用户名: 密码: 验证码:
地下煤矿瓦斯运移数值模拟及积聚危险性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下煤矿的主要灾害有煤和瓦斯突出以及瓦斯爆炸,而瓦斯爆炸主要由瓦斯积聚超限引起。为了预防瓦斯积聚超限,防止瓦斯爆炸灾害事故发生,有必要对地下煤矿瓦斯运移流场进行数值模拟计算并对瓦斯积聚的可能性进行评价,以便掌握地下煤矿瓦斯运移规律,为矿山安全管理提供决策依据。地下煤矿瓦斯运移行为是具有多组分、多相态、渗流、浮升和紊流等复杂非线性流动现象的特殊流体运动。格子Boltzmann方法(Lattice Boltzmann Method,LBM)作为一个崭新的求解流体系统偏微分方程的方法以及为物理现象建模的手段,在多相流、多组分流、渗流等问题的模拟中已经得到广泛应用。因此,本文应用LBM对地下煤矿瓦斯运移进行模拟。主要完成了如下研究工作:
     1.集中涌出瓦斯在巷道中运移的LBM模拟。应用速度-浓度双分布格子Boltzmann模型,建立了基于LBM的瓦斯蔓延速度和浓度模型。在该模型中,采用基于分块耦合算法的速度-浓度LBM模型将巷道分成若干规则的块,对各块分别独立计算,仅在边界处交换数据,简化了网格计算,提高了系统资源利用效率。提出了在LBM模型中增加流动阻力来处理凹凸不平巷道和工作面边界的方法。模拟结果表明,该模拟方法可得到集中涌出瓦斯在通风网络中蔓延的直观信息和其速度、体积分数、压力等大量数据,还可以得到每条巷道内瓦斯体积分数峰值及其个数、位置和到达时间,从而能提供有效的人员避开高浓度瓦斯的方案。
     2.采场瓦斯运移LBM模拟。基于修正的Brinkman-Forchheimer-Darcy定律,建立了非均质采空区瓦斯运移的控制方程组;基于该方程组分别建立了瓦斯渗流速度场和浓度场的格子Boltzmann模型,实现了采空区瓦斯运移的数值模拟,并对控制采空区瓦斯向上隅角移动的措施进行了模拟对比研究。此外,构建了采场统一的三维LBM数值模拟模型,通过采用不同的松弛时间和平衡分布函数来体现采场气体在工作面的紊流和在采空区的渗流运动特征。模拟结果表明,用该方法可以模拟和分析采场瓦斯运移状况并得到采场瓦斯运移的相关数据:如任何时刻采场内任意位置瓦斯和大气混合气体的流动速度和瓦斯体积分数等数据,同时也可以得到采场流线分布、速度变化和采空区瓦斯运移的规律。
     3.煤层瓦斯运移LBM模拟。分别建立了等温和非等温煤层孔隙吸附瓦斯扩散和裂隙游离瓦斯渗流的三维双重网格LBM模型。在这些模型中,对于同一煤层采用双重网格技术模拟瓦斯在双重介质的扩散与渗流过程,即一套网格为细网格,用它来模拟吸附瓦斯从煤层孔隙中解吸,变成游离瓦斯,扩散到裂隙的过程;另一套网格为粗网格,用它来模拟游离瓦斯在裂隙中渗流过程。两套网格通过插值实现数据交换,从而实现瓦斯从吸附、解吸到渗流过程的模拟。模拟结果表明,用该方法可以得到任何时刻煤层内任意位置瓦斯的流动速度、压力以及瓦斯浓度等数据,同时也可以得到煤层瓦斯流线分布、速度变化、压力变化和瓦斯运移的规律。该方法可用于揭示煤层瓦斯运移、涌出、突出规律及瓦斯涌出量,为煤层瓦斯涌出、突出的危险性分析与评价提供依据。
     4.反风期间采场瓦斯运移LBM模拟。分析了反风时期流场的特点,建立了模拟反风时期瓦斯运移的速度场、浓度场和温度场等三场耦合的LBM模型,给出了反风状态下瓦斯运移模型算法和模拟实例。该模拟方法可以为矿山生产期间发生火灾时能否采用反风方式来控制火灾蔓延提供依据。模拟结果表明,用该方法可以得到反风状态下任何时刻巷道和采空区任意位置瓦斯的流动速度、压力、温度以及瓦斯体积分数等数据。该方法可用于揭示反风状态下瓦斯运移规律,为反风的危险性分析与评价提供依据。
     5.基于双枝模糊Petri网的瓦斯积聚危险性评价。综合考虑对瓦斯积聚的发生有促进作用和抑制作用的影响因素,将模糊Petri网和双枝模糊集理论融合,提出基于双枝模糊Petri网通风巷道瓦斯积聚危险性评价方法。实例表明,该评价方法建立的模型形象直观,充分地利用双枝模糊Petri网描述系统动态行为的能力,描述瓦斯积聚影响因素之间的传播关系。推理过程采用矩阵计算方式,提高了瓦斯积聚危险性评价的效率。
     本文应用格子Boltzmann方法对地下煤矿瓦斯运移过程进行数值模拟,揭示瓦斯涌出、弥散扩散、运移、上浮和积聚的规律,并因此获得地下煤矿瓦斯运移规律和积聚形成位置及其可行的调控方法。应用模糊Petri网模型对瓦斯积聚的危险性进行评价,为预防瓦斯超限积聚,防止瓦斯爆炸灾害事故发生提供科学的依据。
The main disasters of underground coal mine are coal and gas outburst and gas explosion. As is known, gas migration in underground coal mine often results in the gas excessive and even coal-mining pit explosion. To explore the regularity of such gas migration and risk, it is necessary to simulate gas migration and evaluate the risk of gas aggregation in underground coal mine, and then provide decision basis for mine management. The behaviors of gas migration in underground coal mine are special fluid flow with characteristics of multicomponents, multiphase, seepage, buoyancy and turbulence. Lattice Boltzmann method (LBM)is a new method to solve the partial differential equation of fluid systems and a means of modeling for physical phenomenon. It can simulate a rich variety of behaviors, including multiphase flow, multicomponent flow, seepage, et al. So, this paper wishes to propose an approach to the coal-mining gas migration simulation based on the lattice Boltzmann method, major achievements of this thesis are as follows:
     1.Simulation of concentrative emission gas spreading in tunnel systems based on LBM. A simulation model of concentrative emission gas spreading in tunnel systems has been developed, in which a double distributed velocity-concentration LBM was adopted. In the model, in order to simulate the complicated situations, tunnels were separated into some relative regular blocks through the block coupling algorithms. Each block was calculated in parallel, with the data exchanged only on boundaries. As a result, the redundant grids are removed and the grid computation has been simplified with the system resource efficiency ameliorated. A method which can process rough surface of tunnel or working face by adding flow resistance in LBM model was provided. The simulation results showed that the so-called LBM model is in a position to obtain essential data and information on the velocity, pressure and visual information about the gas in the tunnels. The simulation results also help to disclose the regularities on the distribution of gas bulk fraction in the tunnels, and those on the speed, pressure and bulk fraction of the gas in different points and places in the tunnels, which are of great benefit for mine safety control and management.
     2. Simulation of gas migration in mining stope based on LBM. Studying the Brinkman-Forchheimer-Darcy amended law, this paper wishes to propose a control system which can reflect the characters of gas migration regularity in heterogeneous goaf of coal mines. To make the complicated control system simple, a Lattice Boltzmann(LB) model constructed to simulate the gas seepage velocity field with another LB model constructed to simulate the gas concentration change have been established. Simulation contrasts in control gas migration methods were also done. This paper also constructed a unified simulation model of gas migration in mining stope based on LBM. The mixed air movement in mining stope is very complex with turbulent flow in the working face and seepage movement in the goaf with heterogeneous porous media. The mining stope unified simulation model reflects the characters of these two fields by different relaxation times and distribution functions. A case study showed:This method can simulate and analyze the situation of gas migration in mining stope and get mass data about gas migration such as speed and gas bulk fraction in every time and every space of the mining stope, and many laws are gained such as laws of streamtrace, speed and gas distribution.
     3.Simulation of gas migration in coal seam based on LBM. Two 3D double grid LB models which can simulate diffusion of gas adsorbed in pore space and seepage of free gas in fracture have been constructed for Isothermal and non-isothermal coal seam respectively. Double grid technique has been adopted to simulate gas diffusion and seepage in double-porosity of same coal seam, that is, a fine grid was used to simulate adsorbed gas desorbing form pore space, becoming free gas and diffusing to fracture; another coarse grid was used to simulated free gas seeping process in fracture. Two grids exchanged data by interpolation. By this way, simulation of gas migration in coal seam is realized. A case study showed, this method can simulate gas migration in coal seam effectively and get gas mass data such as speed and gas concentration in every time and every space of coal seam, and also obtain law of gas flow streamtrace, speed, press and gas migration. This method can provide a new method for revealing law of gas migration, emission, outburst and volume of emission, and also provide basis for risk evaluation and analysis.
     4. Gas migration in stope when reversing air-current. A multi-field coupled model with fields of speed, concentration and temperature has been constructed after analyzing the flow field characteristics when reversing air-current. The paper presented algorithm and simulation case of gas migration in reversing air-current status. The simulation results present basis for decision making when fire accident occurs whether we can control the fire smoke flow by using reversing air-current method. A case study showed, the simulation can get mass data such as gas flow speed, pressure, and temperature and gas bulk fraction in tunnel and goaf when reversing air-current. It can provide a new method to reveal gas migration when reversing air-current, and provide basis for risk evaluation and analysis of reversing air-current.
     5.Risk evaluation method of gas aggregation based on both-branch decision-making and fuzzy Petri net. After comprehensively considered with factors such as promoting and counteracting influencing factors, an evaluation risk method of gas aggregation in tunnels which based on both-branch decision-making and fuzzy Petri net is presented. A case study showed:The Evaluation risk method can effectively describe the propagation relationship of gas aggregation factors. The model is expressed by figure and is easy to understand, which fully reflects the ability of both-branch fuzzy Petri net to depict the dynamic behaviors of system. The reasoning process adopts simple matrix calculation which improves the efficiency of the risk evaluation.
     This paper researches on numeric simulation of gas migration in underground coal mine. It discloses the regularities on the gas emission, diffusion, migration, buoyancy and aggregation, and then provides the regularities of gas migration, aggregation position and the control methods. The risk evaluation method of gas aggregation based on both-branch decision-making and fuzzy Petri net can provide decision basis for preventing gas aggregation and coal-mining pit explosion.
引文
[1]周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007:322-324.
    [2]Carol J.Bibler,James S.Marshall,Raymond C.Pilcher.Status of worldwide coal mine methane emissions and use[J].International Journal of Coal Geology,1998, 35:283-310.
    [3]周心权,吴兵,徐景德.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,2002,28(9):8-11.
    [4]M. Kobek,Z.Jankowski,Cz. Chowaniec,et al. A Assessment of the cause and mode of death of victims of a mass industrial accident in the Halemba coal mine[J].Forensic Science International,2009,Supplement Series 1:83-87.
    [5]李宗翔.综放工作面采空区瓦斯涌出规律的数值模拟研究[J].煤炭学报,2002,27(2):173-178.
    [6]李宗翔,题正义,赵国忱.回采工作面采空区瓦斯涌出规律的数值模拟研究[J].中国地质灾害与防治学报,2005,16(4):42-46.
    [7]茹阿鹏,林柏泉,王婕.掘进工作面瓦斯流动场及涌出规律探讨[J].中国矿业,2005,14(11):60-62.
    [8]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报,2000,29(1):9-14.
    [9]http://www.chinasafety.gov.cn.
    [10]梁栋.巷道气体分层流特性分析[J].广州大学学报(自然科学版),2004,3(1):51-54.
    [11]王恩元,梁栋,柏发松.巷道瓦斯运移机理及运移过程的研究[J].山西矿业学院学报,1996,14(2):130-135.
    [12]梁栋,王继仁,王树刚.巷道风流中瓦斯逆流机理及其实验研究[J].煤炭学报,1998,23(5):476-479.
    [13]鹿广利,李崇山,辛嵩.集中有害气体在通风网路中传播规律的研究[J].山东科技大学学报:自然科学版,2000,19(2):120-122.
    [14]Sun Ji-ping,Tang Liang,Chen Wei,WANG Fu-zeng.Numerical Simulation of Methane Distribution and Sensor Placement in 2-Dimension Roadway[J].Journal of China University of Mining & Technology,2007,17(3):0372-0375.
    [15]Xu T,Tang C A,Yang T H.Numerical investigation of coal and gas outbursts in underground collieries [J].International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [16]魏引尚,常心坦.瓦斯在通风巷道中流动分布情况研究[J].西安科技大学学报,2005,25(3):271-273
    [17]高建良,罗娣.巷道风流中瓦斯逆流现象的数值模拟[J].重庆大学学报,2009,32(3):319-322.
    [18]朱迎春,周心权,王海燕,朱令起.巷道冒落区瓦斯积聚的数值模拟及应用[J].西安科技大学学报,2008,28(2):314-317.
    [19]郝宇.煤与瓦斯突出沿井巷传播规律研究[J].煤炭技术,2005,28(11):74-76.
    [20]Javier Torano,Susana Torno,Mario Menendez,et al.Models of methane behaviour in auxiliary ventilation of underground coal mining[J].International Journal of Coal Geology,2009,80:35-43.
    [21]李宗翔.采空区场流安全理论及其研究的新进展[J].中国安全科学学报,2005,15(12):85-88.
    [22]丁广骧,邸志乾等.二维采空区非线性渗流函数方程及有限元解法[J].煤炭学报,1993,18(2):19-24.
    [23]丁广嚷,柏发松.采空区混合气运动基本方程及其有限元解法[J].中国矿业大学学报,1996,25(3):21-26.
    [24]李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解[J].岩石力学与工程学报,2005,24(16):2971-2976.
    [25]秦跃平,朱建芳,陈永权,谭昆.综放开采采空区瓦斯运移规律的模拟试验研究[J].煤炭科学技术,2003,31(11):13-16.
    [26]李宗翔,孟宪臣,赵国忱.任意形冒落非均质采空区流场流态数值模拟[J].力学与实践,2005,27(6):26-28.
    [27]李宗翔,孙广义,秦书玉.回采采空区上隅角瓦斯治理的数值模拟与参数确定[J].中国地质灾害与防治学报,2001,12(4):9-12.
    [28]李宗翔,海国治,秦书玉.采空区风流移动规律的数值模拟与可视化显示 [J].煤炭学报,2001,26(1):76-80.
    [29]R. L.Mazza,M.P.Mlinar.Reducing methane in coal mine gob areas with vertical boreholes [R].U.S.Department of the Interior,Bureau of Mines,Research Report No.1607-1-77,Pittsburgh,PA(1977).
    [30]T.X.Ren and J.S.Edwards.Goaf gas modeling techniques to maximize methane capture from surface gob wells [M].//Euler De Souza,Editor.Mine Ventilation,2002:279-286.
    [31]V.Palchik.Use of Gaussian distribution for estimation of gob gas drainage well productivity[J].Mathematical Geology,2002,34:743-765.
    [32]C.Ozgen Karacan.Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines [J].International Journal of Coal Geology,2008,73:371-387.
    [33]CO.Karacan,W.P.Diamond,G.S.Esterhuizen and S.J.Schatzel.Numerical analysis of the impact of longwall panel width on methane emissions and performance of gob gas ventholes[C]//Proceedings 2005 International Coalbed Methane Symposium,Tuscaloosa,Alabama:2005.
    [34]刘剑.采空区自然发火数学模型及其应用研究[D].沈阳:东北大学,1999.
    [35]丁广攘,杨胜强.采场复杂流场的流体动力相似与模化问题[J].中国矿业大学学报,1995,24(1):47-52.
    [36]柏发松.采空区流场的动力相似特性及应用研究[J].焦作工学院学报,1997,16(3):68-73.
    [37]蒋曙光,张人伟.综放采场流场数学模型及数值计算[J].煤炭学报.1998,23(3):258-261.
    [38]蒋曙光,王省身.综放采场流场及瓦斯运移三维模型试验[J].中国矿业大学学报,1995,24(4):85-89.
    [39]钟家民,罗颖.综放采场瓦斯运移的计算机模拟[J].安阳大学学报,2003,(2):12-14.
    [40]梁栋,周西华.回采工作面瓦斯运移规律的数值模拟[J].辽宁工程技术大学学报(自然科学版),1999,18:337-340.
    [41]李宗翔,王继仁,周西华.采空区开区移动瓦斯抽放的数值模拟[J].中国矿业大学学报,2004,33(1):74-78.
    [42]CAO Shu-gang,LIU Yan-bao,WANG Yan-ping.A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM[J].Journal of China University of Mining & Technology,2008,18: 0172-0176.
    [43]Whittles D.N.,Lowndes I.S.,Kingman S.W.,et al.Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel [J].International Journal of Rock Mechanics & Mining Sciences,2006,43(3): 369-387.
    [44]C.O.Karacan,G.S.Esterhuizen,S.J.Schatzel,W.P.Diamond.Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production[J].International Journal of Coal Geology,2007,71:225-245.
    [45]梁栋,吴强.低雷诺数风流中瓦斯上浮机理及其实验研究[J].黑龙江科技学院学报,2001,11(3):10-12.
    [46]柏发松.采空区瓦斯上浮问题的实验研究[J].阜新矿业学院学(自然科学版).1997,16(4):412-416.
    [47]傅培舫,王国超,叶汝陵.巷道顶板瓦斯积聚现象的模拟研究[J].煤炭工程师,1994,4:12-21.
    [48]王凯,俞启香,杨胜强,张仁贵.脉冲通风条件下上隅角瓦斯运移数值模拟与试验研究[J].煤炭学报,2000,25(4):391-396.
    [49]李宗翔,孙广义,王洪德.均压法治理采空区上隅角瓦斯的数值模拟研究[J].湘潭矿业学院学报,2002,17(3):9-12.
    [50]J.Drzewiecki.Methane emission from longwalls and its relationship to advance rate [J].Archives of Mining Sciences,2004,49(2):0860-7001.
    [51]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-37.
    [52]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [53]刘建军,非等温情况下煤层瓦斯流动规律的研究[D].阜新:辽宁工程技术大学,1998.
    [54]梁冰,刘建军,范厚彬,章梦涛.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [55]罗新荣,俞启香.煤层瓦斯运移方程的数值模拟分析[J].煤矿安全,1996,2:24-27.
    [56]刘明举.幂定律基础上的煤层瓦斯流动模型[J].焦作矿业学院学报,1994,36(1):36-42.
    [57]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(6):24-28.
    [58]赵志根,檀双英.煤层瓦斯流动数值模拟的初步研究[J].西部探矿工程,2002,77:59-60.
    [59]史小卫,刘永茜,任玉春.应力作用下的煤层瓦斯运移规律[J].煤炭科学技术,2009,37(5):42-46.
    [60]汪有刚,刘建军,杨景贺,曾明胜.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):285-289
    [61]丁广骧.煤层瓦斯实用动力学方程及其有限元解法[J].中国矿业大学学报,1997,26(4):74-77.
    [62]张广洋,谭学术,鲜学福,杜云贵.煤层瓦斯运移的数学模型[J].重庆大学学报,1994,17(4):53-57.
    [63]李祥春,郭勇义等.考虑吸附膨胀应力影响的煤层瓦斯流-固耦合渗流数学模型及数值模拟[J].岩石力学与工程学报,2007,26(1):2743-2748.
    [64]王晓亮,郭勇义,吴世跃.煤层中瓦斯流动的计算机模拟[J].太原理工大学学报,2003,34(4):402-406.
    [65]王锦山,刘建军等.煤层瓦斯流固耦合渗流的二维数值模拟[J].河北科技师范学院学报,2004,18(3):19-24.
    [66]李云浩,杨清岭,杨鹏.煤层瓦斯流动的数值模拟及在煤壁的应用[J].中国安全生产科学技术,2007,3(2):74-78.
    [67]滕桂荣,谭云亮,高明,赵志刚.基于LBM方法的裂隙煤体内瓦斯抽放的模拟分析[J].煤炭学报,2008,33(8):914-920.
    [68]朱万成,杨天鸿,霍中刚等.基于数字图像处理技术的煤层瓦斯渗流过程数值模拟[J].煤炭学报,2009,34(1):18-23.
    [69]Valliappan S.Zhang W H.Numerical modeling of methane gas migration in dry coal seams[J].International Journal for Numerical and Analytical Methods in Geomechanics,1998,20(8):571-593.
    [70]Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs [J].Geological Society Publication.1996,199: 197-212.
    [71]Enever J R E,Henning A.The relationship between per-meability and effective stress for Australian coal and its implica-tions with respect to coal bed methane exploration and reservoirmodelling[C]//Proceedings of the 1997 International Coalbed Methane Symposium.Alabama:The University of Alabama Tus-caloosa, 1997:13-22.
    [72]Methanch B W,Volz R F,Potler,et al.The effect of cleat orientation and confining pressure on cleat porosity,permeability and relative permeability in coal[C]//Proceedings of the 1993 International Coalbed Methane Symposium.The university of Alabama,1993:147-256.
    [73]Zhu W.C.,Liu J.,Sheng,J.C.,Elsworth,D.Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams [J].International Journal of Rock Mechanics & Mining Sciences,2007,44(7): 971-980.
    [74]Alsaab D,Elie M,Izart A,et al.Distribution of thermogenic methane in carboniferous coal seams of the Donets Basin (Ukraine):Applications to exploitation of methane and forecast of mining hazards [J].International Journal of Coal Geology, 2009,78(1):127-137.
    [75]Karacan C O,Ulery J P,Goodman G V R.A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining [J].International Journal of Coal Geology,2008, 75(4):195-203.
    [76]Douglas M.Smith,Frank L.Williams.Diffusion models for gas production from coal:Determination of diffusion parameters[J].Fuel,February 1984,63(2): 256-261.
    [77]Kotur S.Narasimhan,A.K.Mukherjee,S.Sengupta,et al.Coal bed methane potential in India[J].Fuel,1998,77(15):1865-1866.
    [78]Alexeev A D,U lyanova E V,Starikov G P.Latent methane in fossil coals [J].Fuel,2004,83:1407-1411.
    [79]Jack C.Pashin,Richard H.Groshong Jr.Structural control of coalbed methane production in Alabama [J].International Journal of Coal Geology 1998,38:89-113.
    [80]Zhao Chong,i Villiappan S.Finite element modeling of methane gas migration in coal seams [J].Computers& Structures,1995,55(4):625-629.
    [81]Slawomir Kedzior.Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin(southern Poland)[J].International Journal of Coal Geology,2009,80:20-34.
    [82]Thomas Gentzis,Dale Bolen.The use of numerical simulation in predicting coal bed methane producibility from the Gates coals,Alberta Inner Foothills,Canada: Comparison with Mannville coal CBM production in the Alberta Syncline [J].International Journal of Coal Geology,2008,74:215-236.
    [83]Ian Palmer.Permeability changes in coal:Analytical modeling[J].International Journal of Coal Geology,January 2009,77(1-2):119-126.
    [84]X.R.Wei,G.X.Wang,P.Massarotto,S.D.Golding,V.Rudolph Numerical simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced coalbed methane recovery[J].Chemical Engineering Science,2007,62: 4193-4203.
    [85]CO.Karacan.Evaluation of the relative importance of coalbed reservoir parameters for prediction of methane inflow rates during mining of longwall development entries [J].Computers and Geosciences,2008,34:1093-1114.
    [86]Chongbin Zhao and S.Valliappa. Finite Element Modelling Of Methane Gas Migration In Coal Seams [J].Compurers & Structures,1995,55(4):625-629.
    [87]丁厚成,蒋仲安,李示波等.水封式高位抽放巷道瓦斯抽放机理和应用研究[J].中国矿业,2008,17(3):103-107.
    [88]兰华菊,卢义玉,康勇,程君.极小转弯半径钻井在低渗透率煤层瓦斯抽放中的试验研究[J].河北工业大学学报,2007,36(6):28-31.
    [89]侯守道.1307工作面顺层长钻孔瓦斯抽放试验研究[J].煤矿开采,2006,11(1):70-71.
    [90]王凯,俞启香,蒋承林.钻孔瓦斯动态涌出的数值模拟研究[J].煤炭学报,2001,26(3):279-284.
    [91]Q.D.Qu,J. L.Xu,S.Xue.Improving methane extraction ratio in highly gassy coal seam group by increasing longwall panel width[J].Procedia Earth and Planetary Science,2009,1:390-395.
    [92]张春会,于永江,赵全胜.煤岩瓦斯抽放固气数学模型及应用[J].辽宁工程技术大学学报(自然科学版),2008,27(6):844-847.
    [93]邓明,张国枢,刘泽功.高瓦斯面顶板走向钻孔抽放数值模拟与试验[J],煤田地质与勘探,2008,35(6):20-24.
    [94]李霄尖,姚精明,刘会田等.基于UDEC的高位钻孔抽放瓦斯数值模拟研究[J].中国煤炭,2008,34(8):93-95.
    [95]王路珍,杜春志,卜万奎,柳红燕.煤层钻孔孔壁瓦斯涌出的数值模拟[J].矿业安全与环保,2008,35(6):4-6.
    [96]周晓军,马心校,鲜学福.煤层穿层钻孔周围瓦斯运移规律的研究[J].煤炭工程师,1996,5:36-39.
    [97]Ren T X,Edwards J S,David J.Simulation of methane drainage boreholes using computational fluid dynamics[J].American Society of Mechanical Engineers Pressure Vessels and Piping Division,1999,397:319-326.
    [98]许江,陶云奇,尹光志,李树春,王维忠.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [99]颜爱华,徐涛.煤与瓦斯突出的物理模拟和数值模拟研究[J].中国安全科学学报,2008,18(9):37-42.
    [100]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [101]李利萍,潘一山.煤与瓦斯突出瓦斯射流数值模拟[J].辽宁工程技术大学学报,2007,26增:98-100.
    [102]徐涛,郝天轩,唐春安.含瓦斯煤岩突出过程数值模拟[J].中国安全科学学报,2005,15(1):108-110.
    [103]王路军,李守国,高坤.关于煤与瓦斯突出的数值模拟[J].煤矿安全,2008,10(1):4-7.
    [104]Wu Shi-yue,Guo Yong-yi,Li Yuan-xing,et al.Research on the mechanism of coal and gas outburst and the screening of prediction indices[J].Procedia Earth and Planetary Science,2009,1:173-179.
    [105]Otuonye F,Sheng J.A numerical simulation of gas flow during coal/gas outbursts[J].Geotechnical and Geological Engineering.1994,12:15-34.
    [106]M.B.Wold,L.D.Connell,S.K.Cho.The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining[J].International Journal of Coal Geology,2008,75:1-14.
    [107]Maria B.Diaz Aguado.,C.Gonzalez Nicieza. Control and prevention of gas outbursts in coal mines,Riosa-Olloniego coalfield,Spain[J].Department of Mining Exploitation,2007,69(4):253-266.
    [108]J.G.Singh.A mechanism of outbursts of coal and gas[J].Mining Science and Technology,1984,1(4):269-273
    [109]Uszko Marek.Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA[J].Procedia Earth and PlanetaryScience,2009,1:54-59
    [110]Huoyin Li.Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst,Pingdingshan coalfield,northern China[J].International Journal of Coal Geology,2001,47:101-113.
    [111]Yunxing Cao,Dingdong He,David C.Glick.Coal and gas outbursts in footwalls of reverse faults[J].International Journal of Coal Geology,2001,48:47-63.
    [112]董钢锋,胡千庭.工作面瓦斯涌出及采空区瓦斯抽放的COSFLOW模拟预测[J].矿业安全与环保,2007,34(2):34-37.
    [113]张军,孙炳兴,梁运培等.工作面瓦斯涌出量预测数值模拟方法应用[J].煤矿安全,2007,3:15-18.
    [114]周凤增,殷作如.深部采煤工作面瓦斯涌出受采动影响数值模拟的研究[J].中国煤炭,2008,34(11):44-46.
    [115]NOACK K.Control of gas emissions in underground coal mines[J].International Journal of Coal Geology,1998,35:57-82.
    [116]H Guo,D.P.Adhikary,M.S.Craig.Simulation of mine water inflow and gas emission during longwall mining[J].Rock Mechanics & Rock Engineering,2009, 42(1):25-51.
    [117]Krzysztof Warmuzinski.Harnessing methane emissions from coal mining[J].Process Safety and Environment Protection,2008,86:315-320.
    [118]D.N.Whittles,I.S.Lowndes,S.W.Kingman,C.Yates,S.Jobling.The stability of methane captures boreholes around a long wall coal panel[J].International Journal of Coal Geology,2007,71(2-3):313-328.
    [119]Catherine Mitchell.Methane emissions from the coal and natural gas industries in the UK[J].Chemosphere,January-February 1993,26(1-4):441-446.
    [120]S.Sarac,C.Sensogut.A statistical determination of methane emission from coalbeds-case study[J].Journal of the South African Institute of Mining & Metallurgy, 2003,103(3):0038-223X.
    [121]Antoshchenko,NI.Classification of methane emissions types in coal mines [J].UgolUkrainy,2002,2(3):54-56.
    [122]W.L.Lunarzewski.Gas emission prediction and recovery in underground coal mines[J].International Journal of Coal Geology,1998,35:117-145.
    [123]B.D.Baner Jee,B.B.Dhar.Issues and options for reducing methane to emission to the atmosphere from Indian coal mining [J].Enery Convers.Mgmt,1996, 37(6-8):1175-1179.
    [124]Md.Rafiqul Islam,Ryuichi Shinjo.Numerical simulation of stress distributions and displacements around an entry roadway with igneous intrusion and potential sources of seam gas emission of the Barapukuria coal mine,NW Bangladesh [J].International Journal of Coal Geology,2009,78:249-262.
    [125]Jun Yi,I.Yucel Akkutlu,C.Ozgen Karacan,C.R. Clarkson.Gas sorption and transport in coals:A poroelastic medium approac[J].International Journal of Coal Geology,2009,77:137-144.
    [126]宋福海,常文杰,杨忠东,计算机模拟矿井反风的探讨[J].煤矿安全,2002,33(1):34-36.
    [127]郭启明,尹昭宏.高瓦斯采煤工作面反风期间瓦斯涌出规律浅析[J].中州煤炭,1999,6:34-35.
    [128]徐诗林.浅析矿井反风中瓦斯变化规律[J].矿山安全与环保,2002,26(增):29-30.
    [129]何启林,常胜秋.矿井反风时回风流中沼气浓度变化规律[J].东北煤炭技术,1998,(4):46-48.
    [130]张爱然,罗新荣,杨飞,康与涛.矿井瓦斯危险性评价模型探讨[J].能 源技术与管理,2007,3:66-67.
    [131]魏引尚,张俭让,常心坦.基于信息熵的矿井瓦斯积聚危险性评价探讨[J].矿业安全与环保,2005,32(2):25-47.
    [132]魏引尚.基于概率统计的通风巷道瓦斯积聚危险性分析研究[D].西安:西安科技大学,2004.
    [133]宋士学,曹庆贵,林乐顺.基于AHP和模糊数学的煤矿瓦斯爆炸危险性评价及应用[J].工业安全与环保,2006,32(6):57-59.
    [134]桂祥友,郁钟铭.基于灰色关联分析的瓦斯突出危险性风险评价[J].采矿与安全工程学报,2006,23(4):464-467.
    [135]李成武.区域煤与瓦斯突出危险性动态评价方法[J].煤矿安全,2007,5:64-66
    [136]林柏泉,钱立平,翟成.矿井瓦斯爆炸危险性分析评价系统[J].中国煤炭,2003,29(7):12-14.
    [137]黄光球,朱华平,郑彦全.基于模糊Petri网的事故树模糊分析方法研究[J].湖南科技大学学报(自然科学版),2006,21(2):34-39.
    [138]M.K.G.Whateley.Measuring.Understanding and visualising coal characteristics-innovations in coal geology for the 21st century [J].International Journal of Coal Geology,2002,50:303-315.
    [139]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法)[M].武汉:湖北科学技术出版社,2002:1-166.
    [140]郭照立,郑楚光.格子Boltzmann;方法的原理及应用[M].北京:科学出版社,2008:10-188.
    [141]Vekovee M,Coveney P V.Lattice Boltzmann model for interacting amphiphiIic fluids [J].Phys.Rev.E,2000,62:8282-8294.
    [142]N.Z.He,N.C.Wang,B.C.Shi,et al.A unified incompressible lattice BGK model and its application to three-dimensional lid-driven cavity flow[J].Chin. Phys.,2004,13:40-46.
    [143]Chew YT,Shu C,Niu XD.A New Diferential lattice Boltzmann Equation and Its Application to Simulate Incompressible Flows on Non-Uniform Grids[J].J.Stat.Phys.,2002,107:329-342.
    [144]Peng Yuan.Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics [D].Pittsburgh:University of Pittsburgh,2005.
    [145]Gonnella G.Lattice Boltzmann simulation of segregating binary fluid mixtures in shear flow[J].Physica A 2001,294:295-312.
    [146]Luo L S.Theory of lattice Boltzmann method:Lattice Boltzmann models for nonideal gases[J].Phys.Rev.E,2000,62:4982-4996.
    [147]Lee T,Lin C L.An Eulerian Description of the Streaming Process in the Lattice Boltzmann Equation[J].J.Comp.Phys,2003,185:445-471.
    [148]Yu D,Mei R,Shyy W.A Multi-block Lattice Boltzmann Method for Viscous Fluid Flows[J].Int.J. Numer.Meth.Fluids,2002,39:99-120.
    [149]Chew Y T,Shu C,Niu X D.A New Diferential Lattice Boltzmann Equation and Its Application to Simulate Incompressible Flows on Non-Uniform Grids[J].J.Stat.Phys,2002,107:329-342.
    [150]Guo W B,Shi B C,Wang N C,Guo Z L.Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder[J].Chin.Phys,2003,12(1): 67-74.
    [151]Guan H,Wu C J.Large-eddy simulations of turbulent cavity flows with the dynamic SGS model and LBM algorithm[J].Transactions of Nanjing Univ. of Aeronautics & Astronautics,2001,18(Suppl.):60-63.
    [152]Murata T.Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets[M]//Application and Theory of Petri Nets 1996,Lecture Notes in Computer Science. New York:Springer-Verlag,June 1996:11-28.
    [153]史开泉,李岐强.双枝模糊决策与决策识别问题[J].中国工程,2001,3(1):71-77.
    [154]高梅梅,吴智铭.模糊时间Petri网及其时间推理方法[J].计算机科学,2000,27(7):11-31.
    [155]马军霞,卢红星.基于一种模糊时间Petri网的不确定性时间知识表示和推理[J].郑州轻工业学院学报(自然科学版),2008,23(4):80-85.
    [156]刘剑刚,高洁,王明哲.模糊Petri网及其在模糊推理中的应用[J].计算机仿真,2004,2(111):152-154.
    [157]高梅梅,吴智铭.模糊推理Petri网及其在故障诊断中的应用[J].自动化学报,2000,2(65):677-680.
    [158]张福平,李堂军,杨磊.基于遗传算法优化模糊Petri网的掘进工作面瓦斯爆炸事故致因分析[J].矿业安全与环保,2005,35(2):56-61.
    [159]王培良,赵义军,曾庆田.煤矿安全系统工程的模糊Petri网分析方法[J].煤矿安全,2002,33(12):23-24.
    [160]董豆豆.周忠宝.周经伦等.基于Petri网的安全监控建模与实时安全分析[J].核动力工程,2008,28(4):91-95.
    [161]S.Chen,H.Chen,D.O.Martinez and W.H.Matthaeus.Lattice Boltzmann model for simulation of magnetohydrodynamics [J].Phs.Rev.Lett.1991,67: 3776-3779.
    [162]Y.Qian,D.d'Humieres and P.Lallemand.Lattice BGK models for Navier-Stokes equation[J].Europhys.Let.1992,15:603-607.
    [163]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].科学出版社,2009:10-186.
    [164]Jonas Latt.Choice of units in lattice Boltzmann simulations [EB].www.lbmethod.org,2008.
    [165]张小军.格子法理论及其在计算流体力学中的应用研究[D].武汉:武汉理工大学,2003.
    [166]Ye Zhao.Modeling Natural Phenomena with Lattice Boltzmann Method[D].Stony Brook:Computer Science Stony Brook University,2006.
    [167]Chen S,Martinez D,Mei R.On boundary conditions in lattice Boltzmann methods[J].J.Phys.Fluids.,1996,8:2527-2536.
    [168]Bouzidi M,Firdaouss M,Lallemand P.Momentum transfer of a Lattice Boltzmann fluid with boundaries[J].J.Phys.Fluids.,2001,13(11):3452-3459.
    [169]王兴勇.Lattice Boltzmann方法的理论及其在水利计算中应用的研究[D].南京:河海大学,2003.
    [170]Guo Z L,Shi B C,Zheng C G.A coupled lattice BGK model for the Boussinesq equation [J].Int J Num Fluids,2002,39(4):325-342.
    [171]张国枢,通风安全学[M].中国矿业大学出版社,1999:20-124.
    [172]O.Filippova and D.HOnel.Grid refinement for lattice-BGK Models [J].J.Comput.Phs.,1998,147:219-228,.
    [173]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版 社,1994:23-78.
    [174]D Raabe.Overview of the lattice Boltzmann method for nano-and microscale fluid dynamics in materials science and engineering[J].Modelling Simulation Material Science Engineering,2004,12:R13-R46.
    [175]许友生.用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征[D].上海:华东师范大学,2006.
    [176]郭照立,李青,郑楚光.双扩散自然对流的格子Boltzmann模拟[J].计算物理,2002,19(6):483-486.
    [177]Shi Su,Andrew Beath,Hua Guo,Cliff Mallett.An assessment of mine methane mitigation and utilisation technologies[J].Progress in Energy and Combustion Science,2005,31:123-170.
    [178]Charles M.Boyer Ⅱ,Bai Qingzhao.Methodology of coal bed methane resource assessment [J].International Journal of Coal Geology,1998,35:349-368.
    [179]Romeo M.Flores.Coalbed methane:From hazard to resource [J].International Journal of Coal Geology,February 1998,35(1-4):3-26.
    [180]Satya Harpalani and Guoliang Chen.Estimation of changes in fracture porosity of coal with gas emission [J].Fuel,1995,74(10):1491-1497.
    [181]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [182]史小卫,刘永茜,任玉春.应力作用下煤层瓦斯运移规律[J].煤炭科学技术,2009,37(5):42-46.
    [183]许友生,刘慈群,林机.Darcy渗流定律的微观界定及其应用[J].应用数学和力学,2004,25(3):253-260.
    [184]Chen Shi_yi,Wang Zhi,Shan Xao_wen,et al.Lattice Boltzmann computationl fluid dynamics in three dimensions[J].Stat Phys,1992,68(3/4): 379-400.
    [185]Bear J.Dynamics of Fluids in Porous Media[M].NewYork:American Elsevier Publishing Company,1972:15-86.
    [186]尹志华.矿井反风时工作面风流中瓦斯浓度降低的原因分析[J].矿业安全与环保,2002,6:26
    [187]常心坦.矿井火灾通风的数学模型及计算机模拟[M].美国矿业局,1987,80-120.
    [188]Pawlak Z.Rough sets [J].International Journal of Information and Computer Science,1982,11(5):341-356.
    [189]Pawlak Z.Rough sets and intelligent data analysis [J].Information Sciences, 2002,47(1/4):1-12.
    [190]Slowinski R.Intelligent decision support—handbook of applications and advanced of the rough sets theory [M].Kluwer Academic Publishers,1992:32-67.
    [191]张文修,吴伟志,梁吉业等.粗糙集理论和方法[M].北京:科学出版社,2001:19-25.
    [192]蒋仁言,左明健.可靠性模型与应用[M].机械工业出版社,1992:1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700