用户名: 密码: 验证码:
双季铵盐型Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国铝土矿资源的特点,在研究铝土矿反浮选捕收剂分子结构与浮选能力之间构效关系的基础上,制备了一类新型的双季铵盐型Gemini阳离子捕收剂,并将其应用于铝土矿反浮选脱硅,研究结果具有一定的理论意义与实际应用价值。
     运用量子化学计算及溶液化学方法,研究了一水硬铝石与层状硅酸盐矿物的结构、晶体性质及溶解性质差异。一水硬铝石费米能级附近的能带主要由O原子的2p轨道和Al原子的3s和3p轨道组成,而高岭石的导带主要由O原子的电子能级组成,Al原子的贡献几乎为零。这揭示了一水硬铝石与高岭石的活性位点不同,在浮选药剂分子上增加能够与一水硬铝石Al原子发生键合作用的官能团,可提高选冶药剂对铝硅矿物浮选分离的选择性。
     通过量子化学计算、分子动力学模拟及分子中原子的理论分析,研究了胺类阳离子捕收剂在铝硅矿物表面的作用机理,揭示了捕收剂分子结构与浮选捕收能力之间的构效关系。十二胺与高岭石之间存在静电作用和氢键作用;铝硅酸盐矿物浮选捕收剂分子中N原子数量的增加,可改变捕收剂分子极性基团的荷电性质,增强捕收剂的静电作用能力,提高捕收剂分子对硅酸盐矿物的捕收能力。
     制备了一类双季铵盐型Gemini阳离子反浮选捕收剂,对其进行了理论计算研究,Gemini捕收剂在静电作用和氢键作用两方面均优于传统季铵盐阳离子捕收剂;验证了新型捕收剂对单矿物的浮选能力,在相同实验条件下,Gemini捕收剂对铝硅矿物的浮选回收能力大于传统季铵盐捕收剂;改进了双季铵盐型Gemini阳离子捕收剂对实际铝土矿反浮选脱硅的分离工艺,得到了Al2O3品位69.07%,铝硅比9.66的反浮选精矿,这个选别指标完全满足了铝土矿拜耳法的生产要求。最后,本文研究了双季铵盐型Gemini阳离子捕收剂在矿物表面的吸附特性与机理。双季铵盐在高岭石表面的吸附机理也系静电吸引与氢键作用,但Gemini捕收剂与硅酸盐矿物之间的静电作用能力更强;且Gemini捕收剂具有二聚的结构,使其具有更小的临界胶束浓度,更强的表面活性,更容易吸附在矿粒周围,能有效地增加矿粒的疏水团聚性能。
Due to the character in most of the diasporic bauxite in China, a class of novel bis-quaternary ammionium salt cationic surfactants was used as revers flotation collector for the de-silication of bauxite ores, based on the invesgations of structure-activity relationship between the amine cationic collectors and their collecting ability. The results in this work have an important theory meaning and an actual application value.
     Differences of structure, crystal and solution properties between diaspore and the layered aluminosilicates are studied in this work by using quantum mechanical calculations and solution chemistry method. The electronic bands near Fermi level of diaspore are almost from the O 2p orbit and the Al 3s, 3p orbit, whereas the conduction bands of kaolinite are only associated with O atom, the contribution of Al atoms in kaolinite is little. This indicates that the reactive sites in diaspore and in kaolinite are different. Adding a functional group which can be selectively chemical bonding with Al atoms in diaspore may be beneficial to the separation of diaspore from the layered aluminosilicates.
     The mechanisms of cationic collectors adsorbed on kaolinite and the relationship between the surfactants structures and their flotation ability are discussed by quantum chemistry, molecular dynamics simulation and the atom in molecular theory. It is showed that flotation of kaolinite using dodecylamine as collector is mainly attributed to the physical electrostatic effect and the hydrogen bonds. Increasing N atoms in collector molecule can change the charge character of its cationic group, can enlarge the electrostatic effect, and thus can improve the collecting ability for the negative charged minerals.
     A class of bis-quaternary ammonium salt Gemini surfactants was synthesized aiming to be used as the reverse flotation collectors for kaolinite, illite and pyrophyllite. Firstly, by using density functional method, it is proved that the novel collector is superior to the corresponding conventional quaternary ammonium salt at the electrostatic attraction. Secondly, flotation tests of the single minerals show that, in the same condition, the floatability of the three silicate minerals with Gemini as a collector reveals far better than with the corresponding traditional cationic surfactant. Due to the optimization of flotation separation process, the bauxite concentrate with Al_2O_3 of 69.07%, the Al to Si mass ratio of 9.66 was obtained. This flotation results totally fulfill the requirements of bauxite Bayer processing. At last, the adsorption character and its mechanism of the Gemini adsorbed on kaolinite are studied. A detailed understanding for the merit collecting power of the Gemini is revealed. Although the physical effect accounts for its adsorption, the special dimeric structure of the bis-quanterany ammonium salt exhibits the lower CMC, the better surface activity, and thus the stronger hydrophobic aggregation ability.
引文
[1]刘凡中,世界铝土矿资源综述,轻金属,2001,(15):7-12.
    [2]廖士范,梁同荣,中国铝土矿地质学,贵阳:贵州科技出版社,1991.
    [3]方启学,黄国智,我国铝土矿资源特征及其选矿脱硅技术,国外金属矿选矿,2000,37(5):11-16.
    [4]刘中凡,杜雅君,我国铝土矿资源综合分析,轻金属,2000,(12):8-12.
    [5]杨重愚,氧化铝生产工艺学,北京:冶金工业出版社,1993,9-21.
    [6]王庆义,氧化铝生产,北京:冶金工业出版社,1995,2-13.
    [7]毕诗文,氧化铝的拜耳法溶出,北京:冶金工业出版社,1997.
    [8]陶英君,杨玉华,我国氧化铝工业现状与发展建议—第三次全国工业普查资料分析,轻金属,1998,(7):3-9.
    [9]陈万坤,彭关才,一水硬铝石型铝土矿的强化溶出技术,北京:冶金工业出版社,1997,21-25.
    [10]张文帅,我国铝工业能源消耗的基本情况,世界有色金属,2001,(1):29-31.
    [11]方启学,黄国智,葛长礼,我国铝土矿资源特征及其面临的问题与对策,轻金属,2000,(10): 8-11.
    [12]蒋昊,李光辉,胡岳华,铝土矿的铝硅分离,国外金属矿选矿,2001,(5):21-29.
    [13]刘永康,一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究:[博士学位论文],长沙,中南大学,1997.
    [14]罗琳,一水硬铝石型铝土矿化学选矿脱硅与综合利用:[博士学位论文],长沙,中南大学,1997.
    [15]罗琳,何伯泉,刘永康,国内外高硅铝土矿焙烧预脱硅工艺的评述,国外金属矿选矿,1999,(1):38-41.
    [16]赵世民,王淀佐,胡岳华,徐竟,赵小玲,铝土矿预脱硅研究,矿业研究与开发,2004,24(5):37-43.
    [17]仇振琢,低铁中等品位铝土矿生产氧化铝合理方案的商榷,轻金属,1987,( 2):8-14.
    [18]刘今,程汉林,吴若琼,低铝硅比铝土矿预脱硅研究,中南工业大学学报,1996,27(6):666-670.
    [19]范晓慧,李光辉,姜涛,铝土矿焙烧脱硅工艺及机理研究,金属矿山,2002,(7):16-18.
    [20]刘丕,吕子钊,韩中岭,我国铝土矿预焙烧对拜耳生产的影响及工业应用的分析,轻金属,1997,(4):15-18.
    [21]周国华,薛玉兰,蒋玉仁,浅谈铝土矿生物选矿,矿产综合利用,2000,(6):38-41.
    [22]李聆值,采用生物技术提高铝土矿质量,中国有色金属学报,1998,8(增刊2):361-364.
    [23] Groudeva,V.I., Groudev,S.N., Microbial Leaching of Uranium From Flotation Tailings in Alkaline Media, Process Metallurgy, 1999,9(1):319-326.
    [24] Vasan,S.S., Modak,J.M., Natarajan,K.A., Some Recent Advances in the Bioprocessing of Bauxite, International Journal of Mineral Processing, 2001,62(1-4):173-186.
    [25] Bandyopadhyay, Optimization of Physical Factors for Bioleaching of Silica and Iron Bauxite Ore by a Mutantstrain of Aspergillus Niger, Res Ind, 1995,40(1):14-17.
    [26]钮因键,硅酸盐细菌的选育及铝土矿细菌脱硅效果,中国有色金属学报,2004,14(2): 281-286.
    [27]欧阳坚,卢寿慈,国内外铝土矿选矿研究的现状,矿产保护与利用,1995,(6):40-43.
    [28]陈远道,高效铝土矿浮选捕收剂的研究与应用, [博士学位论文],长沙,中南大学,2007.
    [29] Eygeles,M.A., Selective Flotation of Kaolinite-Hydrargillite, Tsvetnye Met. Jan., 1970,(1):84-86.
    [30] Ishchenko,V.V., Solubilization Enhancing Effect ofα-β-Type Silicone Surfactants in Microemulsions, Izv.Vyssh.Ucheb. Zaved. Tsvet Met., 1972,15(5):8-12.
    [31] Hinds,S.A., Beneficiation of Bauxite Tailings, Light Metals, 1995,(2):24-28.
    [32]方启学,董国智,郭建,铝土矿选矿脱硅研究现状与展望,矿产综合利用,2001,(2):26-31.
    [33] Long,F.L., The Beneficiation of Accumulative Diaspore Predesilication and Elimination of the Iron Content, J.Central South Inst Min Metal, 1980,(4):82-88.
    [34]刘逸超,水云母—水硬铝石型铝土矿浮选试验,有色金属(选矿部分),1984,(1):11-13.
    [35]张国范,冯其明,卢毅屏,油酸钠对一水硬铝石和高岭石的捕收机理,中国有色金属学报,2001,11(2):298-301.
    [36]张国范,冯其明,卢毅屏,六偏磷酸钠在铝土矿浮选中的应用,中南工业大学学报,2001,32(2):127-130.
    [37]胡岳华,铝硅矿物溶液化学与铝土矿脱硅,北京:科技出版社,2004.
    [38]李海普,改性高分子药剂对铝硅矿物浮选作用机理及其结构—性能研究:[博士学位论文],长沙,中南大学,2002.
    [39]蒋昊,铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究:[博士学位论文],长沙,中南大学,2004.
    [40]陈湘清,硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究:[博士学位论文],长沙,中南大学,2004.
    [41]张国范,铝土矿浮选脱硅基础理论及工艺研究:[博士学位论文],长沙,中南大学,2001.
    [42]曹学峰,铝硅酸盐矿物捕收剂的合成及结构-性能研究: [博士学位论文],长沙,中南大学,2003.
    [43] Anishchenko,N.M., Interaction of Cation Reagents in the Flotation of Chamosite-Gibbsite Bauxites, Izv Vyssh Uchebn Zaved, Tsvet Met, 1972,(4):12-16.
    [44] Folcy,E., Remove of Iron Oxides From Bauxite Ores, Inst Mining Met Proc, 1991,(9):59-65.
    [45] Tikhonov,S.A., Removing Free Silica From Bauxite-Containging Rock, Tsvet Met, 1972,(1):43-45.
    [46] Ray,D.T., Study On the Beneficiation of Bauxite in the Tatun Volcanic Area, Taiwan Kuang Yeh Chi Shu, 1980,(18):69-81.
    [47]蒋昊,胡岳华,覃文庆,王毓华,王淀佐,直链烷基胺浮选铝硅矿物机理,中国有色金属学报,2001,11(4):688-692.
    [48]刘晓文,一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究:[博士学位论文],长沙,中南大学,中南大学,2003.
    [49] Hu,Y.H., Liu,X.W., Xu,Z.H., Role of Crystal Structure in Flotation Separation of Diaspore From Kaolinite, Pyrophyllite and Illite, Minerals Engineering, 2003,16(3):219-227.
    [50]彭兰,曹学峰,杜平,胺类捕收剂对铝硅矿物的浮选性能研究,广西民族学院学报(自然科学版),2006,12(1):68-74.
    [51]赵声贵,钟宏,刘广义,季铵盐捕收剂对铝硅矿物浮选行为的研究,金属矿山,2007,(2):45-47.
    [52]刘水红,郑桂兵,任爱军,曾克文,吴熙群,一水硬铝石和含铝硅酸盐在胺类捕收剂作用下的浮选行为,有色金属,2007,59(4):127-130.
    [53] Zhao,S.M., Wang,D.Z., Hu,Y.H., Liu,Y.H., Xu,J., The Flotation Behaviour of N-(3-Aminopropyl)-Dodecanamide On Three Aluminosilicates, Minerals Engineering, 2003,16(12):1391-1395.
    [54] Zhao,S.M., Wang,D.Z., Hu,Y.H., Bao,X.S., Xu,J., Flotation of Aluminosilicates Using N-(2-Aminoethyl)-1-Naphthaleneacetamide, Minerals Engineering, 2003,16(10):1031-1033.
    [55] Cao,X.F., Hu,Y.H., Jiang,Y.R., Flotation Mechanism of Aluminium Silicate Minerals with N-Dodecyl-1,3-Diaminopropane,Chin.J.Nonferrous Met, 2001,11(4):696-700.
    [56] Cao,X.F., Hu,Y.H., Xu,J., Synthesis ofγ-Alkoxy-Propylamines and their Collecting Properties On Aluminosilicate Minerals, J.Cent.South Univ.Technol., 2004,11(3):280-285.
    [57] Zhong,H., Liu,G.Y., Xia,L.Y., Lu,Y.P., Hu,Y.H., Zhao,S.G., Yu,X.Y., Flotation Separation of Diaspore From Kaolinite, Pyrophyllite and Illite Using Three Cationic Collectors, Minerals Engineering, 2008,21(12-14):1055-1061.
    [58]王淀佐,林强,蒋玉仁,选矿与冶金药剂分子设计,长沙:中南工业大学出版社,1996.
    [59] Hohenberg,P.C., Kohn,W., Inhomogneneous Electron Gas, Phys.Rev.B, 1964,(136):864-871.
    [60] Kohn,W., Sham,L.J., Quantum Density Oscillations in an Inhomogneneous Electron Gas, Phys.Rev.A, 1965,(137):1697-1705.
    [61] Kohn,W., Sham,L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys.Rev., 1965,(140):1133-1140.
    [62] Stowasser,R., Hoffmann,R., What do the Kohn-Sham orbitals and eigenvalues mean? J.Am.Chem.Soc., 1999,(121):3414-3420.
    [63] Bath,U.V., Hedin,L.A., Local Exchange-Correlation Potential for the Spin Polarized Case: I, J.Phys.C, 1972,5(13):1629-1642.
    [64] Perdew,J.P., Zunger,A., Self-Interaction Correction to Density-Functional Approximations for Many-Electron Ystems, Phys.Rev.B, 1981,23(10):5048-5079.
    [65] Becke,A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys.Rev.A, 1988,38(6):3098-3100.
    [66] Perdew,J.P., Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas, Phys.Rev.B, 1986,33(12):8822-8824.
    [67] Perdew,J.P., Wang,Y., Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation, Phys.Rev.B, 1986,33(12):8800-8802.
    [68] Perdew,J.P., Wang,Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys.Rev.B, 1992,45(23):13244-13249.
    [69] Jensen,J.O., Vibrational Frequencies and Structural Determinations of 3,5-Dicchloro-1,2,4-Trithia-3,5-Diborolane, Journal of Molecular structure(Theochem), 2002,584(1-3):79-87.
    [70] Jensen,J.O., Vibrational Frequencies and Structural Determinations of 3,5-Dibromo-1,2,4-Trithia-3,5-Diborolane, Spectrochimica Acta Part A, 2002,58(7):1461-1471.
    [71] Jensen,J.O., Vibrational Frequencies and Structrual Determinations of Pb4(OH)44+, Journal of Molecular Structure(Theochem), 2002,587(1-3):111-121.
    [72] Jensen,J.O., Vibrational Frequncies and Structural Determinations of Perfluoroallene,Journal of Molecular Structure(Theochem), 2002,619(1-3):69-77.
    [73] Jensen,J.O., Vibrational Frequncies and Structural Determinations of Tetrafluorobuta-Triene, Journal of Molecular Structure(Theochem), 2002,588(1-3):87-97.
    [74] Jensen,J.O., Caculation of the Vibrational Frequncies and Structure of Zirconium Tetrahydroborate, Vibrational Spectroscopy, 2003,31(2):227-250.
    [75] Jensen,J.O., Quantum Chemical Analysis of the Vibrational Frequncies and Structure of Tetrachlorodiborane, Journal of Molecular structure(Theochem), 2003,635(1-3):211-219.
    [76] Jensen,J.O., Vibrational Frequncies and Structural Determination of 3,5-Dimethyl-1,2,4-Trithia-3,5-Diborolane, Journal of Molecular Structure(Theochem), 2003,664-665(15):1-14.
    [77] Jensen,J.O., Vibrational Frequncies and Structural Determination of Tetraazidogermane, Spectrochimica Acta Part A, 2003,59(12):2805-2814.
    [78] Jensen,J.O., Vibrational Frequncies and Structural Determination of Tetraethynylstannane, Journal of Molecular Structure(Theochem), 2003,640(1-3):87-93.
    [79] Jensen,J.O., Vibrational Frequencies and Structural Determinations of 1,1-Dicyanocyclopropane, Spectrochinica Acta Part A, 2003,59(14):3227-3238.
    [80] Jensen,J.O., Vibrational Frequencies and Structural Determinations of Maleonitrile, Spectrochimica Acta Part A, 2003,59(5):1119-1126.
    [81] Jensen,J.O., Vibrational Frequencies and Structural Determinations of Pb6O(OH)64+, Journal of Molecular Structure(Theochem), 2003,635(1-3):11-24.
    [82] Jensen,J.O., Vibrational Frequencies and Sructural Determinations of Tetraisocyanatogermane, Journal of Molecular Strucute(Theochem), 2003,620(2-3):165-175.
    [83] Jensen,J.O., Vibrational Frequencies and Structural Determinations of Urazole, Spectrochimica Acta Part A, 2003,59(3):637-650.
    [84] Jensen,J.O., Vibrational Frequencies and Structural Determination of 1,6-Dicarba-Closo-Hexaborane, Spectrachimica Acta Part A, 2004,60(1):57-76.
    [85] Jensen,J.O., Vibrational Frequencies and Structural Determination of Arsenous Tricyanide, Journal of Molecular Structure(Theochem), 2004,678(1-3):195-199.
    [86] Jensen,J.O., Vibrational Frequencies and Structural Determination of Dicyanoacetylene, Journal of Molecular Structure(Theochem), 2004,678(1-3):233-237.
    [87] Jensen,J.O., Vibrational Frequencies of Structural Determinations of Digermylcarbodii-Mide, Spectrochimica Acta Part A, 2004,60(11):2493-2498.
    [88] Jensen,J.O., Vibrational Frequencies and Structural Determination ofN-Bromodifluoro-Methylenimine, Journal of Molecular Structure(Theochem), 2004,678(1-3):139-143.
    [89] Jensen,J.O., Vibrational Frequencies and Structural Determination of N-Chlorodifluoro-Methylenimine, Journal of Molecular Structure(Theochem), 2004,679(1-3):137-142.
    [90] Jensen,J.O., Vibrational Frequencies and Structural Determination of Phosphorous Tricyanide, Spectrochimica Acta Part A, 2004,60(11):2537-2540.
    [91] Jensen,J.O., Vibrational Frequencies and Structural Determination of Tetrafluoro-1,3-Dithietane, Journal of Molecular Structure(Theochem), 2004,678(1-3):189-193.
    [92] Jensen,J.O., Vibrational Frequencies and Structural Determination of Tetrafluoroforma-Ldazine, Spectrochimica Acta Part A, 2004,60(11):2541-2545.
    [93] Jensen,J.O., Vibrational Frenquencies and Structural Determination of the Perfluorocyclo-Propenyl Cation, Journal of Molecular Structure(Theochem), 2004,673(1-3):29-33.
    [94] Jensen,J.O., Vibrational Frequencies and Structural Determination of Trienthynylmethyl-Germane, Spectochimica Acta Part A, 2004,60(12):2819-2824.
    [95] Jensen,J.O., Vibrational Frequencies and Structural Determination of Triethynylmethyl-Silane, Spectrochimica Acta Part A, 2004,60(8-9):1925-1930.
    [96] Jensen,J.O., Vibrational Frequencies and Structural Determinationa of Disilylcarbodii-Mide, Journal of Molecular Structure(Theochem), 2004,686(1-3):173-179.
    [97] Jensen,J.O., Vibrational Frequencies and Structural Determination of Cyanogen Isocyanate, Journal of Molecular Structure(Theochem), 2005,715(1-3):1-5.
    [98] Jensen,J.O., Vibrational Frequencies and Structural Determination of Cyanosulfur Pentafluoride, Journal of Molecular Structure (Theochem), 2005,713(1-3):79-85.
    [99] Jensen,J.O., Vibrational Frequencies and Structural Determination of Fluorine Nitrate, Journal of Molecular Structure (Theochem), 2005,716(1-3):11-17.
    [100] Jensen,J.O., Vibrational Frequencies and Structural Determination of Ge3o3, Journal of Molecular Structure(Theochem), 2005,718(1):203-208.
    [101] Jensen,J.O., Vibrational Frequencies and Structural Determination of Ge4O4, Spectrochimica Acta Part A, 2005,61(13-14):3108-3111.
    [102] Jensen,J.O., Vibrational Frequencies and Structural Determination of Methyl-Thiogermane, Journal of Molecular Structure(Theochem), 2005,714(2-3):137-141.
    [103] Jensen,J.O., Vibrational Frequencies and Structural Determination of Cyanosulfur Trifluoride, Journal of Molecular Structure(Theochem), 2005,723(1)17-22.
    [104] Jensen,J.O., Vibrational Frequencies and Structural Determination of Cycloheptatriene, Journal of Molecular Structure(Theochem), 2005,724(1):1-8.
    [105] Jensen,J.O., Vibrational Frequencies and Structural Determination of Dicyanodifluoro-Sulfur, Spectrochimica Acta Part A, 2005,61(11-12):2766-2770.
    [106] Jensen,J.O., Vibrational Frequencies and Structural Determination of Dimethylketene, Journal of Molecular Structure(Theochem), 2005,714(1-3):13-19.
    [107] Jensen,J.O., Vibrational Frequencies and Structural Determination of Norbornadiene, Journal of Molecular Structure(Theochem), 2005,715(1):7-13.
    [108] Joseph,V.M., Padrona,J.M., Newmanb,M.A., Inhibition of the Activity of the Native G-Aminobutyric Acid a Reportot by Metabolites of Thyroid Hormones: Correlations with Molecular Modeling Studies, Brain Research, 2004,1004(1-2):98-107.
    [109] Bastolla,U., Markus,P., Roman,H.E., Looking at Structure, Stability and Evolution of Proteins through the Principal Eigenvector of Contact Matrices and Hydrophobicity Profiles, Gene, 2005,347(2):219-230.
    [110] Mauricio,G.C., Valdemar,L.J., Gil,V.J., Principal Component Analysis of Long-Range Coupling Contants of some Cyclic Compounds, Journal of Molecular Structure, 2001,597(1-3):129-136.
    [111] Rez,P., Bruley,J., Brohan,P., Review of Methods for Calculating Near Edge Structure, Ultramicroscopy, 1995,59(1):159-167.
    [112] Tossell,J.A ., Vaughan,D.J., Theoretical Studies of Xanthates, Dixanthogen, Metal Xanthates and Related Compounds, Journal of colloid interface science, 1993,155(1): 98-107.
    [113] Edelbro,R., Sandstrom,A., Paul,J.,Full Potential Calculations On Electron Bandstructures of Sphalerite, Pyrite and Chalcopyrite, Applied surface science, 2003,206(1-4):300-313.
    [114] Porento,M., Hirva,P., A Theoretical Study On the Interaction of Sulfhydryl Surfactants with S Covellite (001) Surface, Surface science, 2004,555(1-3):75-82.
    [115] Porento,M., Hirva,P., The Adsorption Interaction of Anionic Silfhydryl Collectors On Different PbS (001) Surface Sites, Surface Science, 2003,539(1-3):137-144.
    [116] Porento,M., Hirva,P., Effect of Copper Atoms On the Adsorption of Ethyl Xanthate On a Sphalerite Surface, Surface Science, 2005,576(1-3):98-106.
    [117] Porento,M., Hirva,P., Theoretical Studies On the Interaction of Anionic Collectors With Cu+, Cu2+, Zn2+ and Pb2+ Ions, Theor.Chem.Acc., 2002,107(4):200-205.
    [118] Karvinen,S., Hirva,P., Pakkanen,T.A., Ab Initio Quantum Chemical Studies of Cluster Models for Doped Anatase and Rutile TiO2, Journal of Molecular structure:Theochem, 2003,626(1-3):271-277.
    [119] Yekeler,H., Yekeler,M., Reactivities of some Thiol Collectors and their Interactions with Ag+ Ion by Molecular Modeling, Applied surface science, 2004,236(1-4):435-443.
    [120]冯其明,陈远道,卢毅屏,一水硬铝石(α-2AlOOH)及其(010)表面的密度泛函研究,中国有色金属学报,2004,14(4):670-675.
    [121]洪汉烈,闵新民,量子化学方法研究矿物的表面化学,武汉:中国地质大学出版社,2004.
    [122]杜平,曹学锋,胡岳华,将玉仁,李海普,胺类捕收剂的结构与性能研究,轻金属,2003,(1): 27-30.
    [123]彭兰,曹学锋,杜平,铝硅酸盐矿物捕收剂的设计研究,广西民族学院学报(自然科学版),2005,11(2):90-93.
    [124] Bunton,C.A., Robinson,L., Schaak,J., Catalysis of Nucleopholic Substitution by Micelles of Dicationic Detergents, Journal of Organic Chemistry, 1971,36(16):2346-2350.
    [125] Devinsky,F., Masarova,L., Lacko,I., Surface Activity and Micelle Formation of some New Bisquaternary Ammonium Salts, Journal of colloid and interface science, 1985,105(11):235-239.
    [126] Devinsky,F., Lacko,L., Micelle Formation of Bisquaternaries. Synthesis, Surface Activity and Micelle Formation of some Bis-Quaternary Ammonium Salts of Glycine Derivatives, Tenside Det., 1990,27(5):344-349.
    [127] Zhu,Y.P., Masuyama,A., Okahara,M., Preparation and Surface-Active Properties of New Amphiphilic Compounds with Two Phosphate Groups and Two-Chain Alkyl Groups, Journal of American Oil Chemistry Society, 1991,68(4):268-271.
    [128] Zhu,Y.P., Masuyama,A., Kirito,A., Preparation and Properties of Doubleor Triple-Chain Surfactants with Two Sulfonate Groups Derived From N-Alkyldiethanolamines, Journal of American Oil Chemistry Soceity, 1991,68(7):539-543.
    [129] Menger,F.M., Littau,C.A., Gemini Surfactants:Systhesis and Properties, Journal of American Chemistry Society, 1991,113(4):1451-1452.
    [130] Zana,R., Benrraou,M., Rue,R., Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide)Surfactants 1.Effect of the Spacer Chain Length On the Critical Micelle Concentration and Micelle Ionization Degree, Langmuir, 1991,7(2):1072-1075.
    [131] Zana,R., Talmon,Y., Dependence of Aggregate Morphology On Structure of Dimeric Surfactants, Nature, 1993,362(6423):228-230.
    [132] Alami,E., Levy,H., Zana,R., Alkanediyl-α,ω-Bis(DimethylalkylammoniumBromide)Surfactants. 2. Structure of the Lyotropic Mesophases in the Presence of Water, Langmuir, 1993, 9(4):940-944.
    [133] Frindi,M., Michees,B., Zana,R., Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide)Surfactants. 4. Ultrasonic Absorption Studies of Amphiphile Exchange Between Micelles and Bulk Phase in Aqueous Micellar Solutions, Langmuir, 1994, 10(4):1140-1145.
    [134] Rosen,M.J., Zhu,Z.H., Hua,X.Y., Relationship of Structure to Properties of Surfactants.1,6-Liner Decyldiphenylenylether Sulfonates, Journal of American oil Chemical Society, 1992,69(1):30-33.
    [135] Zhu,Y.P., Masuyama,A., Kirito,Y.I., Okahara,M., Rosen,M.J., Preparation and Properties of Glycerol-Based Double-Or Triple-Chain Surfactants with Two Hydrophilic Ionic Groups, Journal of American Oil Chemical Society, 1992,69(7):626-632.
    [136] Rosen,M.J., Zhu,Z.H., Gao,T., Synergism in Binary Mixture of Surfactants. 11. Mixtures Containing Mono- And Disulfonated Alkyl-and Dialkyldiphenylethers, Journal of colloid and interface science, 1993,157(1):254-259.
    [137] Rosen,M.J., Gemini: Anew Generation of Surfactants, Chemtech, 1993,23(3):30-33.
    [138] Zana,R., Xia,J., Gemini Surfactants, Synthesis, Interfacial and Solution-Phase Behavior, and Application, New York: Marcel Dekker, 2001.
    [139]赵剑曦,新一代表面活性剂:Gemini,化学进展,1999,11(4):348-357.
    [140] Quagliotto,P., Viscardi,G., Barolo,C., Gemini Pyridinium Surfactants:Synthsis and Conductometric Study of a Novel Class of Ammphiphiles, The Journal of Organic Chemistry, 2003,68(20):7651-7660.
    [141]池田功,催正刚,新型Gemini阳离子表面活性剂的合成和性能(3)—在烷基链中引入易水接基团促进生物降解,日用化学工业,2001,31(5):28-31.
    [142] Qiu,L.G., Xie,A.J., Shen,Y.H., A Novel Triazole-Based Cationic Gemini Surfactant: Synthesis and Effect On Corrosion Inhibition of Carbon Steel in Hydrochloric Acid, Materials Chemistry and Physics, 2005,91(2-3):269-273.
    [143] Zana,R., Alkanediyl--α,ω-Bis(Dimethylalkylammonium Bromide)Surfactants:2. Krafft Temperature and Melting Temperature, Journal of Colloid and Interface Science, 2002,252(1):259-261.
    [144] Alami,E., Beinert,G., Marie,P., Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants. 3. Behavior at the Air-Water Interface, Langmuir, 1993, 9(6):1465-1467.
    [145] Dar,A.A., Chatterjee,B., Rather,G.M., Das,A.R., Mixed Micellization and Interfacial Properties of Dodecyltrimethylammonium Bromide and TetraethyleneglycolMono-N-Dodecyl Ether in Absence and Presence of Sidium Propionate, Journal of Colloid and Interface Science, 2006,298(1):395-405.
    [146] Rosen,M.J., Mathias,J.H., Davenport, L., Aberrant Aggregation Behavior in Cationic Gemini Surfactants Investigated by Surface Tension, Interfacial Tension, and Fluorescence Methods, Langmuir, 1999,15(21):7340-7346.
    [147] Castro,M.J.L., Kovensky, J., Cirelli, F., New Family Gemini Surfactants. Determination and Analysis of Interfacial Properties, Langmuir, 2002,18(7):2477-2482.
    [148] Yoshimura,T., Nyuta,K., Esumi, K., Zwitterionic Heterogemini Surfactants Containing Ammonium and Carboxylate Headgroups. 1.Adsorption and Micellization, Langmuir, 2005,21(7):2682-2688.
    [149] Danino,D., Talmon,Y., Zana,R, Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide)Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir, 1995,11(5):1448-1456.
    [150] Hirata,H., Hattori,N., Ishida,M., Small-Angle Neutron-Scattering Study of Bis(Quaternary Ammonium Bromide) Surfactant Micells in Water.Effect of the Spacer Chain Length On Micellar Structure, Journal of Physical Chemistry, 1995, 99(50):17778-17784.
    [151] Kim,T.S., Kida,T., Nakatsuji,Y., Ikeda,I.,Surface-Active Porperties of Novel Cationic Surfactants with Two Alkyl Chains and Two Ammonin Groups, Journal of American Oil Chemical Society, 1996,73(7):907-911.
    [152] Pinaza,A., Perez,L., Infante,M.R., Franses,E.I., Relation of Foam Stability to Solution and Surface Properties of Gemini Surfactants Derived From Arginine, Colloid surface A, 2001,189(1-3):225-235.
    [153]赵国玺,表面活性剂物理化学,北京:北京大学出版社,1984,410-412.
    [154] Magdassi,S., Moshe,M.B., Talmon,Y., Danino,D., Microemulsions and On Anionic Gemini Surfactant, Colloid Surface A, 2003,212(1):1-7.
    [155] Chen,L., Shang,Y., Liu,H., Hu,Y., Effect of the Spacer Group of Cationic Gemini Surfactant On Microemulsion Phase Behavior, Journal of colloid and Interface Science, 2006,301(2):644-650.
    [156] Bunton,C.A., Kamego,A., Minch,M.J., Miceller Effects upon the Decarboxlation of 3-Bromo and 2-Cyano Carboxylate Ions, Journal of Organic Chemistry, 1972,37(9):1388-1392.
    [157] Bunton,C.A., Minch,M.J., Hidalgo,J., Lepulveda, Electrolyte Effects On the Cationic Micell Catalyzed Decarboxylation of 6-Nitrobenzisoxazole-3-Carboxylate Anion, Journal of American Chemical Society, 1973,95(10):3262-3272.
    [158] Qiu,L.G., Xie,A.J., Shen,Y.H., Understanding the Effect of the Spacer Length On Adsorption of Gemini Surfactants Onto Steel Surface in Acid Medium, Applied Surface Science, 2005,246(1-3):1-5.
    [159] Qiu,L.G., Xie,A.J., Shen,Y.H., Understanding the Adsorption of Cationic Gemini Surfactants On Steel in Hydrochloric Acid, Materials Chemistry and Physics, 2004,87(2-3):237-240.
    [160] Qiu,L.G., Xie,A.J., Shen,Y.H., The Adsorption and Corrosion Inhibition of some Cationic Gemini Surfactants On Carbon Steel Surface in Hydrochloric Acid, Corrosion Science, 2005,47(1):273-278.
    [161] Castillo,J.A., Pinazo,A., Carilla,J., Interaction of Antimicrobial Argininr-Based Cationic Surfactants with Liposomes and Lipid Monolayers, Langmuir, 2004,20(8):3379-3387.
    [162] Hu,Y.H., Progress in Flotation De-Silica, Trans. Nonferrous Met. Soc. China, 2003,13(3):656-662.
    [163] Xu,Z.H., Plitt,V., Liu,Q., Recent Advances in Reverse Flotation of Diasporic Ores-A Chinese Experience, Minerals Engineering, 2004,17(9-10):1007-1015.
    [164] Neder,R.B., Burghammer,M., Grasl,T., Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data,Clays and Clay minerals, 1999,47(4):487-494.
    [165] Frisch,M.J., Trucks,G.W., Schlege,L.B., et al., Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA, USA, 2003.
    [166]王濮,潘兆橹,翁玲宝,系统矿物学(上册),北京:地质出版社,1982,596-599.
    [167] Rodeick,J.H., Crystal Structure Refinement and Electron Density Distribution in Diaspore, Physics and Chemical Minerals, 1979,5(1):179-200.
    [168] Hazemann,J.L., Manceau,A., Sainctavit,P., Malarange,C., Struture of theα-Fexal1-Xooh Solid Solution, Physics and Chemical Minerals, 1992,19(1):25-38.
    [169] Keller,W.D., Diaspore Recrystallized at Low Temperature, American Mineralogist, 1978,63(3-4):326-329.
    [170]潘兆橹,结晶学与矿物学(下册),北京:地质出版社,1994.
    [171] Winkler,B., Milman,V., Hennion,B., Ab Initio Total Energy Study of Brucite, Diaspore and Hypothetical, Physics and Chemistry of Minerals, 1995,22(7):461-467.
    [172] Ewing,F.J., The Crystal Structure of Diaspore, Journal of Chemical Physics, 1935,3(2):203-207.
    [173] Hazemann,J.L., Berar,J.F., Manceau,A., Rietveld Studies of the Aluminium-Iron Substitution in Synthetic, Materials Science Forum, 1991,79:821-826.
    [174] Hill,R.J., Crystal Structure Refinement and Electron Density Destribution in, Physics andChemistry of Minerals, 1979,5(2):179-200.
    [175] Young,R.A., Hewat,A.W., Verification of the Triclinic Crystal Structure of Kaolinite, Clays and Clay Minerals, 1988,36(3):225-232.
    [176] El,Sayed,K., Heiba,Z.K., Abdel,Rahman,A.M., Crystal Structure Analysis and Refinement of Kalabsha Kaolinite (Al), Crystal Research and Technology, 1990,25(3):305-312.
    [177] Bish,D.L., Rietveld Refinement of the Kaolinite Structure at 1.5k, Clays and Clay Minerals, 1993,41(6):738-744.
    [178]王淀佐,胡岳华,浮选溶液化学,长沙:湖南科学技术出版社,1988.
    [179]张云海,高岭石与一水硬铝石反浮选分离的研究:[博士学位论文],长春,东北大学,2005.
    [180] Nordstrom,D.K., Plummer,L.N. Langmuir,B.E., May,H.m., Jones,B.f., Parkhurst,D.l., Revised Chemical Equilibrium Data for Major Water-Mineral Reactions and their Liminations, Melchior, D.C., American Chemical Society Symposium Series, 1990,398-413.
    [181] Sjijberg,S., Silica in Aqueous Environments, Journal of Non-Crystalline Solids, 1996,196(1-3):51-57.
    [182] Verdes,G., Gout,R., Castet,S., Thermodynamic Properties of the Aluminate Ion and of Bayerite, Boehmite, Diaspore and Gibbsite, European Journal of Mineralogy, 1992,4(4):767-792.
    [183] Cama,J., Ganor,J., The Effects of Organic Acids On the Dissolution of Silicate Minerals: A Case Study of Oxalate Catalysis of Kaolinite Dissolution, Geochimica Et Cosmochimica Acta, 2006,70(9):2191-2209.
    [184] Somasundaran,P., Cleverdon,J., A Study of Polymer/Surfactant Interaction at the Mineral/Solution Interface, Colloids and Surfaces, 1985,13(1):73-85.
    [185]李海普,胡岳华,王淀佐,徐竟,阳离子表面活性剂与高岭石的相互作用机理,中南大学学报(自然科学版),2004,35(2):228-234.
    [186] Hu,Y.H., Ouyang,K., Cao,X.F., Zhang,L.M., Flotation of Kaolinite and Diaspore with Hexadecyl Dimethyl Benzyl Ammonium Chloride, Journal of Central South University of Technology, 2008,15(3):378-383.
    [187] Tournassat,C., Gailhanou,H., Crouzet,C., Braibant,G., Gautier,A., Lassin,A., Two Cation Exchange Models for Direct and Inverse Modelling of Solution Major Cation Composition in Equilibrium with Illite Surfaces, Geochimica et Cosmochimica Acta, 2007,71(5):1098-1114.
    [188] Zhou,J.M., Huang,P.M., Kinetics of Potassium Release From Illite as Influenced by Different Phosphates, Geoderma, 2007,138(3):221-228.
    [189]杨晓焱,单链和Gemini表面活性剂的NMR研究:[博士学位论文],中国科学院,2007.
    [190] Zana,R., Dimeric (Gemini) Surfactants: Effect of the Spacer Group On the Association Behavior in Aqueous Solution, Journal of colloid and surface science, 2002,248(2):203-220.
    [191] Manne,S., Schaffer,T.E., Huo,Q., Hansma,P.K., Morse,D.E., Stucky,G.D., Aksay,I.A., Gemini Surfactants at Solid-Liquid Interfaces: Control of Interfacial Aggregation Geometry, Langmuir, 1993,13(24):6382-6387.
    [192] Chorro,M., Chorro,C., Dolladille,O., Partyka,S., Zana,R., Adsorption Mechanism of Conventional and Dimeric Cationic Surfactants On Silica Surface: Effect of the State of the Surface, Journal of Colloid and Interface Science, 1999,210(2):134-143.
    [193] Qi,L.Y., Liao, W.S., Bi,Z.C., Adsorption of Conventional and Gemini Cationic Surfactants in Nonswelling and Swelling Layer Silicate, Colloids and Surfaces A: Physicochem.Eng.Aspeccts: Physicochem.Eng.Aspeccts, 2007,302(1-3):568-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700