用户名: 密码: 验证码:
喷吹煤气高炉的炉料同化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷吹煤粉是降低高炉冶炼成本、增强竞争力的有效技术措施,但也给高炉生产带来了一系列负面影响。作者提出了通过煤造气自风口向高炉喷吹还原气体,结合富氧进行炼铁生产的新工艺,以高炉整体炉料为对象,研究了炉料的同化过程,探讨了煤气中H_2含量对炉料的低温还原粉化、还原率、熔融滴落、成渣和焦炭变化过程的影响。研究结果表明:
     温度对铁矿石的低温还原粉化具有重要影响,在500℃时矿石的粉化最为严重,500~900℃区间内矿石的粉化率(RDI_(-3.150)随温度升高而降低;相同温度下,矿石的粉化率随煤气中H_2含量的增加而增加,随CO_2含量的增加而明显减少;相同条件下,烧结矿的低温还原粉化率明显高于球团矿和块矿,铁矿石的低温还原粉化主要是由于赤铁矿还原为磁铁矿时体积膨胀造成的。
     新工艺条件下矿石的还原率随着温度的升高、时间的延长而增加,两者基本上呈线性关系。相同条件下,矿石的还原率随着H_2含量增加而明显增大,H_2含量增加扩大了炉料在块状带的间接还原,对于强化高炉冶炼,降低冶炼过程能耗具有决定性作用;新工艺条件下焦炭的失碳率显著增加,导致焦炭性能恶化,对于起骨架作用的焦炭提出了更高的要求。
     随着H_2含量增加,炉料的滴落温度降低,滴落温度区间减小,喷吹煤气高炉能够在较低温度下进行冶炼,可以降低高炉生产过程的能耗;随着H_2含量增加,炉料滴落过程的最大负压明显降低,最大压差降低。喷吹煤气高炉内的软熔带变薄甚至可能消失,炉内的透气性改善,对高炉顺行非常有利。
     高炉初渣的生成与炉料的种类有关,球团和天然块矿生成由大量FeO和硅铝酸盐组成的初渣;烧结矿生成呈酸性的CaO-Al_2O_3-MgO-SiO_2初渣。球团和天然块矿的初渣在下降过程中FeO被还原,吸收CaO和MgO转变为终渣。喷吹煤气高炉由风口进入的酸性物质减少,炉料的入炉碱度大幅降低,渣量降低,没有未燃煤粉的加入,成渣过程比喷煤高炉更为合理,有利于高炉形成合理的操作炉型,强化高炉冶炼。采用合理的造渣制度可以使炉渣具有良好的冶金性能,解决渣量降低带来的问题,生产出高质量铁水。
     研究结果表明,高炉喷吹煤气是完全可行的。新工艺把煤粉在风口前的燃烧、气化这一复杂过程转移到炉外,使高炉冶炼功能单一化,不但可以改善冶炼条件,而且可以实现“富氢”冶炼。炉顶煤气可通过造气炉转化循环利用,降低高炉炼铁能耗,减少高炉的CO_2排放,使高炉冶炼由依赖焦炭转向普通煤,符合当前冶金行业发展方向,具有明显的优越性。
Pulverized coal injection (PCI) into BFis one of effective technologies to reduce the cost and enhance competitiveness of BF process, but it brings a series of troubles to BF operation. The Bottom Oxygen Gas-Injection BF Process was put forward, which the reducing gas produced by coal in a gasifier is injected to BF from tuyeres. Whole charge assimilation of the new process was studied under the simulative conditions, the influences of H_2 content on RDI_(-3.15), reduction rate, melt-dropping of iron ore, slag formation and coke transformation were determined. The conclusions are as follows:
     Temperature is the principal factors which influence on the low temperature reduction degradation index (RDI) of charge, the RDI_(-3.15) reaches the maximum at 500℃, and it decreases as the temperature increases from 500℃to 900℃, the charge degradation finishes at 900℃. At the same condition, the RDI_(-3.15) increases as the H_2 content increases, decreases with the CO_2 content increases, and the RDI_(-3.15) of sinter is higher than that of pellet and crude iron ore. It is found that the mechanism of the low temperature reduction degradation is caused by volume expansion when hematite was reduced to magnetite.
     The reduction ratio of iron ore increases with reduction temperature and time increase, they present linear relationship. The reduction ratio of iron ore increases obviously with H_2 content of gas increasing, the indirect reduction is mainly carried out in lumpy zone of BF, and it has decisive effect to strengthen the smelting process and reducing energy consumption. The carbon loss ratio of coke increases with the H_2 ratio increases, the properties of coke is deteriorated, it has higher request to coke which act as frame in BF.
     When the H_2 ratio increases, the dropping temperature, maximum negative pressure and the maximum pressure drop of charge falls significantly, thus the ironmaking process could be carried out at lower temperature, the energy consumption could be reduced. The BF cohesive zone becomes thin or even disappeared, and the gas permeability of charge is improved, it is beneficial to BF smooth operation.
     The formation of primary slag is related to charge species. The primary slag formed by pellet and crude iron ore is composed by a large number of aluminosilicate and FeO; the primary slag formed by sinter is an acid slag system of CaO-Al_2O_3-MgO-SiO_2. In the course of primary slag descend, FeO is reduced and CaO and MgO in sinter are absorbed, then the final slag formed finally. Contrast to PCI BF process, the acidic materials entering BF tuyeres decrease sharply in the new BF technology, thus the basicity of charge loaded from furnace top decreases, the slag ratio decreases sharply; there are not unburned coal in slag, the formation of primary slag and bosh slag become well. The fluidity of BF slag was improved, it is helpful to form reasonable operating furnace profile, strengthen smelting process. Reasonable slagging system could enhance the metallurgical properties of slag, the trouble could be solved that caused by slag quantity deceases; high quality hot metal could be produced.
     The results reveal that the new technology is completely feasible. The complex combustion and gasification of coal in tuyeres were transferred to outside BF in the new technology, the iron-making process in BF was simplified, and rich hydrogen metallurgy was achieved. The top gas could be recycled by gasifier, the emission of CO_2 and energy consumption could be reduced, the BF process could use large number of normal coal instead of metallurgical coke. The new technology is in accordance with the needs of current metallurgical industry, it has obvious advantages.
引文
[1]周渝生,钱晖,张友平,等.现有主要炼铁工艺的优缺点和研发方向[J].钢铁,2009,44(2):1-10.
    [2]张殿伟,郭培民,赵沛.现代炼铁技术进展[J].钢铁钒钛,2006,27(2):26-33.
    [3]余琨.原矿原煤冶炼—21世纪与高炉竞争的炼铁方式[J].东北大学学报,1998,19(4):398-401.
    [4]李家新.富氢燃气纯氧高炉新工艺基础研究[D].北京:北京科技大学,2002.
    [5]储满生,尚策,艾名兴,等.高炉炼铁技术的最新进展[J].中国冶金,2006,16(10):4-8.
    [6]秦民生,张建良.高炉氧煤炼铁工艺[J].钢铁,1993,28(9):9-13.
    [7]Zhang J L,Yang T J.OCF(Oxygen-Coal-Flux Injection) blast furnace process[C].ICSTE/Iron making Conference Proceedings,1998.
    [8]新日铁喷吹废轮胎[J].世界金属导报,1999,16(3):20-23.
    [9]Asanuma M.Combustion and gasification behavior of waste plastics in raceway[J].CAMP-JSIJ,1996,(9):754-758.
    [10]Yamada Y.Material recycling of waste plastics in a blast furnace[J].The Third International Conference on Eco-materials.1997:294-297.
    [11]Jams J.Injection of waste plastics into the blast furnace of steelworker Bremen[C].Proc.of 3rd European Iron making Congress.CRM-VDEh.Gent.1996:114-119.
    [12]Austin P R.Computational investigation of scrap charging to the blast furnace[J],ISIJ International 1998,38(7):697-703.
    [13]Matsui Y,Sawayama M,Kasai A.Reduction behavior of carbon composite iron ore hot briquette in shaft furnace and scope on blast furnace performance reinforcement[J].ISIJ International,2003,43(2):1904-1912.
    [14]龙世刚,孟庆民,徐春,等.我国高炉喷吹废塑料的可行性研究[J].包头钢铁学院学报,1999,18(s):378-382.
    [15]张春雷,王尤清,柳阳武.鞍钢高炉喷吹废塑料的可行性研究[J].包头钢铁学院学报,2001,20(4):368-371.
    [16]宝钢顺利完成高炉喷吹废塑料工业试验[J].山东冶金,2007,(12):138.
    [17]王筱留.钢铁冶金学[M].北京:冶金工业出版社,2002:103-104.
    [18]杜奈耶夫著,王筱留译.高炉喷吹粉状物料[M].北京:冶金工业出版社,1980:7-8.
    [19]郭可中.宝钢高炉喷煤技术进步[J].炼铁,1998,17(6):14-18.
    [20]王维兴.中国高炉炼铁技术进展[J/OL]//http://www.csm.org.cn/ftp/upfile/20056813205297,2005-6-8.
    [21]唐文权,于兴久,王艳民.高炉喷煤的经济效益和工艺变革[J].中国冶金,2005,(1):28-31.
    [22]王维兴,黄洁.中国高炉炼铁技术发展评述[J].钢铁,2007,16(4):2-4.
    [23]宋阳升.高炉富氧喷煤技术的新进展[M].北京:冶金工业出版社,1995.
    [24]Chu M S.Study on super high efficiency operations of blast furnace based on multi-fluid model[D].Sendai:Tohoku University,2004.
    [25]储满生,郭宪臻,沈峰满.高炉炼铁新技术的数学模拟研究[J].东北大学学报,2007,28(6):829-833.
    [26]胡俊鸽.欧洲和美国的高炉喷煤工艺及技术经济指标分析[J].鞍钢技术,1998,(5):46-51.
    [27]徐万仁,李容壬,钱晖.宝钢高炉大量喷吹煤时煤粉在炉内的利用状况[J].钢铁,2000,35(5):1-5.
    [28]王炜,毕学工,傅世敏.国内外高炉喷煤现状及主要技术措施[J].武汉科技大学学报(自然科学版),2000,23(1):11-14.
    [29]陶荣尧,朱锦明.宝钢高炉大喷吹煤冶炼的能耗结构及CO_2排放量的变化[J].宝钢技术,2000,(3):6—9.
    [30]Bojic M,Mourdoukoutas A.Energy saving does not yield CO_2 emissions reductions:the case of waste fuel use in a steel mill[J].Applied Thermal Engineering,2000(20):963-975.
    [31]Oscar L,Oscar B,Caelos G F.Natural gas injection at Siderar 2# blast furnace[C].Ironmaking Conference Proceeding,1999:135-142.
    [32]Agarwal J C,Brown F C,Chin D L,etal.Injection of natural gas at high levels in the blast furnace with low oxygen consumption:field test results at WCI steel[C].Ironmaking Conference Proceedings,1999:143-163.
    [33]Babich S,Yaroshevskii F.Co-injection of non-coking coal and natural gas in blast furnace[J].ISIJ International,1999,39(3):229-238.
    [34]Gao Z K,Zhang J L,Yang T J.OCF(Oxygen-coal-flux injection) blast furnace process[C].ICSTI/Ironmaking Conference Proceedings,Toronto Ontario,Canada,1998:559-563.
    [35]Ma J T.Further developments of the blast furnace ironmaking[J].Nordic Steel & Mining Review,2000,(3):76-78.
    [36]Yamaoka H,Kamei Y.Experimental study on an oxygen blast furnace process using a small test plant[J].ISIJ International,1992,32(6):701-715.
    [37]商玉明,谢裕生,艾菁.全氧高炉炼铁过程的系统模拟[J].化工冶金,1993,14(3):189—193.
    [38]张建良.氧气高炉的应用基础研究[D].北京:北京科技大学,2001.
    [39]党玉华,张士敏.高效高炉低燃料比、大喷煤比的研究[J].钢铁,2005,40(2):15-18.
    [40]蒋汉华.节能是发展钢铁工业的基础工作[J].冶金能源,1997,16(6):8-11.
    [41]常久柱,苍大强.日本节能高炉炼铁技术的最新进展[J].钢铁研究学报,2003,15(3):70-73.
    [42]Mark A T,Serge E L,Gennady M S.A flow-chart for Ironmaking on the basis of 100%of usage of process oxygen and hot reducing gases injection[J].ISIJ International,1994,34(7):570-573.
    [43]Pukhov P,Stelin B M,Tseitlin M A,etal.Introduction of blast furnace technology involving injection of hot reducing gas[J].Steel in The USSR,1991,21(8):333-338.
    [44]Ishii K.Advanced pulverized coal injection technology and blast furnace operation[M].Tokyo:Elsevier,Science Ltd.,2000.
    [45]Tikhomirov N.Calculation procedure for indices of blast furnace operation with injection of hot reducing gas and oxygen without atmospheric blast[J].Steel in The USSR,1987,17(1):3-6.
    [46]Voskoboinikov V G,Gokhman Y I,Zhurakovskii B L.Blast furnace technical operating indices with injection of hot reducing gases on cold tonnage oxygen(without atmospheric blast)[J].Steel in The USSR,1971:259-263.
    [47]Iosif Tovarovskiy.高炉喷吹煤的气化产物新技术[J].胡俊鸽译.鞍钢技术,2007,(1):52-55.
    [48]杨绍利,郭兴忠,徐楚韶,等.高炉喷吹物料及其演变趋势.钢铁钒钛,2000,21(2):34-39.
    [49]周有福.使用预还原矿的高炉炼铁工艺[J].武钢技术,2008,46(3):59-62.
    [50]李秀兵.喷吹煤气后高炉炉料物理化学变化过程的试验研究[D].唐山:河北理工大学,2005.
    [51]巴广君.高炉软熔带形态研究[J].钢铁研究学报,1998,10(5):1—5.
    [52]神原健二郎.高炉解体研究[M].刘晓侦译.北京:冶金工业出版社.1980.
    [53]徐万仁.软熔带模型在宝钢2号高炉的应用[J].宝钢技术,2002,18(1):4-8.
    [54]Kokugaws S.高炉高喷煤比操作用高质量烧结矿的生产[J].徐万仁译.世界钢铁,2000,35(3):22-27.
    [55]Loo C E.高炉最佳操作的含铁炉料性能[J].钢铁,1997,32(s):72-77.
    [56]铁矿石低温粉化试验静态还原后使用冷转鼓的方法.GB/T 13242—1991[S].北京:中国标准出版社,1991.
    [57]铁矿石还原性的测定方法.GB/T 13241-1991[S],北京:中国标准出版社,1991.
    [58]Kurita K.使用评价高炉烧结矿和焦炭特性的模型来判断高炉内部状态[J].铁と钢,1987,73(15):2060-2067.
    [59]刘新兵.高温下冶金焦性能的试验研究[J].首钢科技,1997,(2):26-30.
    [60]周师庸.焦炭在富氧吹煤粉高炉内行径的研究[J].燃料与化工,1998,29(5):246-252.
    [61]Takhata M.Structural change of coke with various reacting gas mixtures[C].ICSTI / Iron making Conference Proceedings,1998:749-752.
    [62]Chung J K.Tuyeres level coke characteristics in blast furnace with pulverized coal injection[J].ISIJ International,1997,37(2):119-125.
    [63]Wilhelm H.Coke quality requirements for modern blast furnace operation[C].ICSTI/Iron making Conference Proceedings,1998:1067-1072.
    [64]Lwakiri H.Planning of high quality coke based on a coke degradation mechanism in a blast furnace and production of coke employing a large amount of low-grade coal[C].Ironmaking Proceedings,1989:119-131.
    [65]吴胜利.论大喷煤量高炉的焦炭强度问题极其改善途径[C].1995年炼铁学术年会论文集.1995:176-181.
    [66]#12
    [67]#12
    [68]原口博.高炉内焦炭劣化机理(名古屋1号高炉解体调查报告之五)[J].铁と钢,1983,69(4):91-93
    [69]Haraguchi H.Some aspects of deterioration of coke in blast furnace[J].Trans.Iron Steel Inst.Jpn.1985,25(3):190-197.
    [70]Abe Y.Condition of coke bed in the hearth C dissection results of the hearth in Kimitsu No.3 Blast Furnace of Nippon Steel Corporation-I[J],Transaction of Iron and Steel Institute of Japan.1985,25(10):B-239.
    [71]原口博.关于高炉内焦炭劣化机理的几点探讨[J].铁と钢,1984,70(16):40-47..
    [72]高斌,顾飞,史俊.混合喷吹对高炉炉渣性能影响的计算分析[J].钢铁,1999,34(8):11-13.
    [73]毕学工,张寿荣.高炉造渣过程的优化与提高喷煤量的关系[C].2003年中国钢铁年会论文集,2003:171-178.
    [74]毕学工.改善高炉造渣过程与大量喷煤[J].河南冶金,2003,11(2):8—12.
    [75]熊玮,毕学工,周国凡.等.高炉滴落带气液对流现象的实验研究[J].炼铁,2003,(s):415-418.
    [76]王国雄,李永镇.高炉滴落带初渣流动的实验研究[J].东北工学院学报,1998,9(3):267-274.
    [77]吕庆.高炉喷吹煤气基础研究[R].国家自然基金委,2006.
    [78]刘长江.煤气化生产冶金煤气的实验研究[D].唐山:河北理工大学,2008.
    [79]郭豪.高炉喷吹煤气后热平衡变化规律的研究[D].唐山:河北理工大学,2005.
    [80]成兰伯.高炉炼铁工艺及计算[M].北京:冶金工业出版社,1995.
    [81]全泰铉,吕庆,李福民.高炉工艺计算[M].石家庄:河北科学技术出版社,2005.
    [82]葛立业,李永镇,何国强.高炉喷煤限界量与煤粉燃烧性的关系[J].2001中国钢铁年会论文集,2001:270-274.
    [83]储满生,郭宪臻,沈峰满.高炉喷吹还原气操作的数学模拟研究[J].中国冶金,2007,17(6):34-39.
    [84]拉姆AH.现代高炉过程的计算分析[M].王筱留,徐建伦译.北京:冶金工业出版社,1987,5-8,90-102.
    [85]那树人.关于高炉焦比的联合计算[J].包头钢铁学院学报,1998,(7):267-275.
    [86]王婷婷.高炉喷吹煤气的基础研究-喷吹煤气极限焦比研究[D].唐山:河北理工大学,2007.
    [87]比斯瓦斯A k.高炉炼铁原理-理论与实践[M].齐宝铭译.北京:冶金工业出版社,1989:91-95.
    [88]周取定,臧桂兰,孟世民.铁矿石烧结矿、球团矿低温还原粉化静态检验参数的研究[J].烧结球团,1984,9(2):8-15.
    [89]庄剑鸣,王隆谦.低温还原粉化检测方法中有关参数的研究[J].烧结球团,1983,(4):23-31.
    [90]李孝群.CO还原气质量对RI和RDI精度的影响[J].烧结球团,1993,(3):23-30.
    [91]单继国.烧结矿低温还原粉化的研究[J].烧结球团,1989,(2):20-24.
    [92]Pineau A,Kanari N,Gaballah I.Kinetics of reduction of iron oxides by H_2 Part Ⅰ:Low temperature reduction of hematite[J].Thermochimica Acta 2006,447:89-100.
    [93]Roberto A D,Alberto N C,Egberto B.Kinetics of reduction of Fe_2O_3 particles with H_2-CO mixtures at Low temperatures[C].2002 Ironmaking Conference Proceedings:493-509.
    [94]卢开成,李家新,王平,等.水煤气反应对浮氏体还原影响的实验研究[J].南方金属,2007,(154):11—14.
    [95]陈淼,李家新,王平,等.不同H_2含量混合气体还原浮氏体的试验研究[J].山东冶金,2006,28(6):32-34.
    [96]Loo C E,Bristow N J.铁矿石烧结矿低温还原粉化机理研究[J].李之甫译.烧结球团,1995,20(3):25-29.
    [97]Loo C E,Bristow N J.铁矿石烧结矿低温还原粉化机理研究[J].李之甫译.烧结球团,1995,20(4):23-28,22.
    [98]杨华明,邱冠周,唐爱东.CaCl_2对烧结矿RDI的影响[J].中南工业大学学报,1998,29(3):229-232.
    [99]杨雪峰,沈峰满,杨杰康,等.喷洒CaCl_2溶液改善烧结矿低温还原粉化试验研究[C].2005 中国钢铁年会论文集,2005:232-235.
    [100]李咸伟.氯化物对烧结矿RDI影响的试验研究[J].宝钢技术,1998,(1):19-24.
    [101]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1990.
    [102]陈淼,李家新,李学付.高温下不同氢气含量混合气体还原浮氏体的实验研究[J].金属材料与冶金工程,2007,35(1):19-22.
    [103]Jozwiak W K,Kaczmarek E,Maniecki T P,etal.Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J].Applied Catalysis A:General 2007,(326):17-27.
    [104]杨先觉.高碱度烧结矿还原特性分析[J].烧结球团,2000,25(4):8—11.
    [105]王雅蓉,赵国军.磁铁矿在H_2/Ar气氛中还原产物显微结构与形貌变化的原位观测[J].金属学报,1998,34(6):571-578.
    [106]糜克勤.升温状态下焦炭与二氧化碳反应的性质[J].钢铁,1991,26(12):1-4.
    [107]Lwanaga Y.Degradation behavior of coke at high temperature in blast furnace[J].Ironmaking and steelmaking,1989,16(2):101-104.
    [108]杨俊和,冯安祖,杜鹤桂.冶金焦在高炉内微观结构的变化[J].钢铁,2000,35(11):2-4.
    [109]王杏娟.高炉块状带炉料抗压强度模拟研究[D].唐山:河北理工大学,2005.
    [110]严定鎏,齐渊洪,许海川,等.高炉软熔带气体流动的数值模拟[J].钢铁研究学报,1999,11(1):5-7.
    [111]巴广君.高炉软熔带形态的实验研究[J].钢铁研究,1998,(3):3-6.
    [112]李永镇,周春林.高炉软熔带特性及初渣流动规律的研究[J].东北工学院学报,1990,11(4):319-325.
    [113]曹军,况春江,黄开华.富氧大量喷煤条件下高炉生产率的限制因素[J].钢铁研究学报,1996,(S1):49-55.
    [114]傅连春,毕学工,周国凡,等.从风口喷吹熔剂对炉料软熔性能和初渣性能的影响[J].钢铁,2009,24(2):23-27.
    [115]傅连春,毕学工,冯智慧,等.高炉初渣形成过程及其性能优化研究[J].武汉科技大学学报(自然科学版),2008,31(4):113-118.
    [116]曾加庆.铁浴熔融还原过程熔渣-铁液间氧化铁和碳的行为研究[D].北京:北京科技大学,1998.
    [117]李一为,丁伟中,游锦洲,等.铬铁矿在熔融滴下过程中的还原机理[J].钢铁研究学报,2003,15(6):4-9.
    [118]李长荣,邓守强,施月循.高炉铁水滴落过程的渗碳研究[J].贵州工业大学学报(自然科学版),1999,28(4):46-50.
    [119]曾加庆,杨天钧,王新华.含碳铁滴在熔渣中行为的研究[J].钢铁,2002,36(6):13-17.
    [120]朱子宗,张丙怀.未燃煤粉对攀钢渣滴落性能的影响研究[J].重庆大学学报(自然科学版),1999,22(3):122—126.
    [121]王国雄,李永镇.初渣流动方式对高炉内硅传递过程的影响[J].东北工学院学报,1989,10(3):238-244.
    [122]李永镇,邓守强.高炉内初渣流动规律性的探讨[J].钢铁,1980,15(4):59-60.
    [123]杨福.未燃煤粉对高炉炉渣性能的影响[D].武汉:武汉科技大学,2005.
    [124]东北工学院.高炉炼铁[M].北京:冶金出版社,1978.
    [125]Steiler J M,Gaye H,Lehnann J,et al.Slag-metal gas equilibrium in the hearth of the blast furnace [C].Proc.of 2~(nd) European Ironmaking Congress,1990:320-322.
    [126]Formoso A.,Lopez F A,Fierro J L G,etal.Potassium retention by basic mineral(dunite) in blast furnace process[J].1997,24(4):288-292.
    [127]Gladkov N A,Nikolaev S A,Budnik L G.Behavior of alkalis in the shaft and hearth of a blast furnace(Inst of Ferrous Metallurgy)[J].Metallurgist(English Translation of Metallurgy),1988,(31):329-331.
    [128]Gudenau H W,Johann H P,Meimeth S.Removal of alkalies from blast furnaces[J].Stahl und Eisen.1996,(9):89-96.
    [129]Alam M,Deb R T.Behavior of alkali metal cyanides In the blast furnace-vaporization of NaCN(L)And KCN(L)[J].Transactions of the Iron & Steel Society of Aime,1985,(6):15-22.
    [130]安为杰,胡宾生.马钢2500m~3高炉渣的冶金性能[J].华东冶金学院学报,1998,15(1):11-16.
    [131]郁庆瑶,张龙来,林成城.高炉渣流动性的实验研究[J].宝钢技术,2003(3):37-40.
    [132]刘德军,王尤清.提高鞍钢高炉渣中MgO含量的理论研究[J].鞍钢技术,1999(5):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700