用户名: 密码: 验证码:
高炉冷却壁热力耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉冷却壁是高炉主要冷却设备之一,冷却壁安全工作是高炉长寿的前提。在炉腰和炉腹高负荷区域,冷却壁表面形成稳定渣皮,对冷却壁起到保护作用。渣皮厚度和形貌取决于冷却制度和工艺条件,同时又影响到冷却壁工作状态。本文针对铸铁冷却壁、铜冷却壁和铜钢复合冷却壁,分别建立了稳态和非稳态传热数学模型,分析冷却壁传热、渣皮分布和生长规律。采用热力耦合方法,对铜钢复合冷却壁进行热应力分析。传热和应力模型均选用有限元分析软件ANSYS完成建模、网格划分和模型计算。主要研究工作如下:
     利用ANSYS的单元生死功能模拟渣皮熔化,建立了新的冷却壁稳态传热分析方法(即渣皮熔化迭代法),解决了目前冷却壁研究中无法确定渣皮厚度的问题,提高了冷却壁传热分析的精度和实用性。根据冷却壁工作环境,选用荷重软化方法测定渣皮承载能力,确定冷却壁表面的挂渣温度为1100℃。利用建立的传热分析模型,对三种材质的冷却壁进行稳态传热分析,研究了工艺因素和冷却制度对壁体温度、渣皮厚度和热负荷的影响。
     在稳态传热分析的基础上,利用ANSYS的单元生死功能创立了渣皮再生分析法,首次实现了渣皮脱落后再生过程的非稳态传热分析。采用建立的非稳态传热模型分别对铜冷却壁和铜钢复合冷却壁的渣皮恢复过程进行研究,分析了渣皮脱落后的生长规律、冷却壁温度和热负荷变化过程,以及工艺条件对渣皮恢复和铜壁稳定时间的影响。
     采用渣皮熔化迭代方法,在不同工况下对铸铁冷却壁进行稳态传热分析。结果表明,炉气温度是影响渣皮厚度、热负荷及冷却壁温度的主要因素,提高冷却强度对冷却壁的影响不明显。铸铁冷却壁安全工作温度为1280℃,能够承受的安全热负荷为39.6kW/m~2。增加水管直径和减少气隙宽度可以改善冷却壁承受能力。渣皮脱落致使冷却壁温度急剧升高,严重危害冷却壁寿命。在冷却壁烧毁后,采用炉壳打水将使热损失急剧增加。只有在炉气温度较低时,才能使炉壳与水管之间充满固体渣层。
     通过铜冷却壁稳态传热分析发现,在高度方向上铜冷却壁渣皮分布不均匀,铜筋部位渣皮较厚,燕尾槽部位较薄。随着炉气温度上升,渣皮不均匀性增加,容易脱落。炉渣性质对铜冷却壁的温度、热负荷和渣皮厚度影响较大。在炉渣粘度较高时,渣皮厚度增加,温度波动会造成结瘤。在渣皮再生过程中,渣皮生长遵循幂函数规律,初期生长较快,随后生长速度逐渐降低。炉气温度对挂渣过程有明显影响。铜壁稳定时间为10.5~32.7min,铜壁最高温度为140℃。分析结果与铜冷却壁运行实践基本一致。
     在稳态和非稳态传热分析的基础上,对铜钢复合冷却壁进行了热力耦合分析,研究其挂渣能力和工作安全性。结果表明,铜钢复合冷却壁挂渣能力与铜冷却壁基本相当,渣皮稳定时最高温度为120℃,铜壁和界面最大等效应力分别为122MPa和87MPa。在渣皮再生过程中,铜壁稳定时间为17.6~46.4min。最高铜壁温度上升到166℃,铜壁和界面最大等效应力分别达到171MPa和127MPa,在生产中不会产生铜壁塑性变形和铜钢界面分离现象。模型分析结果与生产试验情况基本一致。
BF stave is one of main cooling equipments of the blast furnace. To keep the staves in safety is necessary for BF to attain a long life. The steady slag skull that protects the staves is formed on the surface of the staves in the higher heat load areas such as belly and breast of BF. The thickness and shape of slag skull depended on cooling parameters and process conditions. At the same time, they have influence on the stave state. The mathematic models of steady and unsteady thermal transfer of BF staves made of cast iron, copper and compound copper-steel were established respectively, which were used to analyze stave conduction, slag skull distribution and growing process. The thermal stress of copper-steel compound stave was studied with the method of thermal mechanical coupling. Finite element analyzing software ANSYS was taken to build model, mesh and calculate. The main researches are as follows:
     A new analysis method of steady thermal transfer was established by simulating slag skull melting through 'Element Birth and Death' of ANSYS, called as 'Slag Skull Melting Iteration'. The problem that the slag skull thickness could not be ascertained presently was solved. The accuracy and practicability of thermal transfer analysis about stave was improved. According to working condition of BF staves, the refractoriness under load was used to describe the adhesion capacity of slag skull. The adhesion temperature was defined as 1100℃. The steady thermal transfer analysis about three kinds of stave with different materials was carried out through the model built in this research. The influence of process condition and cooling parameters on the body temperature, slag skull thickness and heat load was studied.
     Based on steady thermal transfer analysis, the stimulating method for slag skull recovery was created through 'Element Birth and Death' of ANSYS. For the first time, the unsteady thermal transfer analysis was actualized during slag recovering after dropping off. On the unsteady thermal transfer model, the slag skull recovering process on the surface of copper and copper-steel staves was studied. The growth rhythm of slag skull, as well as varying of stave temperature and heat load was analyzed. The influences of process conditions on the stabilization time taken by slag skull recovering and copper body steadying were also researched.
     By means of the slag skull melting iteration, the unsteady thermal transfer analysis about cast iron stave in different process conditions was performed. The results showed that gas temperature was the main factor that affected slag skull thickness, heat load and stave temperature. Increasing intensity of cooling had no obvious effect on stave. The safe temperature for cast iron stave was 1280℃. In addition, the safe heat load was 39.6kW/m~2. The standing capacity of stave was improved by increasing the pipe diameter and decreasing gap width. The slag skull dropping off made the stave temperature rise rapidly, which decreased the life of stave. After the stave had been burned out, spraying water on the shell would increase heat loss enormously. Only when gas temperature was lower, there was solid slag filled among the water pipes and the shell.
     The results showed that slag skull was not distributed uniformly on the surface of copper stave in height through analysis of the steady thermal transfer about copper stave. There was thicker slag skull on the surfaces of copper ribs. In addition, the slag skull thickness was thinner in the front of the inlayed bricks. As gas temperature went up, no uniformity was ascending and the slag skull was easier to drop off. The slag property had larger influence on copper stave temperature, heat load and slag skull thickness. When slag velocity was higher, slag skull thickness increased. If gas temperature changed, the heel would be formed. During slag skull recovery, slag skull growth followed the power function. In the primary stage, slag skull grew more quickly. Subsequently the growing rate decreased. Gas temperature had obvious influence on slag adhering. The stabilization time was 10.5~32.7min. The maximum temperature of copper body was 140℃. The analysis results were consistent to process experience of copper stave.
     On the foundation of steady and unsteady thermal transfer analysis, coupled thermo-mechanical analysis about copper-steel compound stave was performed to investigate slag adhering capacity and safety. The results showed that slag adhering capacity of copper-steel stave was the same as copper stave. When slag skull was stable, the maximum temperature in the stave is 120℃. There was the maximum equivalent stress 122MPa in the copper body and 87MPa on the interface of copper plate and steel plate. The stabilization time is 17.6~46.4 minutes during slag skull recovery. The maximum temperature in the copper body went up to 166℃. The maximum The copper body and interface equivalent stress rose respectively to 171MPa and 127MPa. Therefore, there would not be plastic deformation in the copper body and separation between copper plate and steel plate. The results from the model were consistent to process experience in test.
引文
1.刘琦.采用铜冷却壁延长高炉炉体寿命[J],炼铁,2002,21(2):6-10.
    2.付卫国,饶家庭,曾华峰.攀钢4~#炉炉体破损与长寿化原因分析[J],四川冶金,2005,27(5):26-30.
    3.曹传根,周与生,叶正才.宝钢3号高炉冷却壁的破损原因及防止对策[J],炼铁,2000,19(2):1-5.
    4.吴启常,佘京鹏.冷却壁的特性分析及其合理应用[C],2004年全国炼铁生产技术暨炼铁年会文集,2004:618-920.
    5.张立亮.宝钢高炉冷却壁存在问题及对策[J],宝钢技术,2000,(1):60-62.
    6.曹传根,周渝生,曹进宝.钢3号高炉冷却壁破损机理的热态试验研究[J],1999,34(4):4-8.
    7.王瑞军,段维民,陈春元,等.包钢1~#高炉大修扩容改造炉体破损调查[J],包钢科技,2003,29(4):16-19.
    8.Zhang S R.Practice for extending blastfurnace campaign life at Wuhan Iron and Steel Corporation[J],Journal of Iron and Steel Research,International,2006,13(6):01-07,20.
    9.曹忠,赵航.南钢高炉冷却壁破损原因及采取的措施[J],炼铁,2001,20:18-20.
    10.陈德明,杨士岭,严福祯.济钢1570m~3高炉薄壁炉衬生产实践[J],炼铁,2007,26(6):25-27.
    11.李安.SiAlON结合碳化硅砖在高炉上的应用[J],钢铁,1997,32:326-329.
    12.刘菁.高炉铜冷却壁的应用及探讨[J],钢铁研究,2001,(3):52-55.
    13.陈培敦,邵书东,薛玉清,等.浅谈高炉操作炉型管理与炉况顺行[J],中国冶金,2006,16(3):48-49.
    14.周强.高效长寿高炉的冷却设备——铜冷却壁[J],炼铁,2001,20(3):12-16.
    15.周治中.新型高炉冷却设备——铜冷却壁[J],宝钢技术,2001,(1):57-63.
    16.Heinrich P,Hille H,Hans J B,et al.Copper blast furnace staves developed for multiple campaigns[J],on and Steel Engineer,1992,2:49-55.
    17.卜天胜,张世英.高炉系统中铜冷却壁的应用[J],钢铁冶金,2004,(3):7-9.
    18.Helenbrook R G,Kowalski W,Grosspietsch K H.Copper slast staves in the blast furnace[J],Iron and Steel Engineer,1996,6:30-34.
    19.薛庆国.高炉炉墙的传热学研究[D],北京:北京科技大学,2001.
    20.范晓明,胡寿玉,余光明,等.高炉冷却壁的制备技术及进展[J],钢铁研究,2007,35(4): 51-54.
    21.张士敏,王东升.钢冷却壁的研制及应用[J],炼铁,2002,21(3):1-5.
    22.毕松梅,聂桂秋,徐利华,等.高炉炉体冷却壁综述[J],中国冶金,2007,17(4):15-18.
    23.张士敏,王东升,金宝昌,等.高炉钢冷却壁的应用及开发[J],炼铁,2001,20(1):44-47.
    24.李小静,朱童斌.马钢开发铸钢冷却壁研究[J],钢铁,2002,37(增刊):90-93.
    25.程素森,薛庆国,苍大强,等.高炉冷却壁传热学分析[J],钢铁,1999,34(5):11-14
     26.王瑞军,邬虎林,陈春元,等.包钢3~#、4~#高炉中修炉体破损调查[J],包钢科技,2003,29(4):16-19.
    27.黄发元.马钢2500m~3高炉炉腹冷却壁的更换[J],炼铁,2001,20(1):29-32.
    28.南祥民,赵德义,贾国栋.减少和控制300m~3高炉冷却壁破损的实践[J].河南冶金,1999,(1):39-41.
    29.张雪松,张建良,翟丹,等.涟钢高炉冷却壁破损的原因[J],炼铁,2007,26(4):56-58.
    30.刘水洋,钱凯,王颖生.铜冷却壁在首钢2号高炉的应用[C],2005中国钢铁年会论文集,2005:348-352.
    31.薛庆国,高小武,程素森.冷却壁炉炉墙温度场的数值模拟[J],北京科技大学学报,2000,22(2):127-130.
    32.王碧芹,张艳梅,王厉刚.高炉铸铁冷却壁钢管处理新工艺[J],鞍钢技术,2003,(3):38-40.
    33.石琳,程素森,冯力.冷却水管表面合金化球墨铸铁冷却壁的热应力和热变形[J],北京科技大学学报,2007,29(7):942-947.
    34.吴懋林,孔令坛,陶保国,等.高性能钢冷却壁的研究[J],河南冶金,2003,11(5):8-16.
    35.吴懋林,孔令坛,陶保国.高性能钢冷却壁的开发[C],2003中国钢铁论年会文集,2003:512-515.
    36.张国营,徐杰,李传辉.济钢高炉大面积应用铸钢冷却壁的炉内操作[J],炼铁,2003,22(4):29-31.
    37.石玮,朱童斌,朱兴华.高炉铸钢冷却壁的优化设计[J],安徽冶金科技职业学院学报,2006,16(增):8-13.
    38.李小静,彭群,朱童斌.马钢高炉铸钢冷却壁的开发与应用[J],炼铁,2003,22(1):45-47.
    39.朱童斌,石玮,土黎明,等.高炉铸钢冷却壁的研制[J],铸造,2003,52(7):505-509.
    40.周渝生,曹传根.国外高炉铜冷却壁的应用[J],炼铁,1999,18(6):24-28.
    41.宋家齐,胡静.高炉铜冷却壁技术进展[J],炼铁,2006,25(6):56-60.
    42.杨佳龙,潘协田.武钢1号高炉铜冷却壁薄炉衬操作特点[J],炼铁,2004,23(3):3-6.
    43.王宝海,张洪宇,车满玉.鞍钢铜冷却壁高炉的热负荷的管理[J],炼铁,2008,27(2):1-4.
    44.李东生,范传昌,张宏宇.鞍钢新3号高炉结构特点及生产实践[J],鞍钢技术,2008,(1): 36-39.
    45.邬虎林,杜国萍,王利庭.包钢高炉冷却状况分析及措施研究[J],包钢科技,2003,29(4):16-19.
    46.蒋钧,刘坤伦,范云东,等.攀钢1号高炉铜冷却壁的冷却[C],2003年中国钢铁年会论文集,2003:451-453.
    47.赵贵希,刘琪敏.邯钢5号高炉铜冷却壁生产实践[J],炼铁,2008,27(2):5-7.
    48.蒋玲.高炉铜冷却壁的应用及分析[J],钢铁研究,2003,(4):1-6.
    49.Carmichael R G.Application of copper staves for BF[J],Iron and Steel Engineer,1996,(8):30-35.
    50.Van S E,Callenfels,Van L R.可满足高炉严格使用要求的高性能MTT金属铸管铜冷却壁[J],钢铁,2007,42(3):79-81.
    51.王泽憨,全强,李学金.铸造铜冷却壁——高炉用铜冷却壁的一种选择[C],2006全国炼铁生产技术会议暨炼铁年会,2006:309-319.
    52.吴狄峰,程树森,潘宏伟,等.薄型铜冷却壁的研发[J],炼铁,2007,26(6):47-49.
    53.吴狄峰,程树森,潘宏伟.薄型铜冷却壁的热性能[J],钢铁研究学报,2008,20(4):8-12.
    54.宁晓钧,程素森,解宁强.薄形铜冷却壁的热态实验分析[J],北京科技大学学报,2007,29(2):126-129.
    55.朱童斌,石玮,李晓静.铸钢冷却壁的应用与优势分析[J],安徽冶金科技职业学院学报,2006,16:15-19.
    56.石琳,程素森,张利君.高炉铜冷却壁的热变形[J],中国有色金属学报,2005,15(12):2040-2046.
    57.谢相久,成巨海,张德新,等.铜/钢复合抗变形冷却壁在宣钢1~#高炉的开发应用[C],2008年中小高炉炼铁学术年会论文集,2008:528-531.
    58.石琳,程树森,阮新伟,等.高炉铸铜冷却壁的热性能分析[J],钢铁,2006,41(6):13-16.
    59.车满玉,孙鹏,李连成.鞍钢铜冷却壁高炉操作炉型管理模型开发与应用[J],炼铁,2007,26(15):18-21.
    60.赵正洪,田景长.鞍钢新3号高炉铜冷却壁薄炉衬操作时间[J],鞍钢技术,2007,6:38-44.
    61.邢书明,霍丽芳,韩永清,等.铜/钢双金属复合冷却壁及其制造技术的新进展[J],特种铸造及有色合金(2008年年会专刊),2008:25-28.
    62.李志坚,张殿友.高炉非金属冷却壁初探[J],炼铁,2000,19(5):26-28.
    63.毕松梅,聂桂秋,徐利华,等.大型冷却模块的结构特点及应用[J],河南冶金,2007,15(1):15-17.
    64.邬虎林,杜国萍.包钢高炉炉身热负荷与冶炼关系的探讨[J],包钢科技,2008,34(4):13-16.
    65.徐南平,邬士英,金永龙.宝钢3号高炉冷却壁的热负荷测定和研究[J],宝钢技术,1999,(4): 15-18.
    66.李常性,周有福.高炉铜冷却壁的需水量[J],武钢技术,2003,(5):57-59.
    67.邹德余,何生平,伍成波.重钢4号高炉冷却状况分析[J],钢铁,2003,28(2):10-15.
    68.杨为国,吴启常.高炉冷却板及炉衬温度场数值分析[C],2001中国钢铁年会论文集:303-306.
    69.程素森,杨天钧,杨为国,等.高炉铜冷却壁传热分析[J],钢铁,2001,36(2):8-11.
    70.程素森,杨天钧,薛国庆.长寿高炉冷却器布置方式的计算传热学分析[J],北京科技大学学报,2002,24(1):15-18.
    71.Wu L J,Zhou W G,Cheng H E,et al.The study of structure optimization of blast furnace cast steel cooling stave based on heat transfer analysis[J],Applied Mathematical Modelling,2007,31:1249-1262.
    72.张卫军,吴雪奇,陈海耿,等.宝钢4号高炉炉衬温度场数学模型及分析[J],东北大学学报,2006,27(10):1122-1125.
    73.张卫军,吴雪琦,陈海耿,等.高炉板壁结合式炉衬温度场分析[J],中国冶金,2006,16(4):30-33.
    74.伍积明,邹忠平,许俊.高炉冷却板的传热分析[J],钢铁,2002,37(增刊):61-64.
    75.程素森,杨天钧.高炉炉墙热负荷的传热分析和研究[J],钢铁研究学报,2002,14(2):5-8.
    76.程素森,杨天钧,左海滨,等.高炉炉身下部及炉缸炉、底冷却系统的传热学计算[J],钢铁研究学报,2004,16(5):10-14.
    77.吴雪琦.高炉密集式铜冷却板与冷却壁结合炉衬温度场研究[D],沈阳:东北大学,2006.
    78.崔金鹤,孙玉福,于荣斌.高炉铸钢冷却壁温度场的数值模拟[J],铸造技术,2006,27(8):851-854.
    79.吴俊俐,周伟国,苏允隆,等.高炉铸钢冷却壁最佳结构的传热分析[J],钢铁研究学报,2006,18(7):6-9.
    80.马学东,高兴岐,王凤辉.冷却壁材料对壁体温度的影响[J],冶金能源,2005,24(1):31-33.
    81.钱中,程惠尔.基于ANSYS的高炉铸钢冷却壁传热分析[J],钢铁钒钛,2005,26(1):55-59.
    82.解宁强,宁晓钧,程树森.冷却壁非稳态温度场研究[C],2008年全国炼铁论文集,2008:900-904
    83.程素森,孙磊,杨天钧.异常炉况高炉冷却板及炉衬非稳态温度场[J],北京科技大学学报,2004,26(4):360-364.
    84.钱中,吴俐俊,程惠尔,等.高炉冷却壁非稳态传热研究[J],钢铁,2005,40(6):21-23.
    85.邓凯,程惠尔.基于多目标优化设计的铸钢冷却壁结构优化研究[J],钢铁钒钛,2005,26(2):44-48.
    86.金宝昌.对高炉冷却壁设计参数的探讨[J],炼铁,1997,16(2):15-19.
    87.石琳,丁根远,孙玉琴.轻型铜冷却壁的设计及热态性能[J],钢铁研究学报,2008,20(2):12-16.
    88.程素森,马祥,杨天钧.冷却水水垢对冷却壁冷却能力影响的传热学分析[J],钢铁,2002,37(7):16-19.
    89.Helenbrook R G,Roy P E.Water requirements for blast furnace copper staves[J],Iron and Steelmaker,2000,27(6):45-48.
    90.Bout L,Delenghe H,Depamefare M,et al.Installing copper staves and operational practice at Sidmar[J],Iron and Steel Engineer,1999(6):43-50.
    91.Hathaway W R,Nanavati K S,Wakelin D H.Copper stave installation in H-4 blast furnace stack-first result[C],58th Ironmaking Conference Proceeding,1999:35-40.
    92.Fredman T P.A direct integration approach to accretion layer estimation in the blast furnace stacks[C].ISSTech 2003 Conference Proceeding,2003:1103-1111.
    93.钱亮,程素森,李维广,等.铜冷却壁炉墙内型管理传热学反问题模型[J],炼铁,2006,25(2):18-24.
    94.钱亮,程素森,李维广,等.高炉炉墙内型监控的实现[C],2006年全国炼铁生产技术会议暨炼铁年会文集,2006:531-534.
    95.钱亮,程素森,朱清天.高炉铜冷却壁炉墙监控[J],冶金自动化,2006,4:20-25.
    96.石琳,程素森,左海滨.高炉炉衬侵蚀边界识别的数值模拟[J],钢铁研究学报,2006,18(4):1-5.
    97.钱中,程惠尔,吴俐俊.高炉铸钢冷却壁传热和结构的影响因素分析[J],上海金属,2005,27(4):34-38.
    98.邓凯,程惠尔,吴俐俊.结构参数对高炉冷却壁温度场及热应力分布的影响[J],钢铁研究学报,2006,18(2):1-5.
    99.吴明全,陈刚.铜铸钢复合冷却壁应力场的模拟计算与分析[J],冶金能源,2009,28(2):31-33.
    100.吴俐俊,程惠尔,钱中,等.冷却水管管形变化下的高炉冷却壁传热分析[J],钢铁,2005,40(5):14-16.
    101.Price R F,Fletcher A J.Determination of surface heat transfer coefficients during quenching of steel plates[J],Metals Technology,1980,(5):203-211.
    102.Bamberger M,Prinz B.Determination of heat transfer coefficients during water cooling of metals[J],Materials and Technology,1986,(2):410-415.
    103.Archambanlt P,Azim A.Inverse resolution of heat transfer equatio:Application to steel and aluminum alloy quenching[J],Journal of Materials Engineering and Performance,1995,4(6): 730-760.
    104.Bordin J,Segerberg S.Measurement and evaluation of power of quenching media for hardening[J],Heat Treatment of Metals,1993,(1):15-23.
    105.吴俐俊,周伟国.高炉冷却壁与炉气之间的换热特性[J],钢铁研究学报,2006,18(11):7-11.
    106.郑建春,宗燕兵,苍大强.高炉铜冷却壁热面复合传热系数的计算[J],钢铁研究,2008,20(2):9-11.
    107.郑建春,宗燕兵,苍大强.高炉铜冷却壁热态实验及温度场数值模拟[J],北京科技大学学报,2008,30(8):938-941.
    108.周伟国,徐迅,吴俐俊.高炉冷却壁热表面传热系数的研究[J],同济大学学报,2008,36(2):246-249.
    109.Wu L J,Zhou W G,Li P.Study on the equivalent convection coefficient of the hot surface of blast furnace staves[J],Heat Mass Transfer,2007,43:1303-1309.
    110.张晓丽,吴懋林,陶宝国,等.钢冷却壁的热态实验研究[J],矿冶,2003,12(4):37-39
    111.崔金鹤.高炉冷却壁热态实验及温度场模拟[D],郑州:郑州大学,2006:59-60.
    112.陈先中,陈海勇,白浩.高炉冷却壁热应力试验分析[J],北京科技大学学报,1999,21(2):125-128.
    113.潘宏伟,程树森,吴狄峰.铸钢冷却壁的热态试验研究和数值计算[J],炼铁,2007,26(5):28-31.
    114.Wu L J,Cheng H E,Su Y K,et al.Mathematical model for on-line prediction of bottom and hearth of blast furnace by particular solution boundary element method[J],Applied Thermal Engineering,2003,23:2079-2087.
    115.Wu L J,Zhou W G,Cheng H E,et al.The study of cooling channel optimization in blast furnace cast steel stave based on heat transfer analysis[J],The International Journal of Advanced Manufacturing Technology,2006,29:64-69.
    116.Luis F V,Roberto G,Alejandro O.Using FEM to determine distribution in a blast furnace crucible [J],JOM,2000,2:74-77.
    117.温宏权,李山青,冯莲芹,等.高炉冷却壁的稳态传热计算[J],宝钢技术,2001,2:51-55.
    118.吴俐俊,周伟国,苏允隆,等.高炉铸钢冷却壁最佳结构的传热学分析[J],2006,18(7):6-9.
    119.Thill R,Ponesegn A,Carmichael I.高炉高热负荷区和炉缸铜壁开发中有限元法应用[C],2001中国钢铁年会论文集,200l:307-310.
    120.解宁强,宁晓钧,程素森.冷却壁非稳态温度场研究[C],2008年全国炼铁论文集,2008:905-909.
    121.李富帅,孙力.铜冷却壁温度场及应力场计算[C],2005中国钢铁年会论文集,2005:357-361.
    122.程树森,杨天钧.影响高炉炉墙热负荷的因素分析[J],北京科技大学学报,2002,24(4):407-409.
    123.杨天钧,程素森,吴启常.高炉铜冷却壁的研制[J],炼铁,2000,19(5):19-21.
    124.Zhao H B,Cheng S S.Optimization for the structure of BF hearth bottom and the arrangement of thermal couples[J],Journal of University of Science and Technology Beijing,2006,13(6):497-503.
    125.Gruber D,Andreev K,Harmuth H.FEM simulation of the thermal mechanical behaviour of the refractory lining of a blast furnace[J],Journal of Materials Processing Technology,2004,155-156:1539-1543.
    126.Wang G X,Yu A B,Zulli P.Three-dimensional modeling of wall heat transfer in lower stack region of a blast furnace[J],ISIJ International,1997,37(5):441-448.
    127.Cheng S S,Yang T J,Xue Q G,et al.Numerical simulation for the lower shaft and the hearth bottom of blast furnace[J],Journal of University of Science and Technology Beijing,2003,10(3):16-20.
    128.胡君健,站庆文,张毅,等.高炉冷却壁的生产技术与现状[J],铸造技术,2004,25(8):657-659.
    129.钱亮,程素森.高炉铜冷却壁自我保护的实现[J],北京科技大学学报,2006,28(11):1502-1507.
    130.沈海波,王春生.首钢四高炉长寿技术与实践[C],2006年全国炼铁生产技术会议暨炼铁年会文集,2006:276-281.
    131.顾德章.高炉铜冷却壁的设计及应用探讨[J],炼铁,2003,22(2):3-7.
    132.吴启常,佘克事,佘京鹏.高炉应用铜冷却壁的合理化[C],2005年中国钢铁年会论文集,2005:353-356.
    133.魏升明.浅谈高炉长寿[J],钢铁,1997,32:464-467.
    134.史宸兴.使用连铸冶金技术[M],北京:冶金工业出版社,1998,266.
    135.王现辉.轴承钢连铸钢水凝固与二冷配水优化的研究[D],唐山:河北理工大学,2005.
    136.那树人.炼铁计算[M],北京:冶金工业出版社,2005,151.
    137.陈宝剑,靳星亮.7~#高炉冷却壁破损原因初探[J],山西冶金,2000,78(3):11-13.
    138.顾平.高炉炉腹冷却壁管跟损坏原因浅析[J],冶金丛刊,2008,(1):37-44.
    139.朱仁良,陶卫忠.宝钢3号高炉冷却壁更换及效果[J],炼铁,2004,23(5):1-5.
    140.柳萌.现代大高炉薄炉壁内衬技术[J],炼铁,2001,20(3):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700