440.
    53.Ozge Acarbas,Macit Ozenbas.Preparation of iron oxide nanoparticles by microwave synthesis and their characterization[J],Journal of Nanoscience and Nanotechnology,2008,8:655-659.
    54.侯文华,马军,颜其洁,等.均分散球形氧化铕超细微粒的制备和表征[J],化学通报,2000,58(6):683-687.
    55.廖列文,尹国强,崔英德,等.均匀沉淀法合成纳米Y_2O_3研究[J],稀土,2005,26(6):41-45.
    56.Ozawa M.Effect of aging temperature on CeO_2 formation in homogeneous precipitation[J],Materials Science,2004,39:4035-4036.
    57.Tsai M- S.Powders synthesis of nano grade ceriumoxide via homogeneous precipitation and its polishing performance[J],Materials Science and Engineering,2004,B110:132-134.
    58.董相廷,于得财,肖军,等.用络合沉淀法制备超微氧化钇及其表征[J],稀土,1993,14(2):9-11.
    59.周新木.柠檬酸络盐沉淀法制备超细氧化铈[J].中国稀土学报,2000,20:67-69.
    60.Michael Veith,Sanjay Mathur et al.Synthesis of YAG by sol-gel method[J],Mater.Chem.,1999,9:3069-3079.
    61.谢玉群.超细ZrO_2粒子的制备[J],材料研究学报,2001,14:45-48.
    62.王零森,尹邦跃.—种制备ZrO_2纳米粉末的新方法[J],中国有色金属学报,1998,8(4):617-620.
    63.Sun Z,Liu L,Zhang L,Jia D.Rapid synthesis of ZnO nano-rods by one-step,room-temperature,solid-state reaction and their gas-sensing properties[J],Nanotechnology,2.006,17:2266-2270.
    64.Hu H,Huang X,Deng C,Chen X,Qian Y.Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale[J],Mater.Chem.Phys.,2007,106:58-62.
    65.Sun Y,Ndifor-Angwafor N G.D.Riley Jason,Ashfold M N R.Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed byhydrothermal growth[J],Chem.Phys.Lett,2006,431:352-357.
    66.Zhou H,Fan T,Zhang D.Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J],Micropor.Mesopor.Mater.,2007,100:322-327.
    67.Wang J,Sun X,Yang Y,Huang H,Lee Y C,Tan O K,Vayssieres L.Hydrothermally grown oriented ZnO nanorod arrays for gas sensing application[J],Nanotectmology,2006,17:4995-4998.
    68.Cheng B,Russell J M,Shi W,Zhang L,Samulski E T.Large-scale,solution-phase growth of single-crystalline SnO_2 nanorods[J],J.Am.Chem.Soc.,2004,126:5972,5973.
    69.Chen F,Hong Q,Xu C,Andy Hot T S,Shen S.DADD-assisted hydrothermal synthesis of t-ZrO_2nanoparticles[J],J.Am.Ceram.Soc.,2005,88:2649-2651.
    70.Bondioli R,Ferrari A M,Leonelli C,Siligardi C,Pellacani G C.Microwave-hydmthermal synthesis of nanocrystalline powders[J],J.Am.Ceram.Soc.,2001,84:2728-2730.
    71.Tsudada T,Venigalla S,Morrone A A,et al.Low tempertature hydrothermal synthesis of yttrium-doped zirconia powers[J],J.Am.Ceram.Soc.,1999,82(5):1169-1174.
    72.苗鸿雁,罗宏杰,王秀峰等.低压条件下纳米氧化锆的水热结晶合成[J],陶瓷工程,1998,32(5):1-4.
    73.杨传芳,陈家镛.从溶剂萃取反向胶团合成优质ZrO_2超细粉[J],金属学报,1994,12(3):223-225.
    74.黎维彬,扬絮飞.一种制备粒径可控的纳米氧化锆的方法[P],中国专利公开,01130825.7, 2002.02.06.
    75.琚行松,赵红丽,芮玉兰,梁英华.span-80+Tween-60反胶束微乳液制备纳米α-Fe_2O_3[J],合肥工业大学学报(自然科学版),2008,31(8):1269-1273.
    76.Yang Jun,Lin Cuikun,Wang Zhenling,Lin Jun.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties[J],Inorg.Chem.,2006,45(22):8973-8979.
    77.Yuasa M,Masaki T,Kida T,et al.Nano-sized PdO loaded SnO_2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor[J],Sensors and Actuators B,2009,136:99-104.
    78.Tadao Sugimoto,Fine Particles:Synthesis,characterization,and mechanisms of growth(Surfactant Science Series)[M],Marcel Dekker Inc.,New York,2000,pp.2-4.
    79.Epple R A.Mechanism of formation of zircon stains[J],J.Am.Ceram.Soc.,1970,53(8):457-462.
    80.Pampach R,Haberkc K.Ceramic powders[M],Amsterdam:Elsevier Scientific Pub.Company,1983:623-635.
    81.杨金龙.陶瓷粉末颗粒尺寸测试、表征及分散[J],硅酸盐通报,1995,5:69-73.
    82.Srdic V V,Winterer M,Hahn H.Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis[J],J.Am.Ceram.Soc.,2000,83:729-736.
    83.Mueller R,Jossen R,Pratsinis E,Watson M,Akhtar K.Zirconia nanoparticles made in spray flames at high production rotes[J],J.Am.Ceram.Soc.,2004,87:197-202.
    84.Limaye A U,Helble J J.Effect of precursor and solvent on morphology of zirconia nanoparticles produced bycombustion aerosol synthesis[J],J.Am.Ceram.Soc.,2003,86:273-278.
    85.Bukaemskii A A.Nanosize Powder of Zirconia.Explosive Method of production and properties[J],Combust.Explos.Shock Waves,2001,37:481-485.
    86.Hu M Z -C,Harris T,Byers C H.Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis[J],J.Colloid Interface Sci.,1998,198:87-99.
    87.Vasylkiv O,Sakka Y.Synthesis and colloidal processing of zirconia nanopowder[J],J.Am.Ceram.Soc.,2001,84:2489-2494.
    88.Bondioli F,Ferrari A M,Leonelli C,Siligardi C,Pellacani G.C.Microwave-hydrothermal synthesis of nanocrystalline zirconia powders[J],J.Am.Ceram.Soc.,2001,84:2728-2730.
    89.Wang X M,Xiao P,Lorimer G.Highly dispersed suspension of YSZ and zirconia nanoparticles by solvothermal processing[J],Adv.Appl.Ceram.,2005,104:135-141.
    90.Pang G S,Sominska E,C61fen H,Mastai Y,Avivi,Koltypin S Y,Gedanken A.Preparing a stable colloidal solution of hydrous YSZ by sonication[J],Langmuir,2001,17:3223-3226.
    91.Picquart M,Lopez T,Gomez R,Torres E,Moreno A,Garcia J.Dehydration and crystallization process.in sol-gel zirconia[J],J.Therm.Anal.Calorim.,2004,76:755-761.
    92.段国荣.纳米ZrO_2的软模板法制备、结构调控及其应用性能研究[D],南京理工大学,2007,07.
    93.陈宗淇,戴闽光.胶体化学[M],北京:高等教育出版社,1985,180-183.
    94.李蔚,高濂,郭景坤.醇-水溶液加热法制备纳米ZrO_2粉体及其相关过程研究[J],无机材料学报,2000,15(1):16-20.
    95.J.A.迪安.兰氏化学手册[M],科学出版社,2003(5),8.23.
    96.Shukla S,Seal S,Vij R,Bandyopadhyay Sri.Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia[J],Nano Letters.,2003,3:397-401.
    97.吉林大学,四川大学.物理化学与胶体化学[M],北京:人民教育出版社,1980,422-426.
    98.刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J],化学通报,1999,7:54-57.
    99.宋世谟,王正烈,李文斌.物理化学[M],北京:高等教育出版社,1995,428.
    100.Jones S L,Norman C L,Dehydration of hydrous zirconia with methanol[J],J.Am.Ceram.Soc.,1988,71(4):190-191.
    101.陈少贞,陈森凤.湿化学法制备超细粉的团聚机理,表征及控制[J],材料导报,1996,(3):39-45.
    102.A.P.Oliveira,M.L.Torem.Influence of some precipitation variables on thermal behavior of ZrO_2-Y_2O_3 and ZrO_2-CeO_2 precipitated gels[J],J.Mater.Sci.,2000,35:667-672.
    103.Readey M J,Lee R -R,Halloran J W,neueA H r.Processing and sintering of ultrafine MgO-ZrO_2 and (MgO,Y_2O_3)-ZrO_2 powders[J],J.Am.Ceram.Soc.,1990,73:1499-1503.
    104.Lin J -D,Duh J -G.Coprecipitation and hydrothermal synthesis of ultrafine 5.5 mol%CeO_2-2 mol%YO_(1.5)ZrO_2 powders[J],J.Am.Ceram.Soe.,1997,80:92-98.
    105.Montanaro L,Ferroni L,Pagliolico S,Swain M V,Bell T J.Influence of calcination temperature on the microstructure and mechanical properties of a gel-derived and sintered 3 mol%Y-TZP material[J],J.Am.Ceram.Soc.,1996,79(4):1034-1040.
    106.Sato T,Dosaka K,Yoshioka T,Okuwaki A,Torii K,Onodera Y.Sintering of ceria-doped tetragonal zirconia crystallized in organic solvents,water,and air[J],J.Am.Ceram.Soc.,1992,75(3):552-556.
    107.Muccillo E N S,Tadokoro S K,Muccillo R.Physical characteristics and sintering behavior of MgO-doped ZrO_2 nanoparticles[J],J.Nanopart.Res.,2004,6(2):301-305.
    108.方开泰.均匀设计与均匀设计表[M],北京:科学出版社,1994,14-36.
    109.Bocanegra-Bernal M H,Diaz de la Torre S.Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics[J],J.Mater.Sci.,2002,37:4947-4971.
    110.Hannink R H,Kelly P M,Muddle B C.Transformation toughening in zirconia-containing ceramics[J],J.Am.Ceram.Soc.,2002,83(3):461-487.
    111.尹衍升,李嘉.氧化锆陶瓷及其复合材料[M],北京:化学工业出版社,2004.2-30.
    112.M V斯温主编.郭景坤等译.陶瓷的结构与性能[M],北京:科学出版社,1998,55-58.
    113.王零森著.特种陶瓷(第一版)[M],长沙:中南工业大学出版社,1994,139-153.
    114.张志焜,崔作林.纳米技术与纳米材料[M],北京:国防工业出版社,2000.5.120.
    115.方平安.包裹粉体制备氧化锆陶瓷的微结构形成与增韧机理的电镜研究[D],上海:中国科学院上海硅酸盐研究所,2004.
    116.高濂,靳喜海,郑珊.纳米复相陶瓷[M],北京:化学工业出版社,2004,7-10.
    117.Noh Hee-Jin,Seo Dong-Seok,Kim Hwan,Lee Jong-Kook.Synthesis and crystallization of anisotropic shaped ZrO_2 nanocrystalline powders by hydrothermal process[J],Materials Letters,2002,57:2425-2431.
    118.G Dell'Agli,G Mascolo,M C Mascolo,C.J.Pagliuca.Crystallization-stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttda[J],J.Cryst.Growth,2005,280:255-265.
    119.O Vasylkiv,Y Sakka.Synthesis and Colloidal Processing of zirconia nanopowder[J],J.Am.Ceram.Soc.,2001,84(11):2489-2494.
    120.T Settu.Characterization of MgO-ZrO_2 precursor powders prepared by in-situ peptisation of coprecipitated oxalate gel[J],Ceram.Int.,2000,26(5):517-521.
    121.E N S Muccillo,E C C.Souza,R Muccillo.Synthesis of reactive neodymia-doped zirconia powders by the sol-gel technique[J],Journal of Alloys and Compounds,2002,344:175-178.
    122.G J Callon,D M Goldie,M F Dibb,J A Cairns,J Paton.X-ray diffraction analysis of yttria stabilized zirconia powders produced by an organic sol-gel method[J],J.Mater.Sci.Lett.,2000,19(19):1689-1991.
    123.骆锋,阮建明,邹俭鹏.微乳法制备氧化锆纳米粉体[J],硬质合金,2003,20(2):80-83.
    124.R Guo,H Qi,Y Chen,Z Yang.Reverse microemulsion region and composition optimization of the AE09/alcohol/alkane/water system[J],Materials Research Bulletin,2003,38:1501-1507.
    125.N Stubie' ar,V Bermanec,M Stubie' ar,D Popovic',W A Kaysser.X-ray diffraction study of microstructural evolution of some ZrO_2-Y_2O_3-MgO powder mixtures induced by high-energy ball milling[J],J.Alloy Compd.,2004,379(1-2):216-221.
    126.C E Scott,J S Reed.Effect of laundering and milling on the sintering behavior of stabilized ZrO_2powders[J],Am.Ceram.Soc.Bull.,1979,58(6):587-590.
    127.Z Chen,R W Trice,M Besser,X Y Yang,D Sordelet.Air-plasma spraying colloidal solutions of nanosized ceramic powders[J],J.Mater.Sci.,2004,39(13):4171-4178.
    128.Y Jia,Y Hotta,C Duran,K Sato,K Watari.Kinetic study on nano-ZrO_2 from ZrOCl_2 solution modified with diglycol[J],J.Ceram.Soc.Jpn.,2005,113:380-382.
    129.O Vasylkiv,Y Sakka,H Borodians'ka.Nonisothermal synthesis of yttria-stabilized zirconia nanopowder through oxalate processing:Ⅱ,Morphology manipulation[J],J.Am.Ceram.Soc.,2001, 84:2484-2488.
    130.O.Vasylkiv,Y.Sakka.Nonisothermal synthesis of yttria-stabilized zirconia nanopowder through oxalate processing:Ⅰ,Characteristics of Y-Zr oxalate synthesis and its decomposition[J].J.Am.Ceram.Soc.,2000,83:2196-2202.
    131.N.L.Wu,T.F.Wu,Enhanced phase stability for tetragonal zirconia in precipitation synthesis[J],J.Am.Ceram.Soc.,2000,83:3225-3227.
    132.Y.W.Zhang,G Xu,Z.G Yan,Y.Yang,C.S.Liao,C.H.Yan.Nanocrystalline rare earth stabilized zirconia:solvothermal synthesis via heterogeneous nucleation-growth mechanism,and electrical properties[J],J.Mater.Chem.,2002,12:970-977.
    133.张传.氧化铝基金属陶瓷的制备与微观组织研究[D],南京:东南大学,2004.
    134.施剑林.现代无机非金属材料工艺学[M],长春:吉林科学技术出版社,1993.
    135.唐海红,焦淑红,杨红菊.纳米氧化铝的制备及应用[J],中国粉体技术,2002,8(6):37-39.
    136.G.Paglia,C.E.Buckley,A.L.Rohl,R.D.Hart,K.Winter,A.J.Studer,et al.Boehmite derived γ-alumina system.1.Structural evolution with temperature,with the identification and structural determination of a new transition phase,γ'-Alumina[J],Chem.Mater.,2004,16:220-236.
    137.J.M.McHale,A.Navrotsky.Effects of increased surface area and chemisorbed H_2O on the relative stability of nanocrystalline γ-Al_2O_3 and α-Al_2O_3[J].J.Phys.Chem.B.,1997,101:603-613.
    138.何巨龙,于栋利,刁玉强,田永君,李东春.γ-Al_2O_3纳米粉对氧化铝、碳化硅陶瓷纤维烧结特性的影响[J],复合材料学报,2000,17(4):80-83.
    139.Y.Yajima,M.Hida,S.Taruta,K.Kitajima.Pulse electric current sintering and strength of sintered alumina using gamma-alumina powders prepared by the sol-gel method[J],Ceram.Soc.Jpn.2003,111:419-425.
    140.余忠清,赵秦生,张启修.溶胶—凝胶法制备超细球形氧化铝粉末[J],无机材料学报,1994,9(4):475-479.
    141.H.Wang,L.Gao,Weiqun Li.Preperation of nanoseale Al_2O_3 powers by the polyaeyllamide gel method[J],Nanostructured Materials,1999,(11),8:1263-1267.
    142.Xiao J,Deng H,Wan Y,et al.Preparation of ultrafine alpha-Al_2O_3 powders by catalytic sintering of ammonium aluminum carbonate hydroxide at low temperature[J],J.of Central South Univ.of Tech.,2006,13(4):367-372.
    143.周曦亚,欧阳世翕,程吉平.液相共沉淀法制Al_2O_3超细粉过程及防团聚措施[J],1996,24(7):78-82.
    144.T.Ogihara,H.Nakagawa,T.Yanagawa,N.Ogata,K.Yoshida.Preparation of monodisperse,spherical alumina powders from alkoxides[J],J.Am.Ceram.Soc.,1991,74:2263-2269.
    145.G.P.Johnston,R.Muenchansen,D.M.Smith,W.Fahrenholtz,S.Foltyn.Reactive laser ablation synthesis of nanosize alumina powder[J],J.Am.Ceram.Soc.,1992,12:3293-3298.
    146.E.Kato,K.Daimon,M.Nanbu.Decomposition of two aluminum sulfates and characterization of the resultant aluminas[J],J.Am.Ceram.Soc.,1981,64:436-443.
    147.H.Noda,K.Muramoto,H.Kim.Preparation of nano-structured ceramics using nanosized Al_2O_3particles[J],J.Mater.Sci.,2003,38:2043-2047.
    148.O.Mekasuwandumrong,H.Kominami,P.Praserthdam,M.Inoue.Synthesis of thermally stable γ-alumina by thermal decomposition of aluminum isopropoxide in toluene[J],J.Am.Ceram.Soc.,2004,87:1543-1549.
    149.张长拴,赵峰,张继军,王向宇.纳米尺寸氧化铝的红外光谱分析[J],化学学报,1999,57:275-280.
    150.K.Sohlberg,S.J.Pennycook,S.T.Pantelides.Hydrogen and the structure of the transition aluminas[J],J.Am.Chem.Soc.,1999,121:7493-7499.
    151.王志奎,杨荣榛.超细粉体氧化镁的合成[J],功能材料,1999,30(5):557-558.
    152.张近.均匀沉淀法制备纳米氧化镁的研究[J],功能材料,1999,30(2):193-194.
    153.Jimenez-Cadena G,Riu J,Rius FX.Gas sensors based on nanostructured materials[J],Analyst,2007,132(11):1083-1099.
    154.Caricato AP,Luches A,Rrlla R.Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation[J],Sensors,2009,9(4):2682-2696.
    155.Kolmakov A,Chen XH,Moskovits M.Functionalizing nanowires with catalytic nanoparticles for gas sensing application[J],Journal of Nanoscience and Nanotechnology,2008,8(1):111-121.
    156.Depero L E,Sangaletti L,Alliedetal B,et al.Correlation between crystallite sizes and microstrains in TiO_2 mamopowders[J],Cryst Growth,1999,198:516-520.
    157.Hong-Kyu P,Young-Tae M,Do-Kyung K.Formation of monodispersed spherical TiO_2 powders by thermal hydrolysis of Ti(SO_4)_2[J],J.Am.Ceram.Soc.,1996,79(10):2727-2732.
    158.Yamazaki S,Matsunaga S,Hod K.Photocatalytic degradation of trichlorethylene in water using TiO_2pellets[J],Water Research,2001,35(4):1022-1028.
    159.Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor elect rode[J],Nature,1972,238:37241.
    160.He M,Lu X H,Feng X,Yu L,Yang Z H.A simple approach to mesoporous fibrous titania from potassium dititanate[J],Chem.Commun.,2004,19:2202-2203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700