用户名: 密码: 验证码:
澳矿配比对烧结矿性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着我国粗钢产量的突飞猛进,国内各钢铁企业矿石来源日趋紧张,对国外矿石的进口依存度仍居高不下,为了提高高炉产量、改善质量和降低生产成本,钢铁企业必须使用各种不同性能和质量的矿石,从而使得烧结矿性能存在一定的不稳定性。本论文以重钢环保搬迁后新区实际铁矿石资源配置为基础,结合企业现有实际烧结生产配料情况,重点考察了不同澳矿配比条件下烧结物料的基础特性、烧结混合料的制粒性能以及烧结矿的物理及冶金性能,并对混合料加水制粒成球及高温烧结成块过程中的相关机理问题进行了实验研究和理论分析。研究结果对于提高烧结矿资源的利用、改善烧结矿性能以及丰富铁矿石烧结理论具有一定的的理论和现实意义。
     论文首先对烧结用原燃料进行了基础特性研究,考察了各物料的化学成分、粒度及比表面分析、吸水特性以及升温过程的热量变化等,为后续研究方案的制定和具体研究工作的开展奠定基础。针对铁矿石吸水特性,根据lagergren一级速率方程建立了铁矿粉吸水宏观动力学模型,获得了水在不同铁矿粉中的传质系数。对于澳矿粉,属于典型的赤铁矿型矿石,升温过程中减重最明显,存在结晶水和易烧损物质最多;澳矿粉是容量最大,粒度分布均匀,>0.7mm的成核粒子较多, 0.2-0.7mm的粘附粒子占20%以上,对制粒成球不利;澳矿颗粒比表面积最大,颗粒孔径和孔体积也最大,属典型的多孔颗粒,易于吸水,其湿容量和吸水传质系数也最高,有利于改善制粒效率。
     对烧结混合料制粒性能进行了实验研究和理论分析,获得了具有工业指导意义的研究结果。混合料制粒研究的基本结论是:①随着加水量的增加,物料颗粒经制粒后细小颗粒逐步降低,大颗粒越来越多、尺寸越来越大。当>10mm粒级含量为50%,5~8mm粒级含量为30%,8~10mm粒级的含量为10%,其他粒级含量占10%时生料层的透气性最好。②随着制粒过程中加水量的逐渐增加,烧结料制粒后3~8mm粒级含量经历了由低到高在变低的过程,呈现出典型的倒“V”。透气性指数等其他制粒效果评价指标随着含水量变化也有同样的规律。③存在适宜含水量使得混合物料的制粒效果最佳。④烧结料制粒适宜含水量随着烧结料湿容量的增大而增大,二者存在显著的线性关系。铁矿石烧结研究的主要结论为:①以烧结矿物理性能转鼓强度,落下强度,抗磨指数和成品率为依据,结合其他参考标准(如烧结时间,温度等),筛选出的适用于烧结生产的11组配料方案,并进行了重现性实验;②进行了烧结矿冶金性能实验,未添加冷固球团的2#和18#配比以及添加冷固球团的30#配比,有良好的低温还原粉化指数;未添加冷固球团的18#的还原度最好,添加冷固球团后,30#的还原度较好;对于高温熔融滴落性能,未添加冷固球团时,18#的高温熔融滴落性能较好,添加冷固球团后,30#的高温熔融滴落性能也较好。依据烧结矿冶金性能实验及分析,筛选出18#和冷固30#为获得良好物理性能的配矿方案。③与烧结实验优选的18#和冷固30#相比,采用重钢实际生产用混合料实验室烧结获得的烧结矿具有良好的物理性能,低温还原粉化指数,不足是烧结速度、还原度、高温熔融滴落性能偏小。综合分析看来,18#和冷固30#的配矿方案可以满足重钢实际生产需要。④各指标综合考虑,当澳粉加入量为55%时,烧结矿物理性能指标与成品率相对较优。⑤添加冷固球团可以提高烧结矿的物理性能,如转鼓指数,落下强度,抗磨指数等指标相对稳定或有一定程度的提升;对烧结矿的低温还原粉化指数有一定的改善。缺点是垂直烧结速度变慢;烧结矿还原度有所下降;对烧结矿熔融滴落性能有一定的不利影响。可以通过控制冷固球团的添加量来改善烧结矿的物理强度,但是不宜配加过量。
     针对高温烧结过程烧结液相生成,采用Factsage软件计算了烧结液相量、理论燃烧比以及复合铁酸钙等温液相线图,考察了Al2O3和MgO对烧结矿液相生成的影响,计算结果与表明Factsage用于烧结矿理论计算是可信的,可以有效地指导烧结燃料配加量和合理配矿,以获得良好性能的烧结矿。
     建立了烧结料层蓄热模型。燃烧层厚度和燃烧层反应完后产生的废气热量在各层的分配对烧结过程中各单元层的热量蓄积有很大的影响,随着燃烧层厚度增加,各单元层蓄积的热量值逐渐降低,料层的蓄热量也逐渐降低;随着热量给预热层分配的增加,单元层蓄热量逐渐增加,料层的热量蓄积值也逐渐增加;通过应用模型对300mm烧结料层进行热量蓄积计算,得到料层上、中、下的蓄热量比为1∶1.08∶1.13;烧结杯实验结果得到,当料柱各层燃料配加比上、中、下层分别为5. 2 %、3. 1 %、2. 7 %时,各种烧结结果参数比较理想。
     论文主要创新性研究成果为:建立了铁矿石制粒过程吸水动力学模型,并得到了不同烧结物料中水的传质系数,结合单矿湿容量的测定,可以有效地指导烧结制粒过程加水量的控制,具有较好的理论和实际意义;进行了高配比澳矿条件下的烧结矿理化及冶金性能研究,研究结果对于高配比条件下的烧结生产及高炉冶炼具有较好的指导意义;采用Factsage计算了烧结过程液相铁酸钙不同成分条件下的等温线图,考察了物料成分对液相生成的影响,对烧结过程工艺调控和优化烧结矿质量具有较好的理论指导;
With the crude steel yield in China increasing rapidly these recent years, the source of iron ore tends to become increasingly strained, and the import dependence of iron ore remains extraordinary high for several years. In order to improve the blast furnace output, to enhance the product properties and to decrease the production cost, many kinds of iron ore with different property and quality has been used in China steel enterprises, which result in the unstable iron ore sinter performance. Based on the practical iron ore resource distribution of Chongqing Iron and Steel Co. Ltd. (CISC), the basic characteristics of raw materials, the granulation property of sintering blend and the physical and metallurgical properties of iron ore sinter have been investigated, the relative mechanism during the blend granulating and the high temperature sintering has been also studied by experimental research and theoretical analyse. The investigation results have certain theoretical contributions and practical significance for the iron ore resource utilization efficiency, the sinter property improvement and the iron ore sintering theory enrichment.
     In this study, the basic characteristics of the raw materials were investigated firstly, including the chemical composition, the size distribution and specific area, the moisture absorption capacity and the thermal change during the heating process. According to the Lagergren first order rate equation, a macro dynamics model of water absorbing of iron ore fines were established and the water mass transfer coefficient were obtained. The Australia iron ore fines are the classical hematite, which contents crystal water and carbonate and have obvious loss when it was heated; the Australia iron ore fines have the largest moisture capacity and homogeneous size distribution, there are more particles greater than 0.7mm and the particles between 0.2 to 0.7mm contains 20%, which have the negative influence to the granulation effect; The Australia iron ore have the larhest specific area and the diameter and the volume of micropore, which is the classical porous particles and easy to absorb water; The Australia iron ore have the largest moisture capacity and water mass transfer coefficient, which can improve the granulation efficiency.
     The conclusion of the study of mixture granulation are as follows:①with the water content increases, the small size particles decreases; When the blend contens 50% gtain with size grater than 10mm, 30% with 5-8mm, 10% with 8-10mm and 10% with other size, the green ball bed have the best permeability.②With the water input increases, the content of 3-8mm size changes with the trend of the curve with the classical curve of reverse V.③An adapted water content corresponding to the best granulation effect.④A linear realation exist between the adapted water content and the moisture capacity. The conclusion of the iron ore sintering experiment are as follows:①Accorrding to the test of the iron ore sinter physical properties, 11 group of mixture ratio are chosen to conduct the reproducibility test.②The metallurgical properties of the samples were measured and the 18# and the 30# with cold set pellet added were selected as the best one.③When the Australia iron ore mix ratio is 55%, the sinter retain the best properties.④The adding of cold set pellet can improve the sinter physical properties such as the Tumbler strength, abrasion index and Shatter strength.
     The Factsage software were used to calculate the mass of the liquid phase of the sitering of iron ore, the theoretical fuel ratio and the isothermal line for the liquid phase SFCA. The influence of the content Al2O3 and MgO on the liquid phase generating were conducted, the calculated result shows that it is reliable to use the Factsage software to proceed the theoretical computation of the sintering, which can instruct the suitable fuel addition an the rational mixture ratio to get the good sinter property.
     This assignment brings forward the calculation model of accumulation heat and fuel distribution along the bed. Mathematical model of accumulation heat in sinter layers is founded and Matlab program is compiled. It is subject to the sintering materials of Chongqing Iron and Steel Corp. The heat balance and auto accumulation heat of layers is calculated in the sintering process. The result of the best fuel distribution model is achieved after sintering experiment validated. All of this make heat of layer distribute reasonably and sinter layers remain high temperature stability, achieve the result of high-quality, high-yield, low fuel consumption sintering. Figure which is via to model calculation shows that, heat accumulation quantity in lower layers is gradually increased. Dividing the bed into 3 layers, the ratio of upper, middle and lower bed’s heat accumulation is 1:1.08:1.13. Resulted from sintering pot test for the best segregate feed of fuel, it was shown that when the upper bed is 5.2%, the middle bed is 3.1%,the lower bed is 2.7%.
     The innovative research works are as follows: The dynamic classification diagram was obtained by the classification model. It realized the dynamic classification of iron ore in CISC. The impacts of mixture properties on the properties of sinter ore were studied via single factor analysis and range analysis. Influence of the carbon mixture ratio is more significant than that of other mixture properties on the properties of sinter ore in addition to reducibility. Basicity and temperature were propitious to the production of liquid-phase.The appropriate amount of carbon mixture ratio could be determined on the base of relationship between amount of liquid-phase and temperature. The results showed that the applications of model are benefit for guiding experiments and production.
引文
[1]孟君.基于巴西铁矿的烧结基础性能研究[D].长沙:中南大学学位论文, 2008.
    [2]王筱留.钢铁冶金学(炼铁部分[M].北京:冶金工业出版社, 2005.
    [3]王俊华,梁建波.铁矿石供给问题凸显[J].中国国情国力, 2007: 1-4.
    [4]张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁, 2007, 42 (2): 1-6.
    [5]周取定,孔令坛.铁矿石造块理论及工艺[M].北京:冶金工业出版社, 1989.
    [6] PR.Dawson. Recent Developments in Iron Ore Sintering[J]. Ironmaking And Steelmaking, 1993, 20 (1): 135-143.
    [7]徐瑞图,吴胜利.中国铁矿石烧结研究[J].周取定教授论文集, 1997: 45-51.
    [8]孔令坛.我国炼铁原料技术的进步和展望[J].炼铁, 2002, 21 (1): 20-23.
    [9]郜学.“十五’’我国烧结发展和技术进步[J].冶金信息导刊, 2007, (3): l0-13.
    [10] Bhargava, Om P., George F. Pitt, W. Grant Hines. Unified automated determination of silicon in iron ores, sinters, slags, iron and steel[J]. Talanta, 1971, 18 (8): 793-798.
    [11] Bhargava, Om P., Athanasios Alexiou, W. Grant Hines. Rapid method for total iron determination in iron ores, sinter and related materials without use of mercury compounds[J]. Talanta, 1978, 25 (6): 357-358.
    [12] Bhargava, Om P. Complexometric determination of aluminium in iron ore, sinter, concentrates and agglomerates[J]. Talanta, 1979, 26 (2): 146-148.
    [13] Banerjee, Samaresh, R. K. Dutta. Silver-reductor method for determination of iron in iron ores and iron-ore sinters[J]. Talanta, 1980, 27 (5): 448-448.
    [14] Bhargava, Om P., Michael Gmitro, W. Grant Hines. Universal technique for rapid dissolution of materials encountered in the steel industry and its applications in the photometric determination of arsenic, phosphorus, titanium and vanadium in iron ores[J]. Talanta, 1980, 27 (3): 263-267.
    [15] De Sa, Paulo, Isabel Marques. The carajas iron ore project: The strategy of a third world state- owned enterprise in a depressed market[J]. Resources Policy, 1985, 11 (4): 245-256.
    [16] Hanumantha Rao, K., K. S. Narasimhan. Selective flocculation applied to Barsuan iron ore tailings[J]. International Journal of Mineral Processing, 1985, 14 (1): 67-75.
    [17] Adedeji, F. A., F. R. Sale. The hydrogen reduction of iron ore sinters[J]. Thermochimica Acta, 1986, 103 (1): 181-186.
    [18] Prakash, S., H. S. Ray, K. N. Gupta. Use of the moving bed technique for the assessment of reducibility of iron ores and reactivity of solid reductants[J]. Reactivity of Solids, 1987, 4 (3):215-226.
    [19] Rogers, Christopher D., Kirsty Robertson, Kirsty Robertson. Long term contracts and market stability : The case of iron ore[J]. Resources Policy, 1987, 13 (1): 3-18.
    [20] Litster, J. D., A. G. Waters. Influence of the material properties of iron ore sinter feed on granulation effectiveness[J]. Powder Technology, 1988, 55 (2): 141-151.
    [21] Mahiuddin, S., S. Bondyopadhway, J. N. Baruah. A study on the beneficiation of indian iron-ore fines and slime using chemical additives[J]. International Journal of Mineral Processing, 1989, 26 (3-4): 285-296.
    [22] Muhammed, Mamoun, Yu Zhang. A hydrometallurgical process for the dephosphorization of iron ore[J]. Hydrometallurgy, 1989, 21 (3): 277-292.
    [23] Zhang, Yu, Mamoun Muhammed. The removal of phosphorus from iron ore by leaching with nitric acid[J]. Hydrometallurgy, 1989, 21 (3): 255-275.
    [24] Litster, J. D., A. G. Waters. Kinetics of iron ore sinter feed granulation[J]. Powder Technology, 1990, 62 (2): 125-134.
    [25] Oaikhinan, E. P. Break-down of Nigerian iron ore compacts during reduction[J]. Minerals Engineering, 1990, 3 (3-4): 375-380.
    [26] Sharma, T., R. C. Gupta, B. Prakash. Effect of gangue content on the swelling behaviour of iron ore pellets[J]. Minerals Engineering, 1990, 3 (5): 509-516.
    [27] Kapur, P. C., Pawan Kapur, D. W. Fuerstenau. An auto-layering model for the granulation of iron ore fines[J]. International Journal of Mineral Processing, 1993, 39 (3-4): 239-250.
    [28]李寿宝,潘宝巨,任志国.降低铁矿粉烧结固体燃耗的技术[J].烧结球团, 1996, 21 (3): 5-9.
    [29]胡宾生,丁宝忠,洛宁,白仁甲.乌石山矿烧结的试验研究[J].烧结球团, 1997, 22 (1): 25-28.
    [30]李光辉,李思导,姜涛,黄柱成.烧结过程中燃料利用率的提高[J].烧结球团, 1998, 23 (3): 29-34.
    [31] Venkataramana, R., S. S. Gupta, P. C. Kapur. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process[J]. International Journal of Mineral Processing, 1999, 57 (1): 43-58.
    [32] Hellmer, Stefan, Mats Nilsson. Visualization of costs--the case of iron ore in Russia[J]. Resources Policy, 2000, 26 (3): 145-155.
    [33] Srivastava, M. P., S. K. Pan, N. Prasad, B. K. Mishra. Characterization and processing of iron ore fines of Kiriburu deposit of India[J]. International Journal of Mineral Processing, 2001, 61 (2): 93-107.
    [34]吴胜利,刘宇,杜建新,米坤,林鸿.铁矿石的烧结基础特性之新概念[J].北京科技大学学报, 2002, 24 (3): 254-257.
    [35]应自伟,许力贤,姜茂发,廉树杰,田青.用块铁矿作烧结铺底料的试验研究[J].材料与冶金学报, 2002, 1 (3): 176-179.
    [36] Clout, J. M. F., J. R. Manuel. Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores[J]. Powder Technology, 2003, 130 (1-3): 393-399.
    [37] Magalh?es, M. Sacramento de, P. Roberto Gomes Brand?o. Microstructures of industrial sinters from Quadrilatero Ferrifero's iron ores, Minas Gerais State, Brazil[J]. Minerals Engineering, 2003, 16 (11, Supplement 1): 1251-1256.
    [38] Iveson, S. M., S. Holt, S. Biggs. Advancing contact angle of iron ores as a function of their hematite and goethite content: implications for pelletising and sintering[J]. International Journal of Mineral Processing, 2004, 74 (1-4): 281-287.
    [39]陈桂英.采用微型烧结试验快速测定铁矿石的烧结基础特性[J].烧结球团, 2004, 29 (1): 24-26.
    [40]刘振林,温洪霞,冯根生,高征铠.济钢常用铁矿石烧结基础特性的研究[J].钢铁, 2004, 39 (7): 7-11.
    [41]范晓慧,曾垂喜,姜涛,陈许玲.铁矿石烧结性能预报模型[J].中南大学学报(自然科学版), 2005, 36 (6): 949-954.
    [42]李艳茹,周明顺,翟立委,汪琦.褐铁矿用于烧结的试验研究[J].烧结球团, 2005, 30 (1): 4-7.
    [43] Mukherjee, A. K., D. Bhattacharjee, B. K. Mishra. Role of water velocity for efficient jigging of iron ore[J]. Minerals Engineering, 2006, 19 (9): 952-959.
    [44]范晓慧,陈许玲,姜涛,袁晓丽.铁矿石烧结终点的优化控制[J].华中科技大学学报(自然科学版), 2006, 34 (11): 100-102.
    [45]李雪松,许秋慧,武振宇,王仓,肖洪.唐钢铁矿石烧结性能研究及烧结工艺优化[J].冶金标准化与质量, 2006, 44 (1): 26-31.
    [46]姚晨霞.提高烧结外矿配比的生产实践[J].河北冶金, 2006, (3): 53-56.
    [47] Austin, Leonard G., Kesley Julianelli, Alan Sampaio de Souza, Claudio L. Schneider. Simulation of wet ball milling of iron ore at Carajas, Brazil[J]. International Journal of Mineral Processing, 2007, 84 (1-4): 157-171.
    [48] Donskoi, E., S. P. Suthers, S. B. Fradd, J. M. Young, J. J. Campbell, T. D. Raynlyn, J. M. F. Clout. Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation[J]. Minerals Engineering, 2007, 20 (5): 461-471.
    [49] Ooi, Tze Chean, Eric Aries, Bruce C. R. Ewan, Dennis Thompson, David R. Anderson, Ray Fisher, Trevor Fray, Donna Tognarelli. The study of sunflower seed husks as a fuel in the iron ore sintering process[J]. Minerals Engineering, 2008, 21 (2): 167-177.
    [50] Zhao, Pei, Peimin Guo. Fundamentals of fast reduction of ultrafine iron ore at low temperature[J]. Journal of University of Science and Technology Beijing, 2008, 15 (2): 104-109.
    [51]范晓慧,孟君,陈许玲,庄剑鸣.铁矿烧结中铁酸钙形成的影响因素[J].中南大学学报(自然科学版), 2008, 39 (6): 1125-1131.
    [52]黄亚蕾,黄柱成,毛晓明,彭虎,姜涛.铁矿石微波热风烧结点火研究[J].矿冶工程, 2008, 28 (5): 64-67.
    [53]金明芳,李光森,姜鑫,沈峰满.铁酸钙熔体对赤铁矿的渗透行为及对烧结强度的影响[J].东北大学学报(自然科学版), 2008, 29 (8): 1135-1138.
    [54]欧大明,孙骐,沈红标,阎丽娟,石洪志.焦粉粒度对铁矿石烧结过程的影响[J].钢铁, 2008, 43 (10): 8-12.
    [55] Majumder, Sushanta, Pradeepkumar Vasant Natekar, Venkataramana Runkana. Virtual indurator: A tool for simulation of induration of wet iron ore pellets on a moving grate[J]. Computers & Chemical Engineering, 2009, 33 (6): 1141-1152.
    [56]金明芳,朱道飞,郑忠,沈峰满.铁矿石粉矿成分对烧结强度的影响[J].东北大学学报(自然科学版), 2009, 30 (1): 86-89.
    [57]尚策,周明顺,翟立委,沈峰满.鞍钢铁矿石烧结基础性能研究[J].东北大学学报(自然科学版), 2009, 30 (8): 1139-1142.
    [58]韩家忠.现代烧结工艺技术[M].北京:中国新闻联合出版社, 2006.
    [59]陶文,王沧.唐钢二炼铁厂650mm厚料层烧结工艺改造及生产实践[J].河北理工学院学报, 2000, 22: 48-52.
    [60]李振国,张玉柱,常久柱.进口矿对唐钢烧结矿性能的影响[J].烧结球团, 2001, 26 (1): 25-27.
    [61] Jasbir Khosa, James Manuel. Predicting granulating behaviour of iron ores based on size distribution and composition[J]. ISIJ International, 2007, 47 (7): 965-972.
    [62]潘建,朱德庆,李建.铁精矿的原料特性及其对成球性能的影响[J/OL].中国科技论文在线, 2007, http://www.paper.edu.cn/.
    [63] Takayuki Maeda, Chieko Fukumoto. Effect of adding moisture and wettability on granulation of iron ore[J]. ISIJ International, 2005, 45 (4): 477-484.
    [64] Robin Bergstrand, Jasbir Khosa. The Effect of Marra Mamba Ore Addition on the Granulation Characteristics of Pisolite Based and Hematite Based Sinter Blends[J]. ISIJInternational, 2005, 45 (4): 492-499.
    [65] EiKi KASAL, William J.RANKIN, John F.G. The Effect of Raw Mixture Properties on bed permeability during Sintering ANNON[J]. ISIJ International, 1989, 29 (1): 33-42.
    [66]炎凉.世界铁矿石烧结法发展现状[J].烧结球团, 1994, 19 (4): 30-33.
    [67] J.D.Lister, A.G.Water. A model for Predicting the Size Distribution of Product from a Granulating Drum[J]. Transactions ISIJ, 1986, 26: 1036-1038.
    [68]廖国瑞.烧结原料混匀和制粒技术的研究[J].钢铁研究, 1994, 22 (2): 40-44.
    [69]李炳岳,高斌.对邢钢改善圆筒混合机制粒途径的探讨[J].河北冶金, 2006, (3): 20-23.
    [70]李博.影响烧结混匀制粒因素的探讨[J].江苏冶金, 2001, (2): 50-53.
    [71]李贤干.采用复合粘结剂强化混合料制粒的理论与实践[J].攀钢技术, 1997, 20 (2): 7-12.
    [72]李思导.细磨铁精矿烧结混合料制粒的研究[J].烧结球团, 1998, 23 (6): 7-12.
    [73]庄剑鸣.烧结原料基础性能及配矿试验研究[J].烧结球团, 2001, 26 (5): 1-3.
    [74]黎成家,文剑平.烧结混合机最佳工艺参数选择的研究[J].烧结球团, 1992, 17 (4): 13-17.
    [75]吴力化,陈雪峰.攀钢烧结混合料制粒因素的研究与优化[J].烧结球团, 2006, 31 (1): 19-22.
    [76]杜炽,何群,石军.强化攀钢烧结混合料制粒的试验研究[J].烧结球团, 1998, 23 (1): 36-42.
    [77] Knight, Peter. Challenges in granulation technology[J]. Powder Technology, 2004, 140: 156-162.
    [78] Xiaoyan Liu, E.Specht. Experimental study of the lower and upper angles of repose of granular materials in rotating drums[J]. Powder Technology, 2005, 154: 125-131.
    [79] Sarah Forrest, John Bridgwater. Flow patterns in granulating systems[J]. Powder Technology, 2003, 130: 91-96.
    [80] Carolyn Wightman, Fernando J.Muzzio. Mixing of granular material in a drum mixer undergoing rotational and rocking motions[J]. Uniform particles, 1998, 98: 113-124.
    [81] Y.L.Ding, R.Forster. Granular motion in rotating drums: bed turnover time and slumping-rolling transition[J]. Powder Technology, 2002, 124: 18-27.
    [82]何云华,白明华.圆筒混合机内物料运动状态的研究[J].烧结球团, 2007, 32 (1): 1-4.
    [83] Nobuyuki Oyama, Hideaki Sato. Development of coating granulation process at commercial sintering plant for improving productivity and reducibility[J]. ISIJ International, 2005, 45 (6): 592-599.
    [84] Fuyang Wang, Ian T.Cameron. Review and future directions in the modeling and control ofcontinuous drum granulation[J]. Powder Technology, 2002, 124: 238-253.
    [85] Jim Lister, Bryan Ennis. The science and engineering of granulation processes[M]. Kluwer Academic Publishers, 2004.
    [86] Kapur, P.C. Balling and granulation[M]. Academic Press, 1978.
    [87]高为民,孙德政.圆筒混料机制粒工艺参数的研究[J].烧结球团, 1994, 19 (4): 1-4.
    [88]高为民,王树同,周取定.改善烧结圆筒混合机制粒工艺参数的研究[J].钢铁, 1995, 30 (4): 6-9.
    [89] Scarlett, N.V.Y., Madsen, I.C., Pownceby, M.I., Christensen, A.N. In situ X-ray diffraction analysis of iron ore sinter phases[J]. Journal of Applied Crystallography, 2004, 37: 262-268.
    [90] Scarlett, N.V.Y., Pownceby, M.I., Madsen, I.C., Christensen, A.N. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter[J]. Metallurgical and materials transactions B, 2004, 35B: 929-936.
    [91] Hamilton, J.D.G., Hoskins, B.F., Mumme, W.G., Borbidge, W.E. , Montague, M.A. The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1O20 (SFCA): solid solutions limits and selected phase relationships of SFCA in the SiO2-Fe2O3-CaO(-Al2O3) system[J]. Neues Jahrbuch Miner. Abh, 1989, 161 (1): 1-26.
    [92] Mumme, W.G., Clout, J.M.F., Gable, R.W. The crystal structure of SFCA-I Ca3.18Fe3+14.66Al1.34Fe2+0.82O28, a homologue of the aenigmatite structure type, and new structure type, and new crystal structure refinements ofβ-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04Al1.74Fe2+0.16Si0.6O20[J]. Neues Jahrbuch Miner. Abh, 1998, 173 (1): 93-117.
    [93] Mumme, W.G. The crystal structure of SFCA-II, Ca5.1Al9.3Fe3+18.7Fe2+0.9O48 a new homologue of the aenigmatic structure-type, and structure refinement of SFCA-type, Ca2Al5Fe7O20[J]. Neues Jahrbuch Miner. Abh, 2003, 178 (3): 307-335.
    [94] Bristow, N.J., Waters, A.G. Role of SFCA in promoting high-temperature reduction properties of iron ore sinters[J]. Mineral Processing & Extractive Metallurgy,Section C, 1991, 100: 1-4.
    [95] Pownceby, M.I., Patrick, T.R.C. Stability of SFC (silico-ferrite of calcium): solid solution limits, thermal stability and selected phase relationships within the Fe2O3-CaO-SiO2 (FCS) system[J]. European Journal of Mineralogy, 2000, 12: 455-468.
    [96] Pownceby, M.I., Clout, J.M.F. Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising. Mineral Processing and Extractive Metallurgy[J]. 2003, 112: 44-51.
    [97] Patrick, T.R.C., Pownceby M.I. Stability of Silico-Ferrite of Calcium and Aluminum (SFCA)in air-solid solution limits between 1240°C and 1390°C and phase relationships within the Fe2O3-CaO-Al2O3-SiO2 (FCAS) system[J]. Metallurgical and materials transactions B, 2002, 33B: 79-89.
    [98]刘丽娜,韩秀丽,白丽梅.澳矿对烧结矿显微结构的影响[J].钢铁钒钛, 2008, 29 (2): 18-22.
    [99]王文山,吕庆,李福民,张淑会.澳矿粉配比对含钒烧结过程和烧结矿冶金性能的影响[J].钢铁研究, 2008, 36 (4): 1-4.
    [100]李杰,张金福,赵金龙.新澳矿粉的烧结性能研究[J].河北冶金, 2008, (5): 1-3.
    [101]陈耀明,王黎光.配加澳矿烧结矿矿物组成及显微结构的研究[J].烧结球团, 2000, 25 (4): 4-7.
    [102]韩淑霞,沈茂森,李小钢,康文革.包钢烧结配加澳矿粉的试验研究[J].包钢科技, 2003, 29 (4): 4-7.
    [103]白国华,姜波,梁景晟,庄剑鸣,许斌.澳矿烧结试验研究[J].烧结球团, 2000, 25 (4): 19-21.
    [104]郭兴敏.烧结过程铁酸钙生成及其矿物学[M].北京:冶金工业出版社, 1999.
    [105]董相华.烧结矿组成和结构对烧结矿质量影响的相关研究[D].贵阳:贵州大学学位论文, 2008.
    [106]赵艳霞.包钢常用铁矿粉烧结基础特性的实验研究[D].包头:内蒙古科技大学学位论文, 2007.
    [107]王荣成,何明杰.添加蛇纹石和白云石对烧结矿产质量影响的研究[J].烧结球团, 2006, 31 (1): 15-19.
    [108]文光远,鞠永福,赵诗金.氧化镁对烧结矿冶金性能的影响[J].四川冶金, 1992, (4): 1-5.
    [109]谭金坤,尹海生,李振国.碱度、MgO含量和白云石粒度对烧结矿常温强度的影响[J].烧结球团, 1990, 15 (2): 19-24.
    [110]刘丽娜,韩秀丽.影响烧结矿质量因素的综述[J].河北理工学院学报, 2006, 28 (2): 18-22.
    [111]杨兆祥.生产高强度、高还原性的高碱度烧结矿的几个问题[J].河北冶金, 1980, (2): 39-47.
    [112]应自伟.改善低SiO2烧结矿强度的工艺基础研究[D].沈阳:东北大学学位论文, 2006.
    [113]周取定.低温烧结机理及工艺技术的研究[J].周取定教授论文集, 1997: 305-310.
    [114]张世娟,王树同.针状铁酸钙形成机理的试验研究[J].钢铁, 1992, 27 (7): 7-12.
    [115]王悦祥.烧结矿与球团矿生产[M].北京:冶金工业出版社, 2006.
    [116]黄柱成,江源,毛晓明.铁矿石烧结中燃料合理分布研究[J].中南大学学报(自然科学版), 2006, 37 (5): 884-890.
    [117]夏德宏,焦红蕾,张刚.烧结工序中燃烧与传热过程的数值模拟[J].工业炉, 2006, 28 (3): 30-32.
    [118] Mitterl Ehner J , Loeffl Er G, Winter F. Modeling and Simulation of Heat Front Propagation in the Iron Ore Sintering Process[J]. ISIJ International, 2004, 44 (1): 11-20.
    [119] CE, Loo. A Perspective of Goethitic Ore Sintering Fundamentals[J]. ISIJ International, 2005, 45 (5): 436-448.
    [120]龙红明,范晓慧,刘代飞.铁矿石烧结工艺参数优化模型的设计与应用[J].材料与冶金学报, 2007, 6 (4): 248-252.
    [121]任伟,白晨光,邱贵宝.微波烧结磁铁精矿[J].重庆大学学报(自然科学版), 2006, 29 (1): 74-77.
    [122] WON YAN G , SAN GMIN CHOI , EUN G SOO CHOI. Combustion characteristics in an iron ore sintering bed-evalua of fuel substitution[J]. Combustion and Flame, 2006, 145: 447-463.
    [123]梁雪梅,朱德庆,姜涛.烧结节能技术现状及发展[J].烧结球团, 2000, 25 (4): 1-3.
    [124]夏铁玉,李政伟,颜庆双.鞍钢三烧车间600mm厚料层烧结生产实践[J].烧结球团, 2005, 30 (1): 45-47.
    [125] E, EVERETTJ. Iron ore production scheduling to improve product quality[J]. European Journal of Operational Research, 2001, 129: 355-361.
    [126]任志国,马兵,徐书刚.烧结机布料新技术[J].烧结球团, 2005, 30 (3): 21-23.
    [127]刘竹林,陈子林,汤乐云.烧结工艺优化的试验研究[J].钢铁, 2006, 41 (5): 15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700