用户名: 密码: 验证码:
非球面超精密在位测量与误差补偿磨削及抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学电子技术的飞速发展,应用于航天航空、天文、电子、激光以及通讯的各种光电产品不断涌现,对非球面的光学仪器的性能也提出了更高的要求,因此在批量制造非球面光学元件时,也对非球面模具的加工精度和加工材料等提出了新的要求,例如表面质量及精度要求越来越高、工件日趋变小或增大。为了解决目前非球面模具的超精密磨削制造中的关键技术,获得超精密的形状精度及超光滑表面,本文在调研国内外的超精密磨削、测量与误差补偿等大量文献资料与技术资料的基础上,对超精密磨削、测量、数据处理、误差补偿加工、超精密加工软件等方面进行了较为深入的研究。
     论文的第一章首先对国内外超精密加工技术包括超精密磨削、测量、补偿与抛光技术现状进行综述性介绍,并探讨了目前的超精密磨削、测量与误差补偿中存在的问题,从而提出相应的解决措施。接着围绕超精密磨削、测量、数据处理、误差补偿加工和超精密加工软件等方面的关键技术研究进行展开。
     第一个方面的关键技术是研究非球面形状的在位测量系统及其数据处理。论文在第二章中提出采用接触式测头结合激光干涉原理进行在位测量的方法,探讨接触式在位的数据误差的修正处理;也深入分析在位测量系统的测头半径误差、被测工件的对称轴半径方向的误差、对称轴倾角误差,弹性变形产生的测量误差。论文接着深入研究了在位测量系统所获的测量数据的处理方法。为提取准确的形状误差特征,首先研究对均匀密集或非均匀密集的测量数据进行准确快速地去毛刺处理;然后采用一种改进型的回归滤波方法,快速地对测量数据进行平滑处理。同时采用FFT法进行加速数据处理的方法进行也考虑。
     第二个方面的关键技术则是重点对非球面磨削的砂轮对刀、砂轮半径与磨损误差补偿进行研究。在第三章中,以常用的非球面磨削方式为基础,首先采用单项误差补偿方法,深入分析超精密磨削轴对称曲面时砂轮中心位置X、Y方向的对刀误差与补偿、砂轮半径误差与补偿、砂轮磨损误差补偿;也提出一种基于直角或者圆弧砂轮的B轴旋转角度误差与补偿方法;并对X轴、旋转偏角、砂轮磨损与砂轮尺寸等综合误差的分离处理进行考虑。接着在第四章中,首先根据二轴或三轴磨削方式,考虑接触式测量原理、测头尺寸、测量对象,提出了一种获取法向残余误差曲线的方法,从而得到了对加工工件形状综合误差补偿的方法。在此基础上,针对两轴直交轴圆弧砂轮磨削方式,提出采用残余误差对称补偿法计算砂轮补偿路径;针对两轴斜轴砂轮磨削方式,提出矢量残余误差补偿方法来控制砂轮圆弧中心的补偿路径;针对三轴斜轴单点磨削方式,提出一种单点斜轴残余误差补偿的方法。进一步考虑了利用恒定加工量进行速度控制以进一步提高工件形状精度与表面粗糙度。
     第三个方面的关键技术是研究超精密磨削、测量与误差补偿系统软件,进行相应的误差补偿磨削实验。第五章中编制了微小非球面超精密加工系统软件,可实现两轴或三轴联动的磨削与补偿加工所需的非球面轨迹程序。其功能包括:参数输入模块、测量模块、工件面形精度分析与误差评估模块、误差补偿模块、轨迹显示与仿真加工模块。接着在第六章中,论文对球面模具、轴对称非球面模具进行超精密磨削与误差补偿加工实验。工艺实验包括X、Z直交轴球面模具误差补偿磨削;X、Z两轴斜轴非球面模具误差补偿磨削;X、Z、B三轴斜轴球面与非球面模具误差补偿磨削,并对实验结果进行了分析,从而验证了超精密磨削、测量和误差补偿方法的合理性。最后对在位测量数据与离线测量数据进行比较,验证了在位测量系统的高精度性。
     论文的第四个方面关键技术是研究超精密磁性复合流体的斜轴抛光与修正。在第七章中,为获得更高的形状精度和更低的表面粗糙度,消除超精密磨削阶段产生的表面和亚表面损伤,提出了一种新的超精密磁性复合流体斜轴抛光加工工艺。研制了磁性复合流体斜轴抛光装置,并建立了磁性复合流体加工模型,推导出磁性复合流体抛光材料的去除函数和基于驻留时间的补偿加工模型。
With the rapid development of modern optical electronics technology, a variety of optoelectronic products are applied in aerospace, astronomy, electronics, laser and optical communication fields; therewith the higher performance requirements are set for aspheric optical components. Especially, a demand of high-quality aspheric mold is put forward in machining accuracy and processing materials. In order to resolve current some key technologies for obtaining ultra-precision form accuracy and surface quality of aspheric glass lens mold, in this paper, ultra-precision grinding, measuring, data processing, error compensation processing and ultra-precision processing software development are studied on the basis of a large number of domestic and foreign literatures.
     In the first chapter, the present researchs such as ultra-precision processing technology, ultra-precision grinding, measurement, compensation and polishing in domestic and foreign are overviewed. The current existing problems of ultra-precision grinding, measurement and error compensation are analyzed and appropriate solution methods are proposed. These key technologies are discussed acoordingly.
     The first key technology is to study aspheric form measuring system and data processing methods. In the second chapter, an ultra-precision contact measuring method is proposed to research on the error correction of contact measuring data; some measurement errors generated from the probe size error, axis-symmetrical workpeice error in radius direction, inclined angle error and elastic deformation, are also in-depth analyzed. And then, processing approach of measurement data obtained from measurement system is studied. In order to extract the precise figure features of ground workpeice, a multi-filtration method is firstly used to quickly process uniform or non-uniform intensive measured data for accurately deburring; and then a modified regression filtering method is used to quickly filter and smooth the measurement data. At the same time, FFT method is considered to accelerate data processing.
     The second key technology focuses on wheel centering error, dimension error and form error compensation in aspheric grinding. In the third chapter, based on common aspheric grinding method, single error compensation method is firstly used to compensate the wheel centering errors in X, Y direction, wheel radius error, wear error in ultra-precision grinding of an axis-symmetrical workpeice. A B-axis angle error and compensation are also proposed for right-angle and arc grinding wheels. The separation handling method of comprehensive errors including X-axis centering error, decline angle error, wear error and radius error are considered. Then in the fourth chapter, based on two-axis or three-axis grinding modes, some factors such as contact measuring principle, the probe size, measurement object are taken fully into account to access to the residual error curve and compensate a comprehensive form error. For two-axis orthogonal arc grinding mode, a new symmetrical residual error compensation method is presented to calculate compensation path of grinding wheel. For two-axis inclined grinding mode, a vector residual error compensation method is proposed to control the grinding path of arc wheel center. For three-axis inclined-single-point grinding mode, a single-point inclined-axis residual error compensation mode is also presented. In addition, speed controlling method is considered under a constant grinding volume condition to further inprove the form accuracy and surface roughness.
     The third key technology is the development of the measurement and error compensation system software for ultra-precision grinding experiments. In the fifth chapter, system software of small ultra-precision aspheric grinding is developed to program two-axis or three-axis NC program for aspheric grinding and compensation processing. The software includes the following functions:the parameter input module, the measuring module, the surface accuracy analysis and evaluation module, the error compensation module, the trajectory display and simulation processing module. And then, in the sixth chapter, a set of ultra-precision grinding and error compensation experiments for axisymmetric spherical, aspherical molds are conducted. Technical experiments include XZ orthogonal error compensation grinding of spherical surface; XZ inclined-axis compensation for aspherical grinding; XZB inclined-axis error compensation experiment for spherical and aspheric glass lens moulds. The experimental results are analyzed to verify the reasonability of ultra-precision grinding, measurement and error compensation methods. At last, on-machine measured data are compared with the off-machine measured data to verify the high precision of the on-machine measurement system.
     The fourth key technology is to study ultra-precision inclined polishing of magnetic compound fluid and its error compensation methods. In the seventh chapter, in order to obtain a higher form accuracy and lower surface roughness, eliminat surface and sub-surface damage resulted by ultra-precision grinding of small-scale workpiece, an ultra-precision inclined-axis polishing process with magnetic composite fluid is proposed. The equipment of magnetic composite fluid inclined-polishing was developed, and two-dimensional removal and compensation models are built.
引文
1) 杨力.先进光学制造技术.北京:科学技术出版社,2001,5-20.
    2) 张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器,2003,25(3):48-5.
    3) 周志斌,肖沙里,周宴,等.现代超精密加工技术的概况及应用.现代制造工程,2005,(1):121-123.
    4) 吴云锋,陈洁.精密超精密加工技术综述.新技术新工艺,2007,(6):38-40.
    5) 袁哲俊,王先逵.精密和超精密加工技术.(第二版).北京:机械工业出版社,2002,10-30.
    6) 国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006年-2010年)——机械与制造科学.北京:科学出版社,2006,1-30.
    7) 王志标,杨辉.超精密加工技术在新形势下面临的任务.航空精密制造技术,2004,40(3):1-5.
    8) 尹韶辉,唐昆,朱勇建,等.小口径玻璃透镜热压成型模具的超精密微细磨削加工.中国机械工程,2008,19(23):2790-2792.
    9) H. Ohmori, Y. Watanabe, W. Lin, etal. An ultraprecision on-machine measurement system.Key Engineering Materials,2005,295/296:375-380,
    10) H. Ohmori, T. Nakagawa. Utilization of nonlinear condition in precision grinding with ELID for fabrication of hard material components. Annals of CIRP,1997, 46(1):261-264.
    11) N. Taniguchi. The state of the art of nanotechnology for processing of ultraprecision and ultrafine products. Precision Engineering,1994 16(1):5-24.
    12) S.H. Yin, H.F. Li, Y.F. Fan, etal. Development of ultra-precision grinding process for aspheric surface based on feed rate controlling and error compensation methods. Advanced Materials Research,2010,97-101:2192-2196.
    13) H.B. Cheng, Z.J. Feng, K. Cheng, etal. Design of a six-axis high precision machine tool and its application in machining aspherical optical mirrors. International Journal of Machine Tools and Manufacture,2005,45(9): 1085-1094.
    14)尹韶辉,大森整,林伟民,等.一种光学材料高效超精密加工方法.中国机械工程,2008,19(21):2540-2543.
    15) H. Ohmori, K. Katahira, J. Komotori, etal. Functionalization of stainless steel surface through mirror-quality finish grinding. Annals of the CIRP,2008,57(1): 545-549.
    16) H.J. Jing, Y.X. Yao, S.D. Chen. Machining accuracy enhancement by modifying NC program. Key Engineering Materials,2006,315-316:71-75.
    17)李国.新型非球面超精密加工装置数控系统的研究:[哈尔滨工业大学硕士论文].哈尔滨:哈尔滨工业大学,2006.
    18) S.H. Yin, H. Ohmori, Q. Liu, etal. ELID grinding characteristics of large stamping die for Wolter mirror, Journal of X-Ray Science and Technology,2009, 17(3):265-277.
    19) L. Zhou, J. Shimizu, H. Eda. Axisymmetric aspherical form generation for large diameter optical components. Key Engineering Materials,2004,257-258: 101-106.
    20) J.S. Lee, K. Soyji. A study on ultra precision machining for aspherical surface of optical parts. Journal of the Korean Society of Precision Engineering,2002, 19(10):195-201.
    21)贾世奎,李成贵,刘春红,等.玻璃材料非球面的加工方法.航空精密制造技术,2007,43(5):14-17.
    22) T. Tanakak. Manufacturing method of non-aspheric lens and super-precision non-aspheric surface machine. Optical Technology Contact,2000,38(10): 592-599.
    23) H. Ohmori, K. Katahira, T. Naruse, et al. Microscopic grinding effects on fabrication of ultra-fine micro yools. Annals of the CIRP,2007,56(1):569-572.
    24)李圣怡,戴一帆.超精密加工技术的发展及对策.中国机械工程,2000,11(8):7-10.
    25) P.R. Hannah, R.D. Day, D. Hatch. Computer controlled precision optical polishing on the diamond turning machine. ASPE 8th Annual Meeting, Seattle, Washington. November 7-12,1993.
    26) N. Buescher, T.A Dow, A. Sohn, etal. Live Axis Turning, http://www.aspe.net/publications/Annual_2005/PAPERS/1PRMOT.
    27) P.A. McKeown, W.J. Wills-Moren, R.F.J. Read, etal. The design and development of a large ultra-precision CNC diamond turning machine. Materials and Manufacturing Processes,1986,1(1):133-157.
    28) H. Suzuki, S. Kodera, T. Nakasuji, etal. Precision grinding of aspherical CVD molding die.International Journal of JSPE,1998,32(1):25-30.
    29) Y. Mori, K. Yamamura, K. Yamauchi, etal. Plasma CVM (chemical vaporization machining):an ultra precision machining technique using high-pressure reactive plasma. Nanotechnology,1993,4(4):225-229.
    30) H. Howden, J.A. Clarke. Refracting replica aspheric optics. Optical Engineering, 1976,15(3):197-201.
    31) H. M. Weissman. State of the art in thin film epoxy replication. SPIE,1981,306: 24-28.
    32)王勤,余景池,胡祖元.非球面复制成型技术的研究.光学技术.2006,32(1):121-223.
    33)北京机床研究所.www.jcsjm.com,2010.
    34)罗松保,张建明.非球面曲面的超精密加工与测量技术的研究.制造技术与机床,2003,(9):58-62
    35)韩成顺,张龙江,董申,等.大型光学非球面零件超精密切削新方法.哈尔滨工业大学学报,2007,39(7):1062-1064.
    36)孔繁星,朴承镐,耿振野,等.切线回转法加工非球面光学零件运动轨迹研究.吉林,化工学院学报,2009,26(1):37-40.
    37) S.H. Yin, T. Kun, Y.J. Zhu, etal. Fabrication of micro glass lens mould by using ultra-precision micro-grinding process. Proceeding of SPIE,2009,7282:6-11.
    38)左巍,辛科,赵广木.高陡度非球面光学元件加工技术研究.现代制造工程,2009,(7):1-5.
    39)王贵林,李圣怡,戴一帆.光学非球面复合加工机床的设计与精度分析.中国机械工程,2004,15(02):99-102.
    40)闫锋,范镝,张斌智,等.一种SiC非回转对称非球面的加工与检测.光电工程,2009,36(3):135-139.
    41)宋淑梅,陈亚.大口径轻质非球面反射镜制造技术研究.光学技术,2005,31(2):246—251.
    42)崔向群,高必烈.一种大口径大非球面度天文镜面磨制新技术.光学学报,2005,25(3):402-407.
    43) H. Ohmori, Y. Yamagata, S. Moriyasu, etal. Development of large ultraprecision grinding system with ELID for aspheric optical elements and components.9th International Conference on Production Engineering, Osaka, Japan, August 29-Septemberl,1999,147-152.
    44) H.Ohmori, K. Katahira, Y.Uehara, W.Lin. ELID-Grinding of microtool and applications to fabrication of microcomponents. International Journal of Nano Technology,2002,41(2):193-204.
    45) P.B. Leadbeater, M. Clarke, W.J. Wills-Moren, etal. A unique machine for grinding large, off-axis optical components:the OAGM 2500. Precision Engineering,1989,11(4):191-196.
    46) J. Mark Jackson. Micro and nanomanufacturing. Springer US,2007 ISBN 978-0-387-25874-4.255-321.
    47) X.C Luo, K Cheng, D. Webb, etal. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. Journal of Materials Processing Technology,2005,167(2-3):515-528.
    48) E. Fess, J. Ruckman. Deteministic contour grinding of conformal optics, in Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America,2000), paper OMA2.
    49)日本东芝机械公司.http://www.toshiba-machine.com/precisionwebsite/ulg100ch3.htm.20009.
    50)张峰,徐领娣,范镝,等.表面改性非球面碳化硅反射镜的加工.光学精密工程,2008,16(12):2479-2484.
    51)王卓,吴宇列,戴一帆,等.光学材料研磨亚表面损伤的快速检测及其影响规律.光学精密工程,16(1):16-21.
    52)程灏波,王英伟,冯之敬.永磁流变抛光纳米精度非球面技术研究.光学技术,2005,31(1):52-54.
    53)王毅,倪颖,余景池.小型非球面数控抛光技术的研究.光学精密工程,2007,34(1):33-37.
    54)韩成顺,董申,唐余勇.大型光学非球面超精密磨削的几何模型研究.兵工学报,2004,25(6):271-275.
    55)陈明君,董申,张飞虎.超精密光学非球曲面磨削系统的研制.中国机械工程,2000,11(8):849-851.
    56)李立军,张飞虎,董申,等.非球面模芯ELID磨削系统的研制.工具技术,2007,41(11):36-38.
    57) S.H. Yin, Y. Wang, Y.F Fan, etal. One-point nano-grinding technology of micro-aspherical glass lens mould. Advanced Materials Research,2010,97-101: 4217-4220.
    58)湖南大学微纳制造研究所.www.micronano.com.cn,2010.
    59)欧阳渺安.超精密非球面镜面模具直轴磨削的研究.光学精密工程,2006,14(4):545-552.
    60) S.M. Rahman, T. Saleh, H.S. Lim, etal. Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation. International Journal of Machine Tools & Manufacture, 2008,48(7-8):887-895.
    61) C.S. Han, S. Dong, Y.Y. Tang. Geometric models of the ultra precision grinding for large non-axisymmetric optical aspheric surfaces. Key Engineering Materials, 2004,257-258:57-62.
    62) M. Saeki, T. Kuriyagawa, J. Lee, etal. Machining of aspherical molding dies utilizing parallel grinding method. Proceesing of the 16th Annual Meeting, ASME, Virginia, USA,2001, Vol.25, pp.433-436.
    63)袁巨龙,王志伟,文东辉,等.超精密加工现状综述.机械工程学报,2007,43(1):35-48.
    64) H. Ohmori. Mirror surlace grinding of spherical and aspherical lens with electroytic in-process dressing.1992年度磨粒加工学会学术演讲会演讲论文集,1992,129-130.
    65) R. Komanduri, D.A. Lucca, Y. Tani, etal. Technologicaladvances in fine abrasive process. Annals of the CIRP,1997,46(2):545-595.
    66) H Ohmori, T. Nakagawa. Analysis of mirror surface generation of hard and brittle materials by ELID(electrolytic in-process dressing) grinding with superfine grain metallic bond wheels. Annals of the CIRP,1995,44(1):287-290.
    67) S.H. Yin, H. Ohmori, W.M Lin, etal. Development on micro precision truing method for metal bonded diamond grinding wheel on ELID-grinding (2nd Report: Application to edge sharpening), Key Engineering Materials,2005,291-292: 213-218.
    68) D. Kramer, F. Rehsteine, B. Schμmacher. D (electrochemical in-process controlled dressing) a new method for grinding of modern high-performance cutting materials to highest quality. Annals of the CIRP,1999,48(1):265-268.
    69) Y. Wang, X.J. Zhou, D.J. Hu. An experimental investigation of dry-electrical discharge assisted truing and dressing of metal bonded diamond wheel. International Journal of Machine Tools & Manufacture,2006,46(3-4):333-342.
    70) H. Ohmori. Electrolytic in-process dressing (ELID) grinding technique for ultraprecision mirror surface machining. International Journal of the Japan Society for Precision Engineering,1992,26(4):273-278.
    71)滕燕,盖玉先,董申.超精密磨削中的超硬砂轮修整技术.航空精密制造技术,2000,36(1):17-20.
    72) B. Bhattacharyya, B.N. Doloi, S.K. SORKHEL. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology,1999,95(1):145-154.
    73) C. Zhang, Y.C. Shin. A novel laser-assisted truing and dressing technique for vitrified CBN wheels. International Journal of Machine Tools & Manufacture, 2002,42(7):825-835.
    74)陈根余,谢小柱,李力钧,等.超硬磨料砂轮修整与激光修整新进展.金刚石与磨料磨具工程,2002(2):8-12.
    75) M. Hirao, M. Izawa. Water-jet in-process dressing(lst report)—dressing property and jet pressure. JSPE,1998,64(9):1335-1339.
    76) Y. Ikuse, T. Nonokawa, N. Kawabatan, etal. Development of new ultrasonic dressing equipment. JSPE,1996,30(3):217-222.
    77) H. Ohmori, T. Nakagawa. Mirror surface grinding of silicon wafers with electrolytic in-process dressing. Annals of the CIRP,1990,39(1):329-332.
    78) H. Ohmori, K. Katahira. Electrolytic in-process dressing grinding of ceramic materials. Edited by loan D.Marinescu, Advanced Ceramics Machining, CRC Press,2007,147-178.
    79) H.K. Tonshoff, R. Egger, W. Longerich, etal. Supperfinishing ceramics fine grinding can replace lapping for a superior finish. Manufacturing Engineering, 1998,120(2):52-59.
    80) Z. Lei, T.K. Sunemoto, K.T. Tsuyoshi, etal. Investigation into electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture, 2005,45(12-13):1461-1467.
    81) Y. Ogita, K. Kobayashi, H. Daio. Photoconductivity characterization of silicon wafer mirror-polishing subsurface damage related to gate oxide integrity. Journal of Crystal Growth,2000,210(1-3):36-39.
    82) H. Tsuwa, N. Ikawa, Y. Mori, etal. Numerically controlled elastic emission machine. Annals of CIRP.1979,28(1):193-197.
    83) Y. Mori, K. Yamaura, K. Endok, etal. Creation of perfect surfaces. Journal of Crystal Growth,2005,275(1-2):39-50.
    84) J. Watanabe, J. Suzuki. High precision polishing of semiconductor materials using hydrodynamic principle. Annals of the CIRP,1981,30(1):91-95.
    85) Y. Namba, H. Tsuwa. Ultra-fine finishing of sapphire single crystal. Annals of the CIRP,1977,26(1):325-329.
    86) X.S. Wu, W.Y. Chen, L.J. Wang, etal. Non-abrasive polishing of glass. International Journal of Machine Tools & Manufacture,2002,42(4):449-456.
    87) R.G. Bingham, D.D. Walker, D.H. Kim, etal. A novel automated process for aspheric surfaces. SPIE,2000,4093:445-450.
    88) H.M. Martin, D.S. Anderson, J.R.P. Angel, etal. Progress in the stressed-lap polishing of a 1.8-m f/1 mirror. Proc of SPIE,1990,1236:683-690.
    89) C.A. Huang, W. Lin, S.C. Lin. The electrochemical polishing behaviour of P/M high-speed steel (ASP 23) in perchloric-acetic mixed acids. Corrosion Science, 2003,45(11):2627-2638.
    90) X. Li, W.D. Goodhue, C. Santeufeimio, etal. Gas cluster ion beam processing of galliμm antimonide wafers for surface and sub-surface damage reduction. Applied Surface Science,2003,218(1-4):251-258.
    91) M. Fox, K. Agrawal, T. Shinmura, etal. Magnetic abrasive finishing of rollers. Annals of the CIRP,1994,43(1):181-184.
    92) Y. Tani, K, Kawata. Development of High-effiecent fine finishing process using magnetic fluid. Annals of the CIRP,1984,33(1):217-220.
    93)舒锐,胡忠辉,周彦平.一种新型非球面数控抛光方法的研究.光学技术,2005,31(3):398-401.
    94)陈智利,杭凌侠,张峰.一种新的气囊式抛光方法的研究.光电工程,2006,33(10):125-128.
    95)牛海燕,张学军.口径124mm碳化硅质非球面镜面数控研抛技术研究.光学精密工程,2006,14(4):539-545.
    96)顾敏芝,何良芳.中等口径光学非球面的高效研抛技术.光学仪器,2005,27(1):22-27.
    97) W.I. Kordonsky, I. William, I.V. Prokhorov, etal. Magnetorheological polishing devices and methods.US Patent,5449313,1995.
    98) J.D. Zuegel, V. Bagnooud. Wavefront Correction of Laser Rods Using Magnetorheological Finishing. In:Conference on. Lasers and Electro-Optics, San Francisco, California:Optical Society of Americal,2004, Vol.2,2p. (CLEO).
    99) H. Ohmori; S.H Yin, W.M Lin, etal. Study on ultrapresion synergistic finishing process of ELID grinding and MRF,1st Report:Trial fabrication of glass lens. Journal of the Japan Society for Abrasive Technology (JSAT),2006,50(1): 39-44.
    100) W.M. Lin, H. Ohmori, S.H. Yin, etal. Study on Nano-precision Synergistic Finishing Process of ELID grinding and MRF for silicon wafer. International conference on Leading Edge Manufacturing in 21st Century(LEM21), Nagoya, Japan,2005,733-738.
    101)孙希威,张飞虎,董申.磁流变抛光光学曲面的两级插补算法.光电工程,2006,33(2):61-64.
    102)康桂文,张飞虎,仇中军.精密磁流变抛光机床的研制.制造技术与机床, 2005,(7):47-49.
    103)尹韶辉,唐恒宁,陈逢军,等.磁流变斜轴抛光及其路径控制.制造技术与机床.2009(11):32-35
    104)张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究.光学精密工程,2005,13(2):35-39.
    105) S.H. Yin, K.J. Zhu, Y. Chen, etal. Influences of polishing tool's shape on surface roughness in magneto-rheological finishing, Advanced Materials Research,2010,97-101,4092-4095.
    106)彭小强,戴一帆,李圣怡.回转对称非球面光学零件磁流变成形抛光的驻留时间算法.国防科技大学学报,2004,26(3):89-92.
    107)彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型.机械工程学报,2004,40(4):67-70.
    108)程灏波,冯之敬,王英伟.油基磁流变液的开发及抛光性能研究.光电工程,2004,131(10):28-31.
    109) T. Kohno, D. Matsμmoto, T. Yazawa, etal. Radial shearing interoferometer for in-process measurement of damond turning, optical Engneering,2000,39 (10): 2696-2699.
    110) A. Handojo, H.J. Frankena. Test in aspheric surfaces:simple method with a circular stop. APPLIED OPTICS,1998,37(25):5969-5973.
    111) M. Vrhovec, I. Kovavc, M. Munih. Optical deflection measuring system. Precision Engineering,2007,31(3):188-195.
    112) G. Belforte, B. Bona, E. Canuto, etal. Coordinate measuring machines and machine tools self-calibration and error correction. Annals of the CIRP,1987, 36(1):359-64.
    113) C. Kuang, Q. Feng, B. Zhang, etal. A four-degree-offreedom laser measurement system (FDMS) using a single-mode fiber coupled laser module. Sens Actuators A:Physical,2005,125(1):100-8.
    114) H.F.F. Castro, M. Burdekin. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer. International Journal of Machine Tools and Manufacture,2003,43(9):947-954.
    115) T.W. Yang. Dynamic modeling based on real-time deflection measurement and compensation control for flexible multi-link manipulators. Dynam Control, 2001,11(1):5-24.
    116) P.H. Pereira, R.J. Hocken. Characterization and compensation of dynamic errors of a scanning coordinate measuring machine. Precision Engineering, 2007,31(1):22-32.
    117) H. Nakagawa, T. Hirogaki, Y. Kaji, etal. In-situsuitable controlled scan of laser stylus for point measuring of free surface. Journal of JSPE,2003,69(10): 14-23.
    118) M. Dobosz, A. Wozniak. CMM touch trigger probes testing using a reference axis. Precision Engineering,2005,29(3):281-289.
    119)谢意,陈强,伍凡,等.用双计算全息图检测凹非球面.光学学报,2008,28(7):1313-1317.
    120)陶春,潘君骅,胡明勇.一种凸非球面镜补偿检验的新方法.光学技术,2009,35(1):123-126.
    121)吕宁,乔玉晶,于晓洋.一种基于部分补偿与稀疏阵列的深度非球面测量新方法.四川大学学报(自然科学版),2008,45(5):1174-1178.
    122)黄大刚,王宝光,朱连津,等.一种非球面测量的新方法.传感技术学报,2007,20(5):1158-1161.
    123)朱勇建,尹韶辉,盛晓敏,等.两种非球面面形的光学测量方法研究.中国机械工程,2009,20(3):027-275.
    124)李庆国,权贵秦,马卫红.一种快速检测非球面面形的新方法.光学仪器,2008,30(1):29-33.
    125)薛栋林,张忠玉,郑立功,等.大口径碳化硅材料凸非球面反射镜的检验.光学精密工程,2008,16(12):2491-2496.
    126) M. Rahman, J. Heikkala, K. Lappalainene. Modeling measurement and error compensation of multi-axis machine tools, Part I:theory. International Journal of Machine Tools & Manufacture,2000,40(10):1535-1546.
    127) R. Ramesh, M.A. Mannan, A.N. Poo. Error compesation in machine tools—a review Part Ⅰ:geometric, cutting-force induced and fixture dependent errors. International Journal of machine tools & Manufacture,2000,40(9):1235-1256.
    128) K.G. Ahn, D.W. Cho. Proposition for a volumetric error model consideration backlash in machine tools. International Journal of Advanced Manufacturing Technology,1999,15(8):554-561.
    129) S. Sartori, G.X. Zhang. Geometric error measurement and compensation of machines. Annals of the CIRP,1995,44(2):599-609.
    130) J. Cho, M.W. Cho, K. Kim. Volumetric error analysis of a multi-axis machine tool machining a sculptured surface workpiece. International Journal of Production Researches,1994,32(2):345-363.
    131) M.Weck, P. Mckeown, R. Bonse. Reduction and compensation of thermal error in machine tools. Annals of the CIRP,1995,44(2):589-598.
    132) P.H. Pereira, B.D. Giacomo. Thermal error evaluation and modelling of a CNC cylindrical grinding machine. Metrologia,2008,45(2):217-222.
    133) A. Arbor, M.I. Kang, Y. Chang, etal. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. International Journal of machine tools & Manufacture,2007,47(2):376-387.
    134) S.H. Suh, J.H. Cho, J.Y. Hascoet. Incorporation of tool deflection in tool path computation:simulation and analysis. Journal of Manufacturing Systems,1996, 15(3):190-199.
    135) W. Hao, X. Zhu, X. Li, etal. Prediction of cutting force for self-propelled rotary tool using artificial neural networks. Journal of Materials Processing Technology,2006,180(1-3):23-29.
    136) J.F. Cuttino, A.C. Miller. Performance optimization of fast tool servo for single-point diamond turning machines. IEEE/ASME Transactions on Mechatronics,1999,4(2):169-179.
    137) X.C. Xi, A.N. Poo, G.S. Hong. Tracking error-based static friction compensation for a bi-axial CNC machine. Precision Engineering, doi:10.1016/j.precisioneng.2009.12.003.
    138) W.T. Lei, M.P. Sung, L.Y. Lin, etal. Fast real-time NURBS path interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture,2007,47(10):1530-1541.
    139) W.T. Lei, Y.Y. Hsu. Accuracy enhancement of five-axis CNC machines through real-time error compensation. International Journal of Machine Tools and Manufacture,2003,43 (9):871-877.
    140) F. Katsushi, T.H. Nguyen, O. Noriyuki, etal. Automatic compensation for grinding wheel wear by pressure based in-process measurement in wet grinding. Precision Engineering,2003,27(1):9-13.
    141) A.C. Okafor, Y.M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematic. International Journal of Machine Tools and Manufacture,2000, 40(8):1199-1213.
    142) C.D. Mize, J.C. Ziegert. Durability evaluation of software error correction on a machine center. International Journal of Machine Tools & Manufacture,2000, 40(10):1527-1534.
    143) S.W. Gan, H.S. Lim, M. Rahman, etal. A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. International Journal of Machine Tools & Manufacture,2007,47(7-8):1302-1310.
    144) H.J. Pahk, D.S. Lee, J.H. Park, Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation, International Journal of Machine Tools & Manufacture,2001,41(1):51-63.
    145) N. Jun. CNC machine accuracy enhancement through real-time error compensation. Journal of Manufacturing Science and Engineering, Transactions of the ASME,1997,119(4):717-725.
    146) P.L. Tso, H.C. Chuang. A study on the form error compensation for aspheric lens machining. Key Engineering Materials,2003,238-239:369-374.
    147)李小力.数控机床综合几何误差的建模及补偿研究:[华中科技大学博士学位论文].武汉:华中科技大学,2006.
    148) R. Hocken, A.J. Simpson, B. Borchardt, et at. Three dimensional metrology. Annals of the CIRP,1977,26(2):403-408.
    149) W. Liu, L. Li, K. Kochhar. A method for assessing geometrical errors in layered manufacturing, Part 2:Mathematical modeling and nμmerical evaluation. International Journal of Advanced Manufacturing Technology, 1998,14(9):644-50.
    150) P.M. Ferreira, C.R Liu. A contribution to the analysis and compensation of the geometric error of a machining center. Annals of the CIRP,1986,35(1): 259-62.
    151) J.S. Chen, T.W. Kou, S.H. Chiou, Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer. Journal of the International Societies for Precision Engineering and Nanotechnology,1999, 23(4):243-252.
    152) C.M. Lynn, D.W. Rosen. SLA-250 parts vs. geometric tolerances:quantitative results. Proceedings of the North American Stereolithography User Group Conference,1999,1-15.
    153) Y.Y. Hsu, S.S Wang. A new compensation method for geometry errors of five-axis machine tools. International Journal of Machine Tools & Manufacture, 2007,47(35):23-60.
    154) J.H. Jung, J.P. Choi, S.J. Lee. Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. Journal of Materials Processing Technology,2006,174(1-3): 56-66.
    155)沈金华,李永祥,鲁志政,等.数控车床几何和热误差综合实时补偿方法应用.四川大学学报(工程科学版),2008,40(1):163-166.
    156)刘又午,刘丽冰,赵小松,等.数控机床误差补偿技术研究.中国机械工程,1998(12):48-52.
    157)范晋伟,关佳亮,阎绍泽.提高精密凸轮磨削精度的几何误差补偿技术.中国机械工程,2004 15(14):1223-1226.
    158) J.H. Lee, S.H. Yang. Statistical optimization and assessment of a thermal error model for CNC machine tools. International Journal of Machine Tools & Manufacture,2002,42(2):147-155.
    159) D.S. Lee, J.Y. Choi, D.H. Choi. ICA based thermal source extraction and thermal distortion compensation method for a machine tool. International Journal of Machine Tools & Manufacture,2003,43(6):589-597.
    160) C.D. Mize, J.C. Ziegert. Neural network thermal error compensation of a machining center. Precision Engneering.2000,24(4):338-346.
    161) F.L.M. Delbressine, G.H.J. Florussen, L.A. Schijvenaars, etal. Modelling thermomechanical behaviour of multi-axis machine tools. Precision Engneering, 2006,30(1):47-53.
    162) H. Wu, H.T. Zhang, Q.J. Guo, etal. Thermal error optimization modeling and real-time compensation on a CNC turning center. Journal of Materials Processing Technology,2008,207(1-3):172-179.
    163) S. Yang, J. Yuan, J. Ni. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. International Journal of Machine Tools & Manufacture,1996,36(4):527-537.
    164)杨建国,王秀山,赵海涛.机床热误差模型中温度测点布置.2005年中国机械工程学会年会,2005年.
    165)张宏韬,曹洪涛,沈金华,等.数控机床热误差补偿的人工神经网络建模及其应用.机械制造,2006,44(1):17-20.
    166) J.H. Ko, W.S. Yun, D.W. Cho, etal. Development of a virtual machining system, part 1:approximation of a size effect for cutting force prediction. International Journal of Machine Tools and Manufacture,2002,42(15):1595-1605.
    167) W.S. Yun, D.W. Cho. An improved cutting force model considering the size effect in end milling. ASME International Mechanical Engineering Congress and Exposition, Orlando, FL,510 November (2000) 223-229.
    168) G.M. Kim, B.H. Kim, C.N. Chu. Estimation of cutter deflection and formerror in ball-end milling process. International Journal of Machine Tools and Manufacture,2003,43(9):917-924.
    169) C. Raksiri, M. Parnichkun. Geometric and force errors compensation in a 3 axis CNC milling machine. International Journal of Machine Tools and Manufacture, 2004,44(12-13):1283-1291.
    170) V.S. Rao, P.V.M. Rao, Effect of workpiece curvature on cutting forces and surface error in peripheral milling, Journal of Engineering, Manufacturing, Proceedings of the Institution of Mechanical Engineers,2006,220(9): 1399-1407.
    172)陈亮,闫光荣.非球面玻璃镜片四轴磨削加工误差分析及其补加工.工程图学学报,2008,(4):64-168.
    173)康念辉,李圣怡,郑子文.基于多体系统理论的非球面磨削误差模型与补偿技术.机械工程学报,2008,44(4):143-149.
    174)王立强,张建明.非球面光学零件补偿刀口自动编程系统.航空精密制造技术,2006,42(2):11-14.
    175)黄浩,郭隐彪,王振忠,等.轴对称非球面加工误差分离及补偿技术.机械工程学报,2005,4(12):177-181.
    176)郭隐彪,杨继东,梁锡昌,等.轴对称非球面模具加工中的补偿技术研究.中国机械工程,2000,11(4):415-417.
    177)王院生,路桂英,王存洋.光学非球面凹面零件仿形加工方法的修正.光学技术,2007,32(3):367-370.
    178) H. Huang, W.K. Chen, T. Kuriyagawa. Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts. International Journal of Machine Tools & Manufacture,2007,47(15):2237-2245.
    179) V.S. Rao, P.V.M. Rao. Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces. International Journal of Machine Tools and Manufacture,2005,45(6):613-617.
    180) W. Gao. Measurement and compensation of error motions of a diamond turning machine, Precision Engineering,2007,31(3):310-316.
    181) K.C Fan. A non-contact automatic measurement for free-form surface profiles. Computer Integrated Manufacturing Systems,1997,10(4):277-285.
    182) Y. Arai, A. Shibuya, Y. Yoshikawa, etal. Online measurement of micro-aspheric surface profile with compensation of scanning error. Key Engineering Materials,2008,381-382:175-178.
    183)表面粗糙度轮廓的基本概念.安徽理工大学.http://star.aust.edu.cn/jpkc/hhx/dmt/5.pps.
    184)樊计昌,刘明军,海燕.小波(包)滤波方法的GUI及其在深地震测深数据处理中的应用.科技导报,2009,27(2):78-82.
    185)夏永泉,徐洁,崔伟.均值滤波中邻域均值的快速计算.郑州轻工业学院学报(自然科学版),2008,23(03):57-59
    186)蔡建新,汪仁煌,杨磊.一种新的快速中值滤波算法.计算机时代,2008,(12):58-59
    187)王蕴珊.形貌检测频域低通滤波器及检测误差修正.半导体光电,1999,20(1):15-18.
    188) M. Pauly. Markus Gross. Spectral processing of point-sampled geometry. International Conference on Computer Graphics and Interactive Techniques. New York, USA:ACM.2001,379-386.
    189) K. Zhou, H.J. Bao, J.Y. Shi.3D surface filtering using spherical harmonics. Computer-Aided Design,2004,36(4):363-375.
    190) Y. Ohtake. Multi-level partition of unity implicits. ACM Transactions on Graphics,2003,22(3):463-70.
    191) T.R. Jones, F. Durand, M. Desbrun. Non-iterative, feature preserving mesh smoothing. ACM Transactions on Graphics,2003,22:943-949.
    192) G.F. Hu, Q.S. Peng, A.R. Forrest. Mean shift denoising of point-sampled surfaces. The Visual Computer,2006,22(3):147-157.
    193)董明晓,郑康平.一种点云数据噪声点的随机滤波处理方法.中国图象图形学报,2004,9(2):245-248.
    194)程军.传感器的噪声及其抑制方法.电子工程师,2003,(3):58-60.
    195)宁波市海曙欧斯特电子有限公司.滤波器-数字滤波器发展.2009.http://www. ostcore. com/Xinwenzhongxin/461.html.
    196)玉杰天.几种经典的滤波算法.2008.7http://blog.mcuol.com/User/happy_5523/article/5925_1.htm.
    197)李强,吴文进.基于多尺度自适应卡尔曼滤波的分形信号去噪.2009,29(5):212-214.
    198) M. Krystek. A fast gauss filtering algorithm for roughness measurements. Precision Engineering,1996,19(2):198-200.
    199) Y.B. Yuan, X.F. Qiang, J.F. Song, et al. A fast algorithm for determining the Gaussian filtered mean line in surface metrology. Precision Engineering,2000, 24(1):62-69.
    200)许景波,袁怡宝,朴伟英,等.表面粗糙度测量中的高斯滤波快速算法.计量学报,2005,26(4):309-312.
    201) W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Society,1979,74(368),829-836.
    202) S. Brinkmann, H. Bodschwinna, H.W. Lemke. Accessing roughness in three-dimensions using gaussian regression filtering. International Journal of Machine Tools and Manufacture,2001,41(13-14):2153-2161.
    203) N.L. Luo, P.J. Sullivan, K.J. Stout. Gaussian filtering of three-dimensional engineering surface. Topography, Proc. SPIE,1993,2101:527-538.
    204) L. Piegl, W. Tiller. The NURBS Book. Second ed, Springer, New York,1997.
    205) L. PIEGL. On NURBS:a survey. IEEE Computer Graphics & Applications, 1991,11 (1):55-71.
    206) W. Tiller. Rational B-splines for curve and surface referesentation. IEEE Computer Graphics & Applications,1983,3(6):61-69.
    207)潘君骅.光学非球面的设计、加工及检验.(第一版).苏州:苏州大学出版社,2004,1-5,47-67.
    208) W.K. Chen, T. Kuriyagawa, H. Huang, etal. A new form error compensation Technique for Mould Insert Machining Utilizing Parallel Grinding Method. Key Engineering Materials,2004,257-258:141-146.
    209) Y. Yamamoto, H. Suzuki, T. MORIWAKI, etal. Development of cross and parallel mode grinding machine for high NA aspherical mold and die. Proceedings of Annual Meeting of the American Society for Precision Engineering, Monterey, California,2006,39:499-502.
    210) Y. Hwang, T. Kuriyagawa, S.K. Lee. Wheel curve generation error of aspheric micro-grinding in parallel grinding method. International Journal of Machine Tools and Manufacture,2006,46(15):1929-1933.
    211)金捷.机械制造技术.北京:清华大学出版社.2006.70-90.
    212)赫青山,苏宏华,冯晓杰.陶瓷磨削中新型多孔金属结合剂金刚石砂轮磨损特征研究.金刚石与磨料磨具工程,2009,(3):16-20.
    213) B. Zhao, B.Y. Du, W.D. Liu. Experimental study on intelligent monitoring of diamond grinding wheel wear. Key Engineering Materials.2009,392-394: 156-160.
    214) D.P. Wan, D.J. Hu, Q. Wu. Online grinding wheel wear compensation by image based measuring techniques. Chinese Journal of Mechanical Engineering. 2006,19(4):509-513.
    215) H.Suzuki, K.Syoji, S. Katsuo, et al. Studies on Precision Grinding of Micro Aspherical Surface (3rd Report)-Micronizing of Aspherical Surface in Inclined Rotational Grinding. JSPE.1998,64(9):1350-1354.
    216) K. Fathima, A.S. Kμmar, M. Rahman and H.S. Lim, A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding. Wear,254(12):1247-1255.
    217)守安精.非球面光学素子の超精密加工に関すゐ研究:[東京大学博士学位論文].东京:东京大学,(1999).
    218) T. Kuriyagawa, K. Syoji and L. Zhou. Precision form truing and dressing for aspheric ceramic mirror grinding. Machining of Advanced Materials, NIST Special Publication 1993,847,6,325-331.
    219) T. Kuriyagawa, S. Mohammad, S. Zahmaty. A new grinding method for aspheric ceramic mirrors. Journal of Materials Processing Technology,1996, 62(4):387-392.
    220)张学军,余景池,张宏坤.计算机控制光学加工过程中的技术难点及解决方法.仪器仪表学报,1998,19(1):18-21.
    221)黄浩,郭隐彪,王振忠,等.轴对称非球面加工进给速度控制技术研究.金刚石与磨料磨具工程,2004,140(2):20-24.
    222)王文,王威,陈子辰.基于软件复用与软件构件技术的数控系统研究.第一届国际机械工程会议,1999.
    223)东方人华.Visual C++6.范例入门与提高.北京:清华大学出版社,2003,(11).23-45.
    224)张峰,丁永刚.采用ProEssentials实现工业生产数据图形化显示.软件导刊.2009.8(8):180-182.
    225)王爱玲,沈兴全等.现代数控编程技术及应用.北京:国防工业出版社,2001.41-56.
    226) H. Takeuchi, K. Yoshizμmi, H. Tsutsμmi. Ultrahigh accurate 3-D profilometer using atomic force probe measure nanometer. Journal of the Japan Society of Precision Engineering,2002,68(3):361-366.
    227) Form Talysurf PGI 1240非球面测量系统.泰勒霍普森有限公司.http://www.taylor-hobson.com.
    228) S.H Yin, H. Ohmori, W.M. Lin, etal. Nano-precision synergistic finishing Process of ELID grinding and MR. Journal of the Japan Society for Abrasive Technology,2005,49(12):701-702.
    229)康桂文,张飞虎,董申.磁流变技术研究及其在光学加工中的应用.光学技术,2004,30(3):354-356.
    230)程灏波,冯之敬,王英伟.磁流变抛光超光滑光学表面.哈尔滨工业大学学报,2005,37(4):43-46.
    231)张云,冯之敬,赵广木.磁流变抛光工具及其去除函数.清华大学学报,2004,44(2):190-193.
    232)杨沛然.流体润滑数值分析.(第二版).北京:国防工业出版社,1998,29-33.
    233) F.W. Preston. Glass Technology. J Soc,1927,11:277-281.
    234) D.B. Marshall, B.R. Lawn, A.G. Evans. Elastic-plastic indentation damage in ceramic. The Lateral Crack System. J. Am. Ceram. Soc,1982,65:561-566
    235) M. Buijs. Erosion of glass as modelled by indentation theory. J.Am. Ceram. Soc,1994,77:1676-1678.
    236) J. Lambropoulos, F. Yang and S. D. Jacobs. Toward a mechanical mechanism for material removal in magnetorheological finishing. Optical Fabrication and Testing Workshop,7, OSA Technical Digest Series. Washington, D.C.:The Optical Society of America,1996.150-153.
    237) CR-39, PPG Industries Inc, (Pittsburgh, PA) (1979)
    238) Data from BDH CRYSTRAN product Handbook, BDH Ltd., Advanced Materials Division, Poole, England,1990,29-30.
    239)张峰,余量池,张学军,等.对磁流变抛光技术中磁场的分析.仪器仪表学报,2001,22(1):42-45.
    240)彭小强,戴一帆,李圣怡,等.回转对称非球面光学零件磁流变成形抛光的驻留时间算法.国防科技大学学报,2004,26(3):90-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700