用户名: 密码: 验证码:
中高磷铁水转炉双联脱磷的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿石资源是十分重要的非可再生自然资源,是人类社会赖以生存和发展的不可或缺的物质基础。随着钢铁行业的飞速发展,世界范围内高品位优质铁矿石资源逐渐枯竭。以储量丰富的高磷铁矿为代表的低品位复杂铁矿资源的开发利用逐渐受到关注。作者通过文献和调研,分析了选矿方法、化学方法、冶炼方法以及微生物方法等主要脱磷方法各自的优缺点,认为冶炼方法尤其是转炉双联冶炼工艺为解决我国高磷铁矿石资源利用的有效方法。本论文以中高磷铁水转炉双联脱磷过程为对象,通过开展热力学、动力学、石灰溶解行为、双联炉渣资源化利用等方面的研究,丰富中高磷铁水脱磷基础理论;探索转炉双联工艺处理中高磷铁水的可行性;为其工业应用提供理论依据和实践指导。
     采用无氟CaO-FetO-SiO_2渣系,以少量Na_2O和Al_2O_3作助熔剂对磷含量0.42%的铁水进行了热力学实验。脱磷率为74~91%;磷分配比P log L为1.75~1.92;P_2O_5活度系数logγP_2O_5为-15~-17;磷酸盐容量43-PO logC为19~21。研究发现有关脱磷热力学分析的经典公式并不适用于本实验条件。本文在分析脱磷渣组分和光学碱度对P log L、logγP_2O_5和43-PO logC的影响的基础上,用SPSS软件回归出了组分、光学碱度与上述热力学参数的关系式。计算结果与实测结果较为吻合。采用CaO-FetO-SiO_2-(Al_2O_3, Na_2O)炉渣进行了中高磷铁水脱磷动力学研究。发现2~6%的Al_2O_3与Na_2O均能起到提高初期脱磷速度的作用。Na_2O还可抑制回磷现象。低硅铁水具有较好的脱磷效果。基于双膜理论建立了脱磷动力学方程,从表观脱磷速率常数kP、总传质系数kO和传质参量A·kO三个方面对脱磷动力学方程进行了多角度解析。实验各炉次的kP在0.868~8.602×10-3g/(cm2·s)之间;kO在0.005~0.024cm/s之间。Al_2O_3和Na_2O可明显增加kO。铁水硅含量越低,kO越大。各炉次前两分钟平均A·kO值在0.16~0.36cm3/s之间,随着反应的进行,A·kO值逐渐降低。对于无回磷现象的炉次,A·kO逐渐降低直至趋近于零;对于发生回磷现象的炉次,A·kO逐渐降低为负值。基于Robertson模型建立了多组分耦合反应动力学模型。模型计算结果与实测结果趋势一致。分析了界面氧活度aO*与炉渣组分和铁水成分的关系,炉渣FeO含量越高,铁水碳、硅、锰含量越低,则aO*值越大。分析了渣量和CO析出的表观速率常数GCO对计算结果的影响。渣量越大、GCO越小的条件下aO*越大,越有利于脱磷。
     采用二次回归正交组合设计的方法研究了CaO-FetO-SiO_2-Al_2O_3-Na_2O-P_2O_5炉渣对石灰溶解行为的影响。分析了各因素的单独影响及其交互作用效应。进行了石灰在CaO-SiO_2-FetO-P_2O_5-X系炉渣中的旋转溶解动力学实验。发现CaO在液相中的传质是石灰溶解的限制性环节。CaF2对促进石灰溶解的作用最强,Na_2O次之,Al2O3的影响最弱。回归出高P2O5含量炉渣中石灰溶解速度与线速度的关系式和对流传质方程。传质系数计算值为7.63×10-4~1.70×10-3。根据Arrhenius公式计算出的石灰溶解活化能为43kcal/mol。对于中高磷铁水冶炼,如欲在低氟或无氟的情况下造好具有一定碱度的脱磷初渣,应保证一定的铁水温度、炉渣ΣFeO/SiO_2比和动力学搅拌等一系列的工艺条件。
     在双联炉渣资源化利用方面,分析了脱磷渣和脱碳渣的矿相组成;探讨了脱磷渣的黏性特征和脱碳渣的熔化特征;分析了利用高磷炉渣制钢渣磷肥的可行性。由于CaF2极易同磷结合生成氟磷灰石,使脱磷渣枸溶率急剧降低,制备钢渣磷肥需走无氟路线。用改性-磁选的方法探索了脱磷渣中磷的富集与分离行为,发现可以取得良好的效果,实现了大部分磷的回收。采用正规离子溶液模型计算炉渣组元有效浓度,并将其应用于前人建立的返回渣利用配方模型。结合计算结果进行了脱碳渣返回利用热态实验,发现本实验条件下20%的返回渣比例较合适。返回渣冷却效果计算结果表明其冷却能力低于原脱磷剂。此外,用分子动力学方法对CaO-SiO_2-P_2O_5-(CaF_2)熔渣结构进行了模拟计算,丰富了熔渣结构理论。对于深入了解转炉渣结构,尤其是高P_2O_5含量炉渣结构和性质有着重要的意义。
     进行了80t转炉双联脱磷工业试验。铁水磷含量0.25~0.3%的条件下,脱磷炉平均脱磷率73%,脱磷渣平均P_2O_5含量5.01%;铁水磷含量0.37~0.44%的条件下,脱磷炉脱磷率67.6%,脱磷渣平均P_2O_5含量7.25%。脱磷渣中P_2O_5含量高,是制造钢渣磷肥的良好原料。半钢经脱碳炉少渣冶炼后,终点磷含量均小于0.015%,满足低磷钢冶炼要求。针对中高磷铁水冶炼的特点,对各种脱磷工艺进行了综合评价,认为利用转炉双联工艺冶炼低磷钢的技术路线可行。转炉双联工艺对于处理国内的高磷铁矿具有良好的应用前景。
Iron ore resources are precious non-renewable natural resources, which are the indispensable material foundation of the existence and development of human society. With the rapid development of iron and steel industry, the supply of high quality, low phosphorus iron ores becomes depleted gradually. In recent years, some evidence has suggested that the development and utilization of low grade complex iron ores represented by high phosphorus iron ores have attracted more and more attention of metallurgists. In the paper, according to synthetic analysis for the vast majority of literatures, the advantages and disadvantages of different dephosphorization treatment like mineral separation, chemical method, refining method and microorganism method were analyzed. In the author’s view, the refining method, especially the duplex process, is an effective way to utilize the high phosphorus iron ores in our country. Taking duplex process refining as subject, the paper concentrates on the enrichment of fundamental research for medium and high phosphorus hot metal refining by studying the thermodynamics and kinetics of dephosphorization, the dissolution behavior of lime and the resource utilization of duplex refining slags. The feasibility of refining medium and high phosphorus hot metal by duplex process was also discussed. The comprehensive evaluation result could provide a theoretic basis and direction for industrial application of duplex process.
     Dephosphorization thermodynamics of high phosphorus hot metal (0.42%) was investigated by using CaO-FetO-SiO2 slags, which contained small amounts of Na2O and Al2O3. The results show that the dephosphorization ratio, log LP , logγP2O5 and log C POwere 74~91%, 1.75~1.92, -15~-17 and 19~21, respectively. It was found that the classical and experiential formulae about dephosphorization analysis are not applicable to the case of medium and high phosphorus hot metal refining. Based on the analysis for the effect of optical basicity and slag components on log LP , logγP2O5 and log C PO, the correlations between optical basicity, slag components and these thermodynamic parameters were developed by regression analysis method. The kinetics of dephosphorization was studied by using CaO-FetO-SiO2-(Al2O3, Na2O) slags. The results indicate that both 2~6% Al2O3 and Na2O could increase the initial dephosphorization velocity. Na2O could also inhibit the rephosphorization phenomena. Low Si hot metal had better dephosphorization effect. Based on the double film theory, a dephosphorization dynamic model was set up. The present paper made a systematic and multi-angle analysis of the model from the following three aspects: the apparent dephosphorization rate constant kP, the overall mass transfer coefficient kO and the mass transfer parameter A·kO. The experimental results show that kP were in the range of 0.868~8.602×10-3g/(cm2·s). kO were in the range of 0.005~0.024cm/s. Al2O3 and Na2O could obviously increase kO. Si content in hot metal was lower, kO was higher. In all the 11 heats of experiments, the average A·kO in the first two minutes were in the range of 0.16~0.36cm3/s. As the reaction process continues, the value of A·kO decreased gradually. To the heats without rephosphorization phenomena, the value of A·kO decreased gradually and finally approach zero. To the heats with rephosphorization phenomena, the value of A·kO decreased gradually and finally become negative. Based on the Robertson model, a coupled reaction model to the medium and high phosphorus hot metal dephosphorization process was set up. The calculated results agreed well with the measured data. The relationship between the oxygen activity at slag-metal interface aO* and hot metal and slag components were discussed. The higher the FeO content in slag was, the lower the C, Si and Mn in hot metal were and the higher the aO* at slag-metal interface was. The effect of GCO and slag amount on calculation were also discussed. The higher the slag amount was, the lower the GCO was and the higher the aO* was. Higher aO* facilitates dephosphorization.
     The dissolution behavior of lime into CaO-FetO-SiO2-Al2O3-Na2O-P2O5 slag was investigated with the help of quadratic regression orthogonal composite design method. The influence of different factors and interactions between major factors were discussed. The dissolution rate of CaO in CaO-SiO2-FetO-P2O5-X was studied by rotating cylinder method. From the analysis of experiment results, it was concluded that the dissolution rate was controlled by the mass transport of CaO in liquid phase. The effect of additives to CaO-SiO2-FetO-P2O5 slag on raising the dissolution rate of CaO was CaF2 > Na2O > Al2O3. The convective mass transfer equation and relational expression between linear velocity and CaO dissolution rate in the high P2O5 slag were obtained by regression analysis. The calculated mass transfer coefficient were in the range of 7.63×10-4~1.70×10-3. Based on the Arrhenius equation, the apparent activation energy for the dissolution rate was calculated to be 43 kcal/mol. For the medium and high phosphorus hot metal refining, in order to accelerate the slagging process under low fluorine or fluorine-free condition, a series of technology parameters such as adequate hot metal temperature,ΣFeO/SiO2 in the slag, stirring and so on should be guaranteed.
     In the aspect of resource utilization of duplex refining slags, mineralogy of De-P and De-C slags were investigated by SEM, EDS and XRD. Viscosity characters of De-P slags and melting characters of De-C slags were also discussed. In view of the high P2O5 content in De-P slags, the way of developing steel slag phosphate fertilizer was put forward. Due to the formation of fluorine containing apatite Ca5(PO4)3F, solubility of slag samples in citric acid decreased rapidly with CaF2 addition. To get a higher solubility, production of steel slag phosphate fertilizer should follow the fluorine-free route. The recovery of phosphorus from De-P slag was studied in present work through slag modification and magnetic separation. It was found that most of the phosphorus could be separated by magnetic separation after slag modification. Consequently, the recovery of phosphorus from De-P slag is made possible by this method. The activities of typical slag components were calculated by regular ion solution model and applied to a previous mathematical model to calculate the substitution of dephosphorizing agent by return slags. According to the calculated data, the effect of De-C slag substitution on dephosphorization was checked with experiments in laboratory. The results show that 20% De-C slag in dephosphorizing agent is suitable in the present experiments. Furthermore, the structure of CaO-SiO2-P2O5-(CaF2) molten slags were investigated by molecular dynamics simulation. The results achieved here are very important for the enrichment of molten slag structure theory, especially for further realize the structure and properties of high P2O5 content slags.
     In order to evaluate the feasibility of refining medium and high phosphorus hot metal by duplex process, 80t scale plant trails have been conducted. For the [P] 0.25~0.30% hot metal, the average dephosphorization ratio in De-P furnace was 73%, the average P2O5 content in dephosphorized slag was 5.01%. For the [P] 0.37~0.44% hot metal, the average dephosphorization ratio in De-P furnace was 67.6%, the average P2O5 content in dephosphorized slag was 7.25%. The P2O5 content in dephosphorized slag was 7.25%. Both the P2O5 content in two slags were much higher than that in conventional BOF slags. The phosphorus enriched De-P slag could be used as raw material in fertilizer production. After less slag semi-steel refining in De-C furnace, the end point phosphorus content in steel were less than 0.015%, which satisfy the requirement of low phosphorus steel refining. In accordance with such a particular process for medium and high phosphorus hot metal refining, the primary dephosphorization technology were assessed comprehensively. The authors concluded that it is feasible to refining the medium and high phosphorus hot metal by duplex process. The duplex process for steel making has a bright future in the development and utilization of high phosphorus iron ores in China.
引文
[1]汪大洲.钢铁生产中的脱磷[M].北京:冶金工业出版社, 1986.
    [2] H. J. Grabke. Surface and Grain Boundary Segregation on and in Iron and Steels [J]. ISIJ International, 1989, 29(7): 529-538.
    [3]王能贤. 16MnR钢板冲击韧性的改善[J].特殊钢, 1993,14(4): 53-55.
    [4] J. A. Jones. The Effect of Phosphorus on the Mechanical and Corrosion-Resisting Properties of Low-Carbon and of Low-Alloy Structure Steels [J]. Journal of the Iron and Steel Institute, 1937, 135(1): 113-138.
    [5] H. J. Grabke. Effects of impurities on Mechanical and Corrosion Behavior [J]. Steel Research, 1987, 58(10): 477-482.
    [6] M. Wettlaufer and R. Kaspar. Effect of Phosphorus on the Ductility of High Strength Spring Steels [J]. Steel Research, 2000, 71(9): 357-361.
    [7] R. W. Messler and L. Li. Separating Effects of Phosphorus and Sulfur in Weld Cracking of Austenitic Stainless Steels for Technological and Economic Benefits [J]. Journal of Advanced Materials, 2001, 33(4): 3-13.
    [8]殷瑞玉.钢的质量现代进展(特殊钢) [M].北京:冶金工业出版社, 1995.
    [9]张贺艳. EAF/BOF出钢及LF精炼过程钢水回磷控制[D].东北大学博士学位论文, 2002.
    [10]王子亮,王新江,陈煜,等.板坯中间裂纹的成因分析及预防措施[J].钢铁, 2004, 39(7): 31-34.
    [11]刘建华,包燕平,孙维,等. H型钢表面裂纹成因分析[J].钢铁, 2006, 41(8): 37-40.
    [12]张荣生.钢铁生产中的脱硫[M].北京:冶金工业出版社, 1986.
    [13]田志红.超低磷钢炉外钢液深脱磷的工艺和理论研究[D].北京科技大学博士学位论文, 2005.
    [14]罗志国.利用转炉渣的铁水预处理脱磷过程模拟[D].东北大学博士学位论文, 2003.
    [15]小岛正光,山西逸生,齐藤徹,等. Desiliconization and Dephosphorization Treatment on the BF Runner: Development of Hot Metal Treatment for Mass Production [J]. Tetsu-to-Hagane, 1987, 74(4): S133.
    [16]张信昭.喷粉冶金基本原理[M].北京:冶金工业出版社, 1988.
    [17]杜锋.铁水脱磷预处理工艺的发展[J].上海金属, 1999, 21(6): 16-20.
    [18] A. Henrandez, R. D. Morales, A. Romero, et al. Dephosphorization Pretreatment of Liquid Iron [A]. Ironmaking Conference Proceeding [C], Pittsburgh, March 24-27, 1996, 55: 27-33.
    [19] T. Ohnishi, H. Takagi and T. Ogura. Pretreatment Technique of Hot Metal by NewlyDeveloped Refining Furnace [J]. Kobe Res. Dev., 1986, 36(1): 9-13.
    [20] K. Yoshida, I. Yamazaki, Y. Tozaki, et al. Development of Effective Refining Process Consisting of Hot Metal Pretreatment and Decarburization in Two Top and Bottom Blown Converters [J]. Sumitomo Metals, 1993, 45(3): 2-7.
    [21] K. Torii,大塚正俊,藤原清人,等. Improvement of Dephosphorization Capacity in SRP [A]. Current Advances in Materials and Processes: Report of the ISIJ meeting [C], 1998, 11(1): 142.
    [22]王新华.钢铁冶金技术国际发展动向-日本钢铁企业考察访问汇报. 2006炼钢年会大会报告.
    [23] M. Ina. Metallurgical Characteristics of LD Type Hot Metal Pretreatment [J]. CAMP-ISIJ, 1991, 4(4): 1154.
    [24] S. Y. Kitamura, K. Yonezawa, Y. Ogawa, et al. Improvement of Reaction Efficiency in Hot Metal Dephosphorisation [J]. Ironmaking and Steelmaking, 2002, 29(2): 121-124.
    [25] S. Wkamastu. Dephosphorization at Hot Metal Pretreatment in a BOF Vessel [J]. CAMP-ISIJ, 1996, 9(4): 864.
    [26] S. Tanaka. Development of Steelmaking Process with Minimum Slag Generation in No. 3 SMS, Fukuyama Works [J]. CAMP-ISIJ,1998, 11(1): 144.
    [27]卢春生,陈骥,徐安军,等.转炉脱磷-脱碳冶炼工艺及其物流参数解析[A]. 2005“冶金工程科学论坛”论文集.冶金研究2005年[C].北京:冶金工业出版社, 2005, 130-135.
    [28] Y. Ogawa. Development of the Continuous Dephosphorization and Decarbonization Process Using BOF [J]. Tetsu-to-Hagane, 2001, 87(1): 21-28.
    [29] K. Naito and M. Wakoh. Recent Change in Refining Process in Nippon Steel Corporation and Metallurgical Phenomena in the New Process [J]. Scandinavian Journal of Metallurgy, 2005, 34(6): 326-333.
    [30] S. Sohn. Hot Metal Pretreatment in a Converter [J]. CAMP-ISIJ, 1997, 10(4): 781.
    [31]崔吉让,方启学,黄国智,等.高磷铁矿石脱磷工艺研究现状及发展方向[J].矿产综合利用, 1998, (6): 20-24.
    [32]何良菊,胡芳仁.梅山高磷铁矿石微生物脱磷研究[J].矿冶, 2000, 9(1): 33-35.
    [33]周光俊,胡国英.美国蒂尔登铁矿浮选降磷研究[J].矿冶工程, 1991, 11(2): 19-22.
    [34]方启学.微细粒弱磁性铁矿分散与复合聚团理论及分选艺研究[D].中南工业大学博士学位论文, 1996.
    [35]崔吉让.微细粒弱磁性铁矿石降磷工艺研究[D].北京科技大学硕士学位论文, 1998.
    [36] F. Su. Dephosphorization of Magnetite Fines: Surface Reactions, Flotaton Kinetics and Fuzzy Logic Application [D]. Doctoral Thesis. Lule? University of Technology, 1998.
    [37]陈友谊.对梅山铁精矿降磷的探讨[J].金属矿山, 1994, 213(3): 30-35.
    [38]孙克己,卢寿慈.梅山铁矿选择性反浮选磷灰石的试验研究[J].矿冶, 2000, 9(2): 23-26.
    [39]衣德强,刘安平,尤六亿.梅山选矿降磷工艺研究及应用[J].宝钢技术.2003, (1): 13-17.
    [40]杨龙.梅山铁精矿降磷工艺存在的问题与对策[J].金属矿山, 2003, 322(4): 21-23.
    [41]纪军.高磷铁矿石脱磷技术研究[J].矿冶, 2003, 12(2): 33-37.
    [42]孙克己,卢寿慈,王淀佐,等.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业, 1999, 8(6): 61-64.
    [43] G. W. Qi, A. Parentich, L. H. Little, et al. Selective Flotation of Apafte from Iron Oxides [J]. International Journal of Mineral Processing, 1992, 34(1,2): 83-102.
    [44]余永富,程建国,陈泉源.磁选新工艺流程选别白云鄂博中贫氧化矿的研究[J].矿冶工程, 1989, 9(4): 25-29.
    [45]卢尚文,张邦家,熊道仁,等.宁乡式胶磷铁矿用解胶浸矿法降磷的研究[J].金属矿山. 1994, 218(8): 30-33.
    [46] M. Muhammed and Y. Zhang. A Hydrometallurgical Process for the Dephosphorization of Iron Ore [J]. Hydrometallurgy, 1998, 21(3): 277-292.
    [47]罗绍尧,周淑珊,许孝元.钛铁矿精矿的选择性浸出法降磷.有色金属(选矿部分) [J]. 1994, (2): 20-23.
    [48] G. Peixoto. Improvement of the Reduction Process in P Content and Other Gangues in Iron Ore and Its Agglomerates [P]. International patent, No 93/10217, 1991.
    [49] I. L. Feld, T. W. Franklin and W. M. Lampkin. Process for Removing Phosphorus form Iron Ores [P]. United States Patent, No3,402,041, 1966.
    [50]钟慧芳,蔡文六,李雅清.黄铁矿的细菌氧化[J].微生物学报, 1987, 27(3): 264-270.
    [51]黄剑朎,杨云妹,谢珙.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].南京林业大学学报, 1994, 18(2): 25-29.
    [52] G. Thornton and D. Anderson. Low Phosphorus Basic Oxygen Steelmaking Practices in British Steel. Ironmaking and Steelmaking, 1994, 21(3): 247-251.
    [53] P. K. Tripathy, A. Banerjee, B. Singh, et al. Approaches for Conversion of High Phosphorus Hot Metal to Steel for Flat Products [J]. ISIJ International, 2008, 48(5): 578-583.
    [54] B. J. Monaghan, R. J. Pomfret and K.S. Coley. The Kinetics of Dephosphorization of Carbon-Saturated Iron using an Oxidizing Slag [J]. Metallurgical Transactions B, 1998, 29B(1): 111-118.
    [55] H. Morishita, S. Yamada, F. Sudo, et al. Optimum Refining Practice of Low Silicon, High Phosphorus Hot Metal in Q-BOP at Chiba Works [J].川崎制铁技报, 1983, 15(2): 93-99.
    [56] J. O. Edstr?m. Optimized Steelmaking from High Phosphorus Ores [J]. Transactions ISIJ, 1986, 26(8): 679-696.
    [57]张俊堂译,赵进喜校.转炉脱磷[J].太钢译文, 1997, (3): 5-7.
    [58]佟溥翘,刘浏,邓开文,等.包钢中磷铁水预处理100kg级热模拟试验研究[J].炼钢, 2000, 16(4): 26-33.
    [59]宋晋明. LBE技术在柳钢转炉的应用[J].广西冶金, 1993(2): 32-34.
    [60]刘君,李光强,朱诚意,等.高磷铁矿处理及高磷铁水脱磷研究进展[J].材料与冶金学报, 2007, 6(3): 173-179.
    [61] T. Mukherjee and A. Chatterjee. Production of Low Phosphorus Steels from High Phosphorus Indian Hot Metal [J]. Bull Mater Sci, 1996, 19(6): 893-903.
    [62] B. Deo, J. Halder, B. Snoeijer, et al. Effect of MgO and Al2O3 Variations in Oxygen Steelmaking (BOF) Slag on Slag Morphology and Phosphorus Distribution [J]. Ironmaking and Steelmaking, 2005, 32(1): 54-60.
    [63] S. K. Choudhary, S. N. Lenka and A. Ghosh. Assessment and Application of Equilibrium Slag-metal Phosphorous Partition for Basic Oxygen Steelmaking [J]. Ironmaking and Steelmaking, 2007, 34(4): 343-349.
    [64] S. Basu, A. K. Lahiri, S. Seetharaman,e t al. Change in Phosphorus Partition during Blowing in a Commercial BOF [J]. ISIJ International, 2007, 47(5):766-768.
    [65]吴伟,刘浏,邹宗树,等.冶炼中磷铁水最佳复吹模式的探讨[J].钢铁, 2005, 40(6): 33-35.
    [66]吴伟.复吹转炉冶炼中高磷铁水的应用基础研究[D].东北大学博士学位论文, 2003.
    [67]吴宇宁,吴炳尧,苏华钦,等.双联熔炼铁水复合脱磷的实验研究[J].江苏冶金, 1988, (1): 18-23.
    [68] M. Swinnerton, Be(Hons). The Influence of Slag Evolution on BOF Dephosphorisation [D]. Master dissertation, University of Wollongong, 2005.
    [69]黄希祜.钢铁冶金原理第三版[M].北京:冶金工业出版社, 2002.
    [70] S. Basu. Studies on Dephosphorisation During Steelmaking [D]. Doctoral dissertation, Royal Institute of Technology, 2007.
    [71] K. Balajiva, A. G. Quarrell and P. Vajragupta. A laboratory Investigation of the Phosphorus Reaction in the Basic Steeling Porcess [J]. J. Iron Steel Institute, 1946,153(2):115-150.
    [72] K. Balajiva and P. Vajragupta. The Effect of Temperature on the Phosphorus Reaction in the Basic Steeling Process [J], J. Iron Steel Institute, 1947,155(6):563-567.
    [73] K. Ide and R. J. Fruehan. Evaluation of Phosphorus Reaction Equilibrium in Steelmaking [J]. Iron and Steelmaker, 2000,27(12): 65-70.
    [74] H. Flood and K. Griotheim. Thermodymic Calculation of Slag Equilibria [J]. J. Iron Steel Institute, 1952,171(1): 64-70.
    [75] G.. W. Healy. A New Look at Phosphorus Distribution [J]. J. Iron Steel Institute, 1970, 208(7): 664-668.
    [76] H. Suito, R. Inoue and M. Takada. Phosphorus Dissribution between Liquid Iron and MgO Saturated Slags of the System CaO-MgO-FetO-SiO2 [J]. Transactions ISIJ, 1981,21(4): 250-259.
    [77] H. Suito and R. Inoue. Effect of Calcium Fluoride on Phosphorus Distribution between MgO Saturated Slags of the System CaO-MgO-FetO-SiO2 and Liquid Iron [J]. Transactions ISIJ, 1982,22(11): 869-877.
    [78] H. Suito and R. Inoue. Phosphorus Distribution between MgO Saturated CaO-FetO-SiO2-P2O5-MnO Slags and Liquid Iron [J]. Transactions ISIJ, 1984,24(1): 40-46.
    [79] H. Suito and R. Inoue. Effect of Na2O and BaO Additions on Phosphorus Distribution between CaO-MgO-FetO-SiO2 and Liquid Iron [J]. Transactions ISIJ, 1984,24(1): 47-53.
    [80] H. Suito and R. Inoue. Thermodynamic Assessment of Hot Metal and Steel Dephosphorization with MnO-containing BOF Slags [J]. ISIJ International, 1995, 35(3): 258-265.
    [81] K. Kunisada and H. Iwai. Effect of Na2O on Phosphorus Distribution between Liquid Iron and CaO-Based Slags [J]. Transactions ISIJ, 1987,27(4): 263-269.
    [82] X. F. Zhang, L. D. Sommerville and J. M. Tiger. An Equation for the Equilibrium Distribution of Phosphorus Between Basic Slags and Steel [J]. ISS Trans., 1985, 6(1): 29-34.
    [83] E. T. Turkdogan. Slag Composition Variations Causing Variations in Steel Dephosphorisation and Desuiphurisation in Oxygen Steelmaking [J]. ISIJ International, 2000,40(9): 827-832.
    [84] E. T. Turkdogan. Assessment of P2O5 Activity Coefficients in Molten Slags [J]. ISIJ International, 2000,40(10): 964-970.
    [85] S. K. Choudhary, S. N. Lenka and A. Ghosh. Assessment and Application of Equilibrium Slag-Metal Phosphorus Partition for Basic Oxygen Steelmaking [J]. Ironmaking and Steelmaking, 2005,34(4): 343-349.
    [86] N. Sen. Studies on Dephosphorisation of Steel in Induction Furnace [J]. Steel Research Int., 2006,77(4): 242-249.
    [87] [87] D. R. Gaskell. On the Correlation between the Distribution of Phosphorus between Slag and Metal and the Theoretical Optical Basicity of the Slag [J]. Transactions ISIJ, 1982, 22(12): 997-1000.
    [88] E. T. Turkdogan and J. Pearson. Activities of constituents of iron and steel making slags [J]. J.Iron Steel Institute, 1953, 175(7): 393-401.
    [89] A. Sobandi, H. G. Katayama and T. Momono. Activity of Phosphorus Oxide in CaO-MnO-SiO2- PO2.5(MgO, FetO) Slags [J]. ISIJ International, 1998, 38(8): 781-788.
    [90] T. Mori. On the Phosphorus Distribution between Slag and Metal [J]. Transactions of the Japan Institute of Metals, 1984, 25(11): 761-771.
    [91] S. Basu, A. K. Lahiri and S. Seetharaman. A Model for Activity Coefficient of P2O5 in BOF Slag and Phosphorus Distribution between Liquid Steel and Slag [J]. ISIJ International, 2007, 47(8): 1236-1238.
    [92] E. T. Turkdogan. Physical Chemistry of High Temperature Technology [M]. Academic Press, New York, 1980.
    [93] H. Suito and R. Inoue. Thermodynamic Considerations on Manganese Equilibria between Liquid Iron and FetO-MnO-MOx(MOx=PO2.5, SiO2, AlO1.5, MgO, CaO) Slags [J]. Transactions ISIJ, 1984,24(4): 301-307.
    [94] C. Wagner. The Concept of the Basicity of Slags [J]. Metallurgical Transactions B, 1975, 6B(3): 405-409.
    [95] The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking. Steelmaking Data Sourcebook [M], Gordon and Breach Science Publishers, New York, 1988.
    [96] J. I. Pak and R. J. Fruehan. The Effect of Na2O on Dephosphorization by CaO-Based Steelmaking Slags [J]. Metallurgical Transactions B, 1991, 22B(1): 39-46.
    [97] D. Janke and W. A. Fischer. Thermochemical Data for the Reversible Reactions 2Cr+3/2O2=Cr2O3, Mo+O2=MoO2 and 1/2O2=[O] in Fe Melts [J]. Arch. Eisenhüttenwes, 1975, 46(12): 755-760.
    [98] W. H. Van Niekerk and R. J. Dippenaar. Phosphorus Distribution between Carbon-Saturated Iron at 1350℃and Lime-Based Slags Containing Na2O and CaF2 [J]. Metallurgical Transactions B, 1998, 29B(1): 147-153.
    [99] G. Li, T. Hamano and F. Tsukihashi. The Effect of Na2O and Al2O3 on Dephosphorization of Molten Steel by High Basicity MgO Saturated CaO-FeOx-SiO2 Slag [J]. ISIJ International, 2005, 45(1): 12-18.
    [100]黄希祜.炼钢的物理化学过程[M].北京:重工业出版社, 1956.
    [101] S. R. Simeonov and N. Sano. Phosphorus Equilibrium Distribution between Slag Containing MnO, BaO and Na2O and Carbon-Saturated Iron for Hot Metal Pretreatment [J]. Transactions ISIJ, 1985, 25(10): 1031-1035.
    [102] G. Thornton and D. Anderson. Low Phosphorus Basic Oxygen Steelmaking Practices in British Steel [J]. Ironmaking and Steelmaking, 1994, 21(3): 247-251.
    [103] K. Kunisada and H. Iwai. Effect of CaO, MnO, and Al2O3 on Phosphorus Distribution between Liquid Iron and Na2O-MgO-FetO-SiO2 Slags [J]. Transactions ISIJ, 1987, 27(5): 332-339.
    [104] J. Im, K. Morita and N. Sano. Phosphorus Distribution Ratios between CaO-FetO-SiO2 Slags and Carbon-Saturated Iron at 1573K [J]. ISIJ International, 1996, 36(5): 517-521.
    [105] D. J. Sosinsky and I. D. Sommerville. The Composition and Temperature Dependence of the Sulfide Capacity of Metallurgical Slags [J]. Metallurgical Transactions B, 1986, 17B(2): 331-337.
    [106] F. Mitchell, D. Sleeman, J. A. Duffy, et al. Optical Basicity of Metallurgical Slags: New Computer Based System for Data Visualisation and Analysis [J]. Ironmaking and Steelmaking, 1997, 24(4): 306-320.
    [107] T. Nakamura, Y. Ueda and J. M. Toguri. New Development in Optical Basicities [J]. Nippon Kinzoku Gakkaishi, 1986, 50(5): 456-461.
    [108] K. C. Mills. Basicity and Optical Basicities of Slags [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995. p9-19.
    [109] D. G. C. Robertson, B. Deo and S. Ohguchi. Multicomponent Mixed-Transport-Control Theory for Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to Desulphurization of Molten Iron [J]. Ironmaking and Steelmaking, 1984, 11(1): 41-55.
    [110] S. Ohguchi, D. G. C. Robertson and B. Deo. Simultaneous Dephosphorization and Desulphurization of Molten Pig Iron [J]. Ironmaking and Steelmaking, 1984, 11(4): 202-213.
    [111] S. Kitamura, T. Kitamura, E. Aida, et al. Development of Analysis and Control Method for Hot Metal Dephosphorization Process by Computer Simulation [J]. ISIJ International, 1991, 31(11): 1329-1335.
    [112] S. Kitamura, T. Kitamura, K. Shibata, et al. Effect of Stirring Energy, Temperature and Flux Composition on Hot Metal Dephosphorization Kinetics [J]. ISIJ International, 1991, 31(11): 1322-1328.
    [113] S. Mukawa and Y. Mizakami. Effect of Stirring Energy and Rate of Oxygen Supply on the Rate of Hot Metal Dephosphorization [J]. ISIJ International, 1995, 35(11): 1374-1380.
    [114] T. Satou, K. Nakashima and K. Mori. Dephosphorization Rate of High CarbonIron Melts by CaO-based Slags [J]. Tetsu- to- Hagane , 2001, 87(10): 643-649.
    [115] M. Nasu, K. C. Mills, B. J. Monaghan, et al. Effect of Slag/Metal Interfacial Tension on Kinetics of Dephosphorization [J]. Ironmaking and Steelmaking, 1999, 26(5): 353-357.
    [116] T. I. Krasnenko, T. P. Sirina and A. A. Fotiev. Phase diagram of CaO-Fe2O3-Na2O system. Izv.Akad. Nauk SSSR, Neorg. Mater., 1991, 27(6): 1279-1282. in ACerS-NIST Phase Equilibria Diagrams Database v 3.0.
    [117] M. Kowalski, P. J. Spencer and D. Neuschütz. Phase Diagrams [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995. p 75.
    [118] R. R. Dayal and F. P. Glasser. Phase Relations in the System CaO-Al2O3-Fe2O3. in Sci. Ceram, Vol. 3. pp. 191-214. Edited by G. H. Stewart. Academic Press, London, United Kingdom, 1967.
    [119]刑玉禄,高志民,易继松,等.提高炉渣脱磷速度的实验室研究[A].第八届全国炼钢学术会议论文集[C]. 1994, 585-589.
    [120] K. Mori, S. Doi, T. Kaneko, et al. Rate Transfer of Phosphorus between Metal and Slag [J]. Transactions ISIJ, 1978, 18(5): 261-268.
    [121] A. N. Conejo, F. R. Lara, R. D. Morales, et al. Kinetics Model of Steel Refining in a Ladle Furnace [J]. Steel Research International, 2007, 78(2): 141-150.
    [122] P. Wei, M. Sano, M. Hirasawa, et al. Kinetics of Phosphorus Transfer between Iron Oxide Containing Slag and Molten Iron of High Carbon Concentration under Ar-O2 Atmosphere [J]. ISIJ International, 1993, 33(4): 479-487.
    [123] C. P. Manning. Behvior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking [D]. Doctor dissertation, Carnegie Mellon University, 2000.
    [124] R. J. Fruehan and A. W. Cramb. Fundamental Issues in Steel Refining [A]. Proceedings of the Julian-Szekely Memorial Symposium on Materials Processing / 1997 TMS Fall Extraction and Processing Conference [C]. Cambridge, Massachusetts, USA, 1997. p209-230.
    [125]许允元,钟良才.铁水预处理过程耦合反应的动力学解析[J].炼钢, 1987, (4): 63-68.
    [126]董元篪,蒋海涛,柴毅中.铁水同时脱硫脱磷反应的动力学[J].华东冶金学院学报, 1993, 10(2): 7-12.
    [127]傅杰.钢冶金动力学[M].北京:冶金工业出版社, 2001.
    [128] R. Nagabayashi, M. Hino and S. Ban-ya. Mathematical Expression of Phosphorus Distribution in Steelmaking Process by Quadratic Formalism [J]. ISIJ International, 1989, 29(2): 140-147.
    [129] S. Ban-ya. Mathematical Expression of Slag-Metal Reactions in Steelmaking Process by Quadratic Formalism Based on the Regular Solution Model [J]. ISIJ International, 1993, 33(1): 2-11.
    [130] S. Kitamura, H. Shibata and N. Maruoka. Kinetics Model of Hot Metal Dephosphorization by Liquid and Solid Coexisting Slags [J]. Steel Research International, 2008, 79(8): 586-590.
    [131]陈家祥.炼钢过程常用图表数据手册[M].北京:冶金工业出版社, 1984.
    [132] L. Zhong, K. Mukai, M. Zeze, et al. In-situ Observation of Penetration of Molten Slag into Solid Lime at High Temperature [J]. Steel Research Int., 2007, 78(3): 236-240.
    [133] S. Amini, M. Brungs and O. Ostrovski. Effect of Additives and Temperature on Dissolution Rate and Diffusivity of Lime in Al2O3-CaO-SiO2 Based Slags [J]. Metallurgical and Materials Transactions B, 2006, 37(5): 773-780.
    [134] T. Tanaka, S. Hara, R. Oguni, et al. Application of Capillarity of Solid CaO to Dephosphorization of Hot Metals [J]. ISIJ International, 2001, 41(s1): 70-72.
    [135] C. A. Natalie and J. W. Evans. Influence of Lime Properties on Rate of Dissolution in CaO-SiO2-FeO-CaF2 Slags [J]. Ironmaking and Steelmaking, 1979, 19(3):101-109.
    [136] S. Amini, M. Brungs and O. Ostrovski. Dissolution of Dense Lime in Molten Slags under Static Conditions [J]. ISIJ International, 2007, 47(1): 32-37.
    [137] M. S. Lee and P. V. Barr. Production and Properties of Burnt Lime Coated with Dicalcium Ferrite [J]. Ironmaking and Steelmaking, 2002, 29(2): 96-100.
    [138] T. Hamano, M. Horibe and K. Ito. The Dissolution Rate of Solid Lime into Molten Slag Used for Hot-metal Dephosphorization [J]. ISIJ International, 2004, 44(2): 263-267.
    [139] T. Hamano, S. Fukagai and F. Tsukihashi. Reaction Mechanism between Solid CaO and FeOx-CaO-SiO2- P2O5 Slag at 1573K [J]. ISIJ International, 2006, 46(4): 490-495.
    [140] J. Yang, M. Kuwabara, T. Asano, et al. Effect of Lime Size on Melting Behavior of Lime-containing Flux [J]. ISIJ International, 2007, 47(10): 1401-1408.
    [141] M. Umakoshi, K. Mori and Y. Kawai. Dissolution Rate of Burnt Dolomite in Molten FetO-CaO-SiO2 Slags [J]. Transactions ISIJ, 1984, 24(7): 532-539.
    [142] N. Dogan, G. A. Brooks and M. A. Rhamdhani. Kinetics of Flux Dissolution in Oxygen Steelmaking [J]. ISIJ International, 2009, 49(10): 1474-1482.
    [143] H. Suito and R. Inoue. Behavior of Phosphorus Transfer from CaO-FetO-P2O5(-SiO2) Slag to CaO Particles [J]. ISIJ International, 2006, 46(2): 180-187.
    [144]孟金霞.宝钢石灰和白云石的最佳煅烧条件和在转炉初渣中熔化速率的研究[D].北京科技大学硕士学位论文, 2006.
    [145]李远洲,范鹏,沈新民,等.固体石灰在转炉渣中的溶解动力学[J].钢铁, 1989, 24(11): 22-28.
    [146] M. Kowalski, P. J. Spencer and D. Neuschütz. Phase diagrams [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995. p138.
    [147]李远洲,李晓红,孙亚琴,等.固体石灰在CaO-MgO(=7.4%~8.0%)-FetO-SiO2渣系中的溶解速度实验研究[J].钢铁, 1993, 28(10): 18-23.
    [148] M. Matsushima, S. Yadoomaru, K. Mori, et al. Fundamental Study on the Dissolution Rate of CaO into Liquid Slag [J]. Tetsu- to- Hagane, 1976, 62(2): 182-190.
    [149] B. J. Keene and K. C. Mills. Densities of molten slag[M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995. p345-346.
    [150] M. Miwa, S. Asai and I. Muchi. Mathematical Model of LD Converter Process Taken Account of Oxidation of Phosphorus and Manganese of Rate of Lime Solution. [J]. Tetsu- to- Hagane, 1970, 56(13): 1677-1686.
    [151] K. C. Mills and S. Sridhar. Viscosities of ironmaking and steelmaking slags [J]. Ironmaking and Steelmaking, 1999, 26(4): 262-268.
    [152]魏颖娟,袁守谦,张西锋,等.含转炉渣的预熔脱磷剂进行铁水脱磷实验[J].中国冶金, 2008, 18(11): 34-37.
    [153]郭建秀.浅议开发钢渣资源利用,发展循环经济[J].四川冶金, 2006, 28(3): 21-23.
    [154]孙礼明.转炉双联法冶炼工艺及其特点[J].上海金属, 2005, 27(2): 44-51.
    [155]胡春霞,陈兆平,罗志国,等.转炉渣用于铁水脱磷预处理热力学模型[J].中国稀土学报, 2002, 20(S1): 104-108.
    [156]胡春霞.转炉渣用于铁水预处理脱磷的应用基础研究[D].沈阳:东北大学, 2002.
    [157]梁英教,车荫昌.无机热力学数据手册[M].沈阳:东北大学出版社, 1993.
    [158]王新华.钢铁冶金炼钢学[M].北京:高等教育出版社, 2007.
    [159] I. D. Kashcheev, E. A. Terent’ev, K. N. Demidov, et al. Properties and Structure of Magnesia Modifiers for Converter Slags [J]. Refractories and Industrial Ceramics, 2007, 48(1): 17-22.
    [160]李辽沙,于学峰,余亮,等.转炉钢渣中磷元素的分布[J].中国冶金, 2007, 17(1): 42-45.
    [161]杨文远,王明林,崔淑贤,等.炉渣的岩相研究在转炉炼钢中的应用[J].钢铁研究学报, 2007, 19(12): 10-15.
    [162] S. Matsunaga, T. Koishi and S. Tamaki. Velocity Correlation Functions and Partial Conductivities of Molten AgI-AgBr by Molecular Dynamics Simulation [J]. Materials Science and Engineering A, 2007, 449-451: 693-698.
    [163] Y. Okamoto, P. A. Madden and K.Minato. X-ray Diffraction and Molecular Dynamics Simulation Studies of Molten Uranium Chloride [J]. Journal of Nuclear Materials, 2005, 344(1-3): 109-114.
    [164] M. Matsumiya and R. Takagi. A molecular Dynamics Simulation of the Electric Properties in Molten Chloride and Fluoride Quaternary Systems [J]. Electrochimica Acta, 2001, 46(23): 3563-3572.
    [165] K. Fukushima, Y. Okamoto and Y. Iwadate. Molecular Dynamics Simulation on the Short-range Structure of Molten ZnBr2-NaBr and ZnBr2-KBr [J]. Journal of Non-Crystalline Solids, 2002, 312-314: 428-432.
    [166] D. K. Belashchenko, O. I. Ostrovski and Y. I. Utochkin. Molecular Dynamics Simulation of Dilute Solutions of MeO and MeF2 in the CaO-CaF2 System [J]. ISIJ International, 1998, 38(7):673-679.
    [167] W. G. Seo and F. Tsukihashi. Molecular Dynamics Simulation of the Thermodynamic and Structural Properties for the CaO-SiO2 System [J]. ISIJ International, 2004, 44(11): 1817-1825.
    [168] K. Shimoda and K. Saito. Detailed Structure Elucidation of the Blast Furnace Slag by Molecular Dynamics Simulation [J]. ISIJ International, 2007, 44(9): 1275-1279.
    [169] T. Asada, Y. Yamada and K. Ito. The Estimation of Structural Properties for Molten CaO-CaF2-SiO2 System by Molecular Dynamcis Simulations [J]. ISIJ International, 2008, 48(1): 120-122.
    [170] Y. Sasaki, H. Urata and K. Ishii. Structural Analysis of Molten Na2O-NaF-SiO2 System by Raman Spectroscopy and Molecular Dynamcis Simulation [J]. ISIJ International, 2003, 43(12): 1897-1903.
    [171] Y. Sasaki and K. Ishii. Molecular Dynamcis Analysis of Three-demensional Anionic Structures of Molten Al2O3-Na2O-SiO2 System [J]. ISIJ International, 2004, 44(1): 43-49.
    [172] Y. Sasaki and K. Ishii. Molecular Dynamics Analysis of the Effect of F on the Structure of Molten Na2O-NaF-Al2O3-SiO2 System [J]. ISIJ International, 2004, 44(4): 660-664.
    [173] Y. Sasaki, M. Iguchi and M. Hino. The Role of Ca and Na Ions in the Effect of F Ion on Silicate Polymerization in Molten Silicate System [J]. ISIJ International, 2007, 47(5): 638-642.
    [174] Y. Sasaki and M. Iguchi. The Coordination of F Ion around Mg and Ca Ions in Molten CaO-CaF2-MgO-SiO2 System at 1873K [J]. ISIJ International, 2009, 49(4): 602-604.
    [175] T. Matsumiya, A. Nogami and Y. Fukuda. Applicability of Molecular Dynamics to Analyses of Refining Slags [J]. ISIJ International, 1993, 33(1): 210~217.
    [176] Y. Sasaki, M. Iguchi and M. Hino. The Coordination of F Ion around Al and Ca Ions in Molten Aluminosilicate Systems [J]. ISIJ International, 2007, 47(5): 643-647.
    [177]王承宽,王勇,李中金,等.铁水脱磷技术的发展概况[J].炼钢, 2002, 18(6): 46-50.
    [178] T. Matsumiya. Steel Research and Development in the Aspect for a Sustainable Society [J]. Iron and Steel Engineer, 1997, 74(6): 59-63.
    [179] L. M. Wrona and J. Gillian. Pollution Prevention in the Steel Industry-Toward a Zero WastePlant [J]. Scandinavian Journal of Metallurgy, 2005, 34(4): 256-267.
    [180] R. Dippenaar. Industrial Uses of Slag (The Use and Re-use of Iron and Steelmaking Slags) [J]. Ironmaking and Steelmaking, 2005, 32(1): 35-46.
    [181]王琳,孙本良,李成威.钢渣处理与综合利用[J].冶金能源, 2007, 26 (4): 54-57.
    [182]郑礼胜,王士龙,张虹,等.用钢渣处理含砷废水[J].化工环保, 1996, 16 (6): 342-345.
    [183]马晓辉.利用钢渣开发高性能无机填料的研究[D].武汉理工大学硕士学位论文, 2004.
    [184]宋坚明.钢渣的综合利用[J].上海金属, 1999, 21 (6): 45-49.
    [185] H. J. Li. H. Suito and M. Tokudai. Thermodynamic Analysis of Slag Recycling Using a Slag Regenerator [J]. ISIJ International, 1995, 35(9): 1079-1088.
    [186] [186] M. Ishikawa. Reduction Behaviors of Hot Metal Dephosphorization Slag in a Slag Regenerator [J]. ISIJ International, 2006, 46(4): 530-538.
    [187] M. Eiju, K. Yoshiteru, K. Satoshi, et al. Manufacture of Raw Material for Phosphatic Fertilizers [P]. JP Patent, JP2004161544-A.
    [188]高桥达人,田边治良,八尾泰子,等.磷肥用原料及其制造方法[P].中国专利, CN 1509261A, 2004.
    [189] L. Forsbacka, L. Holappa, T. Iida, et al. Experimental Study of Viscosities of Selected CaO-MgO-Al2O3-SiO2 Slags and Application of the Iida Model [J]. Scandinavian Journal of Metallurgy, 2003, 32(5): 273-280.
    [190] L. Forsbacka and L. Holappa. Viscosities of CaO-CrOx-SiO2 Slags in a Relatively High Oxygen Partial Pressure Atmosphere [J]. Scandinavian Journal of Metallurgy, 2004, 33(5): 261-268.
    [191] K. C. Mills. Viscosities of Molten Slags [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p352.
    [192] G. H. Geiger, D. R. Poirier. Transport Phenomena in Metallurgy [M]. Reading, MA: Addison-Wesley Publishing Co., 1973.
    [193] A. C. Ducret and W. J. Rankin. Liquidus Temperatures and Viscosities of FeO-Fe2O3-SiO2-CaO-MgO Slags at Compositions Relevant to Nickel Matte Smelting [J]. Scandinavian Journal of Metallurgy, 2002, 31(1): 59-67.
    [194] K. Beskow, P. Dayal, J. Bj?rkvall, et al. A New Approach for the Study of Slag–metal Interface in Steelmaking [J]. Ironmaking and Steelmaking, 2006, 33(1): 74-80.
    [195] K. C. Mills. Viscosities of Molten Slags [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p370-374.
    [196] M. Kowalski, P. J. Spencer and D. Neuschütz. Phase Diagrams [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p126.
    [197] H. M. Marette and P.V. Riboud. Study of Liquids Temperatures of CaO-P2O5-SiO2-FeO System-2 [J]. Mem Sci Rev Metall, 1969, 66(7-8): 591-601.
    [198]许志宏,李树林.钢渣磷肥生产[M].北京:中国工业出版社, 1962.
    [199]董学胜,杨晓霞,金士强.钙镁磷肥[P].国家标准, GB20412-2006, 2006.
    [200]刘泽俊.高炉法钙镁磷肥配料中几个参数值对枸溶率的影响[J].化肥工业, 1983, (2):72-74.
    [201] G. Kor. Effect of Fluorspar and Other Fluxes on Slag-metal Equilibria Involving Phosphorus and Sulfur [J]. Metallurgical Transactions B, 1977, 8B(1): 107-113.
    [202]陈五平.无机化工工艺学(中)硫酸磷肥钾肥.第三版[M].北京:化学工业出版社. 2001.
    [203] J. Berak and I. Tomczak-Hudyma. Phase Equilibria in the System Ca3(PO4)2-CaF2 [J]. Roczniki Chemii, 1972, 46: 2157-2164.
    [204] R. Nacken. Phase diagram of Ca3(PO4)2-CaF2 system. Zentralbl. Mineral. Geol. Palaeontol., 1912, 545-559. in ACerS-NIST Phase Equilibria Diagrams Database v 3.0.
    [205]上海化工研究院磷肥室编.磷肥工业(修订本) [M].北京:化学工业出版社. 1979.
    [206] H. Ono, A. Inagaki, T. Masui, H. Narita, S. Nosaka, T. Mitsuo and S. Gohda. Removal of Phosphorus from LD Converter Slag by Floating Separation of Dicalcium Silicate during Solidification [J]. Transactions ISIJ, 1981, 21 (2): 135-144.
    [207] K. Yokoyama, H. Kubo, K. Mori, et al. Separation and Recovery of Phosphorus from Steelmaking Slags with the Aid of a Strong Magnetic Field [J]. ISIJ International, 2007, 47(10):1541-1548.
    [208] X. R. Wu, L. S. Li and Y. C. Dong. Experimental Crystallization of Synthetic V-bearing Steelmaking Slag with Al2O3 Doped [J]. Journal of Wuhan University of Technology, 2005, 20(2): 63-66.
    [209]李辽沙,吴六顺,苏允隆,等. Al2O3对含钒钢渣中钒富集行为的影响[J].金属学报, 2008, 44(5): 603-608.
    [210]董元篪,武杏荣,余亮,等.含钒钢渣中钒再资源化的基础研究[J].中国工程科学, 2007, 9(1): 63-68.
    [211] L. Yu, Y. C. Dong, G. Z. Ye, S. Du. Concentrating of Vanadium Oxide in Vanadium Rich Phase(s) by Addition of SiO2 in Converter Slag [J]. Ironmaking and Steelmaking, 2007, 34(2): 131-137.
    [212]余亮,董元篪.含钒钢渣添加SiO2后钒富集相与钒富集行为[J].材料与冶金学报, 2007, 6(2): 94-108.
    [213] L. S. Li, X. R. Wu, L. Yu and Y. C. Dong. Effect of TiO2 on Crystallisation of V Concentrating Phase in V Bearing Steelmaking Slag [J]. 2008, 35(5): 367-370.
    [214] K. Shiamauchi, S. Kitamura and H. Shibata. Distribution of P2O5 between Solid Dicalcium Silicate and Liquid Phases in CaO-SiO2-Fe2O3 System [J]. ISIJ International, 2009, 49(4): 505-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700