用户名: 密码: 验证码:
畜禽粪便中重金属的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了生物沥浸法和化学沥浸法对畜禽粪便中重金属的沥浸效果、影响因素和沥浸特征等。首先采用不同的微生物培养方案进行硫细菌培养,通过比较分析确定出合适的硫细菌培养方案。根据重金属沥浸特征和重金属形态分析探讨了生物沥浸机制。经过对微生物形态扫描电镜的的观察,及细菌培养后细菌数量的测定和细菌形态的观察,总结了生物沥浸前后微生物种类和数量的变化。根据对生物沥浸法和化学沥浸法的影响因素的研究及两种方法的对比研究分析,揭示了畜禽粪便生物沥浸和化学沥浸分别所具有的沥浸特性和相同点,总结了两种方法各自所具有的优势和缺陷,并最终建立了适合生物沥浸法和化学沥浸法的最佳工艺参数。最后采用反应器小试了生物沥浸法和化学沥浸法在实际应用时易产生的问题并提出了解决建议。
Leaching efficiency, influencing factors and leaching characteristics of bioleaching and chemistry leaching of heavy metals from animal excrement are studied in this paper. Firstly, different training programs in microbial sulfur bacteria culture are comparatively analysed to determine suitable training program of sulfur bacteria. Then, bioleaching mechanism is discussed according to bioleaching characteristics and speciation analysis of heavy metals. Based on SEM of microbial forms, determination of the number of bacteria and observation of bacterial Morphology after the bacteria culture, the change of Microorganisms types and quantities before and after bioleaching are summed up. Based on the study of factors affecting bioleaching and chemistry leaching respectively and comparative analysis of the two methods, characteristics of each method and the same point of them in the treatment of animal excrement are revealed, advantages and shortcomings of each method are summarized, and eventually the optimum parameters suitable for bioleaching and chemistry leaching are established. Finally problems easily produced in practical applications of bioleaching and chemistry leaching are summarized through the experiment of the small scale reactor, and the solutions recommended are put forward.
引文
1. 郝秀珍,周东美.畜禽粪中重金属环境行为研究进展.土壤,2007,39(4):509~513
    2. Aarnink A J A, Verstegen M W A. Nutrition, key factor to reduce environmental load from pig production. Livestock Science,2007,109:194~203
    3. Nicholsona F A, Chambers B J, Williams J.R, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology,1999,70:23~31
    4. 王凯军.畜禽养殖污染防治技术与政策.北京:化学工业出版社,2004
    5. 谷洁,高华,李鸣雷,等.养殖业废弃物对环境的污染及肥料化资源利用.西北农业学报,2004,13(1):132~135
    6. 朱海生,陈志宇,栾冬梅.畜禽粪便的综合利用.黑龙江畜牧兽医,2004,(4):59~60
    7. 李淑芹,胡玖坤.畜禽粪便污染及治理技术.可再生能源,2003,(1):21~23
    8. 刘敏超,李花粉,温小乐.畜禽废弃物的污染治理.畜牧与兽医,2002,34(9):16~17
    9. 许飞利,潘晓亮,畜牧业环境污染控制的研究进展.江西畜牧兽医杂志,2007(3):2~4
    10.孙胜龙,高龙君,隋延婷,等.吉林省畜禽养殖业的环境问题及防治技术.生态环境,2004,13(3):452~454
    11. Tadabaru I. A Scheme of Environmental Improvement by Recycling Organic Matter between Urban and Rural Areas. Metro Manila:University of the Phlippines Press,2002:241~294
    12.范梅华,张建华.环境友好型社会下如何处理畜禽粪便?.中国禽业导刊,2006,23(24):18~21
    13.马强,白献晓,魏凤仙,等.畜禽粪便无害化处理技术探讨.河南农业科学,2007,(1):109~111
    14.李庆康.畜禽粪便无害化处理及肥料化利用.中国家禽,2002,24(8):7~9
    15.甘县辉,汪永辉,黄莉.畜禽养殖场环境污染现状及治理对策.东华大学学报,2003,29(4):103~106
    16.夏季.推广畜禽粪便喂畜禽要慎重.四川畜牧兽医,2006,33(5):42~42
    17.孙光闻.重金属污染及治理研究进展.南方农业,2007,1(2):41~43
    18.赵彩.畜禽排泄物与环境保护.中国草食动物,2007,23(3):65~66
    19.徐伟朴,陈同斌,刘俊良,等.规模化畜禽养殖对环境的污染及防治策略.环境科学,2004,25:105~108
    20. Martley E, Gulson B L, Pfeifer H R. Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Science of the Total Environment,2004,325:113~127
    21.张树清.规模化养殖畜禽粪有害成分测定及其无害化处理效果.博士后学位论文,中国农业科学院,2004:5~6
    22. Cang L, Wang Y J, Zhou D M, et al. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province. China Journal of Environmental Science,2004,16(3):371~374
    23.李贤辉.农村畜禽养殖污染及治理措施.中国畜牧杂志,2003,39(5):58~59
    24. Zhou D M, Hao X Z, Wang Y J, et al. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere,2005,59:167~175
    25.孙波,孙华,张桃林.土壤重金属复合污染修复的生态环境效应与评价指标.环境科学,2004,25(2):104~110
    26.华玉妹.污泥中Cu、Pb和Zn的生物沥滤研究.博士学位论文,2005:6~10
    27. Tyagi R D, c ouillard D, Tran F. Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods. Environmental pollution,1988,50(4):295~316
    28. Sengupta S, SenGupta A K. Chelating ion-exchangers embedded in PTFE for decontamination of heavy-metal-laden sludges and soils. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,191(1-2):79~95
    29. Frost H L. Land application, biological decontamination, and speciation of metal-laden sewage sludge. Nortre Dame:2001
    30.王兆军,张怀成,刘键,等.规模化畜禽养殖污染有效防治途径探讨.中国人口·资源与环境,2001,11(51):72~74
    31. Brombacher C, Bachofen R, Brandl H. Development of a laboratoryscale leaching plant for metal extraction from fly ash by Thiobacillus strains. Applied and Environment Microbiology,1998,64(4):1237~1241
    32. Krebs W, Brombacher C, Bosshard P P, et al. Microbial recovery of metals from solids. FEMS Microbiology Review,1997,20:605~617
    33. Xu T J, Ting Y P. Optimisation on bioleaching of incinerator fly ash by Aspergillus niger:use of central composite design. Enzyme Microbial Technology,2004,35:444~454
    34.周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用.生态学报,2002,22(1):125~133
    35.周顺桂,周立祥,王世梅.嗜酸硫氧化菌SS-3的分离、特性及其在污泥生物脱毒上的应用.环境科学研究,2003,16(5):41~44
    36.周顺桂,胡佩,雷发懋.Tween-80对生物淋滤法去除垃圾焚烧飞灰中重金属的影响.环境科学研究,2006,19(2):82~85
    37.周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用.生态学报,2002,22(1):125~132
    38.胡丘华,康自珍.氧化硫硫杆菌的细菌学描述.湿法冶金,1996,60(4):36~40
    39. Lizama H M, Suzuki L. Synergistic competitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans. Applied and Environment Microbiology,1989,55(5):2588~2599
    40.中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984: 634~636
    41.周鸣.生物淋滤技术去除矿区土壤中的铜、锌、铅研究.博士学位论文,2008
    42.王红涛,王增长,王小英.浅析用生物淋滤法去除城市污泥中的重金属.科技情报开发与经济,2005,15(20):161~163
    43.黄明.城市污水污泥中重金属的生物沥滤技术试验研究.博士学位论文,2009
    44. Colmer A R, Temple K T, KinkleM E. An iron-oxidizing bacterium from the acid mine drainage of some bituminous coalmines. Journal of Bacteriology,1950,59:317~328
    45. Torma A E. Biotechnology applied to mining of metals. Biotechnology Advances,1983,1:73~80
    46. Bromebacher C, Bachofen R, Brandle H. Biohydrometallurgical processing of solids:a patent review. Applied Microbiology and Biotechnology,1997,48:577~587
    47. Couillard D, Mercier G. Optimum residence time in (CSTR or Airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge-bioreactor comparison. Water Research,1991,25:221
    48. Benmoussa H, TyagiR D, Campbell P G C. Simultaneous sewage sludge and metal leaching using an internal loop reactor. Water Research,1997,31:2638~2654
    49. Blais J F, TyagiR D, Auclair J C. Bioleaching of metal from sewage sludge:microorganisms and growth kinetics. Water Research,1993,27:101~110
    50. United States Patent 5779762
    51. Myerson A S, Klime P C. Continuous bacterial coal desulfurization employing Thiobacillus ferrooxidans. Biotechnology and Bioengineering,1984,24:92~99
    52. Hallber K B, Dopson M, Lindstrom E B. Reduced sulfur compound oxidation by Thiobacillus caldus. Journal of Bacteriology,1996,178:6~11
    53.周立祥,方迪,周顺桂,等.利用嗜酸性硫杆菌去除制革污泥中铬的研究.环境科学,2004,25(1):62~66
    54.朱南文,蔡春光,吴志超,等.污泥中重金属的生物沥滤及其机理分析.上海交通大学学报,2003,37(5):801~804
    55. Sierra-Alvarez R. Fungal bioleaching of metals in preservative-treated wood Process. Biochemistry,2007,42: 798~804
    56. Chen S Y, Lin J G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor:effects of sulfur concentration. Water Research,2004,38:3205~3214
    57. Solisio C, Lodi A, Veglio F. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management,2002,22:667~675
    58. Naresh Kumar R, Nagendran R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere,2007,66:1775~1781
    59. Hungyee W, Yenpeng T. Metal extraction from municipal solid waste (MSW) incinerator fly ash-Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology,2006,38:839~847
    60. Willscher S, Poble C, Sitte J, et al. Solubilization of heavy metals from a fluvial AMD generating tailings sediment by heterotrophic microorganisms, Part Ⅰ:Influence of pH and solid content. Journal of Geochemical Exploration,2007,92:177~185
    61.许晓路,申秀英.污泥中重金属的生物沥滤处理.中国给水排水,2000,16(3):54~56
    62.周顺桂,王世梅,余素萍,等.污泥中氧化亚铁硫杆菌的分离及其应用效果.环境科学,2003,24(3):56~60
    63. Xiang L, Chan L C, Wong J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere,2000,41:283~287
    64.周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究.环境科学学报,2001,21(4):504~506
    65. Wong J W C, Xiang L, Gu X Y, et al. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source, Chemosphere,2004,55:101~107
    66.华玉妹,陈英旭.污泥中重金属生物沥滤的工艺参数优选和反应机制探讨.环境科学学报,2004,24(3):423~427
    67.朱南文,张乐华,高廷耀,等.上海城市污水厂污泥的农用处置方法研究.中国给水排水,2002,18(10):16~19
    68.李士杏,李菲,郑琴.生物沥滤法去除印染废水污泥中重金属的效果研究.嘉兴学院学报,2007,19(6):50~52
    69.邹塞,张盼月,曾光明,等.硫粉投加量与污泥含固率之比对生物淋滤过程的影响.环境科学学报,2008,28(3):510~515
    70.方迪,周立祥.污泥回流比对生物除铬效果的影响.中国给水排水,2004,20(7):46~48
    71.李音,曾光明,张盼月,等.底物对浓缩污泥中重金属生物淋滤的影响.环境科学与技术,2006,29(5):1~3
    72.周顺桂,周立祥,方迪,等.黄铁矿与硫粉配合提高污泥重金属的淋滤效果.中国环境科学,2004,24(1):110~114
    73. Li-Jyur T, Kuang-Chung Y, Shu-Fen C, et al. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Research,2003,37:2449~2457
    74. Ishigaki T, Nakanishi A, Tateda M, et al. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere,2005,60:1087~1094
    75.杨洁,汪群慧,王琪,等.垃圾焚烧飞灰浓度对黑曲霉生长及重金属生物淋滤效果的影响.环境科学,2008,29(3):825~830
    76.周顺桂,胡佩,常明,等.生物淋滤法脱除城市生活垃圾焚烧飞灰中的重金属:底物浓度的影响.应用基础与工程科学学报,2005,13(2):129~135
    77.王世梅,周立祥,黄峰源,等.耐酸性异养菌的分离及其在制革污泥重金属生物淋滤中的作用.环境科学,2004,25(5):153~157
    78.孙艳,吴锋,辛宝平,等.硫杆菌浸出废旧MH/Ni电池中重金属研究生态环境.2007,16(6):1674~1678
    79.辛宝平,朱庆荣,李是砷,等.生物淋滤溶出废旧锂离子电池中钴的研究.北京理工大学学报,2007,27(6):551~555
    80.赵玲,杨栋,朱南文.废旧干电池的生物法资源回收技术.有色冶金设计与研究,2007,28(23):98~102
    81.汪靓,朱南文,冯磊.废旧镍镉电池的生物沥滤处理.环境污染与防治,2006,28(8):601~604
    82.陈泉军,方兆珩.生物浸出低品位镍铜硫化矿中的镍、铜、钴.过程工程学报,2001,1(4):369~373
    83.钮因健,邱冠周,周吉奎,覃文庆.硅酸盐细菌的选育及铝土矿细菌脱硅效果.中国有色金属学报,2004,14(2):280~285
    84. Cancho L, Blazquez M L, Ballester A, et al. Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system. Hydrometallurgy,2007,87:100~111
    85.张悦秋,谢广元,李国洲.氧化硫硫杆菌氮代谢及其对煤炭脱硫影响的研究.洁净煤技术,2007,13(4):32~34
    86.胡瑜,毕银丽,赵斌.硫杆菌的分离鉴定及其对煤矿废弃物的氧化脱硫特性.应用与环境生物学报,2007,13(1):116~120
    87. Paff S W, Bosilovich B, Kardos N J. Acid Extraction Treatment System for Treatment of Metal Contaminated Soils. Risk Reduction Engineering Laboratory. Office of Research and Development, EPA/540/R-94/513, Cincinatti, OH.,2004:1~5
    88. Brooks C S. Metal Recovery from Industrial Waste. Chelsea, MI, USA:Lewis Publishers,1991
    89.和苗苗,田光明,梁新强.去除污泥中重金属的研究进展.农机化研究,2007(5):12~16
    90. Fristoe B R, Nelson P O. Equilibrium chemical modeling of heavy metals in activated sludge. Water Research, 1983,17(7):771~778
    91. Waidmann E, Hilpert K. Determination of Cadmium, Lead and Thallium in Materials of Environmental Specimen Bank Using Mass Spectrometric Isotope Dilution Analysis (MSIDA). Fresenius Journal of Analytical Chemistry,1984,317(3-4):273~277
    92. Lo K S L, Chen Y H. Extracting heavy metalsfrom municipal and industrial sludges. Science of the Total Environment,1990,90:99~116
    93. Jenkins R L, Scheybeler B J. Metals removaland recovery from municipal sludge. Journal of the Water Pollution Control Federation,1981(5):25~31
    94. Wozniak D, Huang J. Variables affecting metal removal from sludge. Journal of the Water Pollution Control Federation,1982,54(12):1574~1580
    95. Veeken A H M, Hamelers H V M. Removal of heavy metals from sewage sludge by extraction with organic acids. Water Science and Technology,1999,40(1):129~136
    96. Marchioretto M M, Bruning H. Heavy metals extraction from anaerobically digested sludge. Water Science and Technology,2002,46(10):1~8
    97. Couillard D, Zhu S. Bacterial leaching of heavy metals from sewage sludge for agricultural application. Water Air and Soil Pollution,1992,63(1-2):67~80
    98.方迪,周立祥.固体浓度对生物淋滤法去除制革污泥中铬的影响.中国环境科学,2004,24(2):163~165
    99.周焱,陆若辉,董越勇,等.浙江省复混肥料、有机-无机复混肥料和有机肥料品质的研究.植物营养与肥料学报,2007,13(1):148~154
    100.国家环境保护总局环境工程评估中心.环境影响评价技术导则与标准汇编.北京:中国环境科学出版社,2005:1032~1033
    101.边德军,陈慧良.初级污泥好氧消化的实验研究.长春工程学院学报(自然科学版),2001,2(4):41~42.
    102.丁文川,龙腾锐,许龙.污泥好氧消化影响因素分析.给水排水,2004,30(7):23~26.
    103. El-Azim H Abd, El-Moselhy Kh M. Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction. Journal of Marine Systems,2005,56:363~374
    104. Kim B, Murray B, McBride. A test of sequential extractions for determining metal speciation in sewage sludge-amended soils. Environmental Pollution,2006,144:475~482
    105. Amir S, Hafidi M, Merlina G, et al. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere,2005,59:801~810
    106. Penilla S, Bordas F, Bollinger J C. Sequential heavy metals extraction from polluted solids:Influence of sulfate overconcentration. Journal of Colloid and Interface Science,2005,292:20~28
    107. Baath E, Diaz-Ravina M, Frostegard A, et al. Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Microbiology,1998,64:238~245
    108. Davidson C M, Ferrire P C S, Urea M. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially contaminated soil. Fresenius Journal of Analytical Chemistry,1999,363 (1):446~451
    109. Urea A M, Quevauviller P, Muntau H, et al. Speciation of heavy metals in soils and sediments:an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. International Journal of Environment Analytical Chemistry,1993, 51:135~151
    110. Perez-Cid B, Lavilla I, Bendicho C. Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound. Analytica Chimica Acta,1998,360:35-41
    111. Quevauviller P, Rauert G, Muntau H, et al. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius Journal of Analytical Chemistry, 1994,349:808~814
    112. Kennedy A C. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil,1995,170: 75~86
    113. Svete P, Milacic R, Pihlar B. Optimisation of an extraction procedure for determination of total water-soluble Zn, Pb and Cd and their species in soils formamining area. Annali di Chimica,2000,90:323~334
    114. Tessier A, Campbell P G C, Bison M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,1979,51(7):844~851
    115. Silveira M L, Alleoni L R F, O'Connor G A, et al. Heavy metal sequential extraction methods—a modification for tropical soils. Chemosphere,2006,64:1929~1938
    116.胡蓓蓓,王祖伟,王东启,等.城市污泥中铜锌的化学形态及其去除.城市环境与城市生态,2007,20(3):15~17
    117.华玉妹,李文红,陈英旭,等.不同接种量下生物沥滤去除污泥中重金属的研究.浙江大学学报,2005,31(1):47~51
    118.张峥嵘,黄少斌.污泥好氧消化工艺的分析与研究.化工科技,2006,14(5):60~65
    119.赵一德,张鹏,吴志超.生物浸沥去除污泥中的重金属.环境工程,2002,20(1):47~50
    120. Villar L D, Garcia O J. Solubilization profiles of metal ions from bioleaching of sewage sludge as a function of pH. Biotechnology Letters,2002,24:611~614
    121.华玉妹,陈英旭,田光明,等.初始pH值对污泥中重金属生物沥滤的影响.农业环境科学学报,2006,25(1):128~131
    122. Sreekrishnan T R, Tyagi R D, Blais J F, et al. Effect of sulfur concentration on sludge acidification during the SSDML process. Water Research,1996,30(11):2728~2738
    123. Tyagi R D, Blais J F, Meunier N, et al. Simultaneous sewage sludge digestion and metal leaching effect of sludge solids concentration. Water Research,1997,31(1):105~118
    124.莫测辉,蔡全英,吴启堂,等.微生物方法降低城市污泥的重金属含量研究进展.应用与环境生物学报,2001,7(5):511~515
    125. Sreekrishnan J N, Tyagi R D, Blais J F, et al. Kinetics of heavy metal bioleaching from sewage sludge:Effect of process parameters. Water Research,1993,27:1641~1651
    126. Zhou L X, Fang D, Wang S M, et al. Bioleaching of Cr from tannery sludge:the effects of initial acid addition and recycling of acidified bioleached sludge. Environment Technology,2005,26:277~284
    127. Anderson B C, Brown A T F, Watt W E, et al. Biological leaching of trace metals from stormwater sediments: influential variables and continuous reactor operation. Water Science and Technology,1998,38:73~81
    128. Tsai L Y, Yu K C, Chen S F, et al. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Research,2003,37:2449~2457
    129. Blais J F, Tyagi R D, Auclair J C. Bioleaching of metals from sewage sludge:effects of temperature. Water Research,1993,27:111~20
    130. Tyagi R D, Meunier N, Blais J F. Simultaneous sewage sludge digestion and metal leaching-effect of temperature. Applied Microbiology and Biotechnology,1996,46:422~431
    131.方迪,周立祥.温度对制革污泥的生物淋滤除铬效果的影响.环境科学, 2006,27(7):1455~1458
    132. Abrego J. Removal of heavy metals from sample of residue sludge. International Journal of Environment and Pollution,1996,6(2-3):295~299
    133.周德庆.普通微生物教程.北京:高等教育出版社,2000:198~199
    134. Lombardi A T, Garcia Jr O. Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Research,2002,36(12): 3193~3202
    135.杨洪英,朱长亮,蒋欢杰,等.某冶炼厂污染土壤中铜的赋存形态及生物有效性研究.东北大学学报2007,28(7):1006~1008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700