用户名: 密码: 验证码:
中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东北地区在构造上位于华北克拉通和西伯利亚克拉通之间,属于中亚造山带的最东段,中亚造山带被认为是世界上最为重要的显生宙新生地壳单元,而中国东北地区则可能是显生宙以来全球地壳增生最强烈的地区之一。碎屑沉积物和沉积岩是大范围大陆地壳的最具代表性的样品,是研究大陆地壳形成、演化理想的对象。年轻沉积物或是现代河流沉积物的碎屑锆石记录了源自地壳物质的信息,而这些地壳物质却可能并没有被保存下来,或是已经没有再出露了。嫩江、松花江、黑龙江、乌苏里江,及其各支流海拉尔河、呼玛河、呼兰河等流域基本涵盖了中国东北地区的主要构造单元。本文对采自这些河流的13件河沙样品中的碎屑锆石进行LA-ICPMS U-Pb定年和LA-MC-ICPMS Hf同位素测定,所得1761颗谐和锆石的年龄和其中1381颗锆石的Hf同位素组成用来讨论中国东北地区地壳形成与演化的历史。文章取得的主要认识如下:
     1)在复杂构造带背景下,河流系统难免要流经多个构造单元,使碎屑锆石来源变得复杂,使研究结果出现偏差。在松花江南源第二松花江和松花江干流样品中均存在有相当数量的-2.5 Ga年龄的锆石,但着并不意味着在中国东北地区存在大量-2.5 Ga的结晶基底。由于第二松花江发源于华北克拉通东北缘,它将大量源于华北克拉通的锆石汇入东北地区内部,使得在其下游各样品中均出现-2.5 Ga,原属于华北克拉通特征年龄的锆石。对全松花江水系各主要河流均采取上、中、下游分段采样的方式,发现随着各采样点所能代表流域面积的增大,-2.5 Ga年龄的锆石在各样品中所占比例明显降低,并显示与流域面积对数值呈反比关系。这一趋势对于东北地区内部不同时间和空间分布的锆石源区也表现明显。该趋势是由外源汇入锆石的供给有限,在向下游迁移过程中锆石不断沉降却得不到进一步的供给,而且增大的流域面积也使汇入的其它年龄组成的锆石逐渐增多,这也促使外来的锆石在下游各样品中所占比例进一步降低。与之相反的是,真实源于流域内主要岩浆事件的锆石,会得到周边物源持续的供给而保持在样品中所占比例在一定范围内波动,这也意味着对于流域内的特征岩浆事件,在流域内分布的各采样点对其均是有代表性的。
     2)在现今中国东北地区中部(松辽盆地东北缘)、西部(大兴安岭中北部西侧)和东部(佳木斯地块东部)均可能存在一定规模的-1.8 Ga的结晶基底,它们可能源自改造的太古宙(2.5-3.2 Ga)地壳。中-新元古代岩浆锆石在现今中国东北地区内部各地均有零星出现,亏损地幔模式年龄显示该时期是地壳形成的主要阶段,这些地壳可能在该地区古生代和中生代的数次构造运动中被大量改造。但在东北地区复杂造山带背景下,锆石源区可能经历了数次改造与混染,此时的模式年龄可能记录的是新生地壳与改造或再循环的老地壳物质多次混合的结果,仍需结合锆石氧同位素组成对Hf模式年龄所代表的地质意义进一步加以限制。
     3)古生代期间西伯利亚克拉通和华北克拉通之间经历了复杂的造山运动,表现为不同地块间的碰撞拼合,最终导致两大板块拼合在一起,大量正εHf(t)值显示在各块体碰撞拼合过程中有大量新生地壳物质的加入,它们来源于地幔物质的部分熔融。各碰撞事件中还伴随对老地壳的改造,但熔融的地壳物质与幔源岩浆发生了不同程度的混合。
     在早古生代发生的兴安与额尔古纳地块碰撞事件峰期为-495 Ma,而在碰撞带附近发生的峰期为450-460 Ma和-440 Ma的岩浆事件则可能是地块碰撞拼贴作用结束后的后造山阶段活动的反映,碰撞事件还波及现今松嫩地块中部,导致该地区-485Ma的岩浆事件的发生。
     古生代中晚期松嫩与兴安地块间洋壳俯冲所引起的岩浆事件峰期为-355 Ma,两地块碰撞可能发生在350-300 Ma间。地块碰撞过程中有大量新生地壳产生,它们可能来源于受洋壳俯冲影响而部分熔融的地幔物质。碰撞后伸展环境下的岩浆事件集中于300-280 Ma,此次碰撞所造成的岩浆事件主要集中于兴安板块内部。
     古生代晚期西伯利亚边缘已拼贴的复合块体与华北克拉通碰撞,并可能导致复合块体下岩石圈地幔的部分熔融,产生大量新生地壳物质,碰撞后的岩石圈伸展作用导致复合块体内部不同位置发生的多起岩浆事件,主要峰值集中于-250 Ma、-240 Ma、-235 Ma和-225 Ma。
     4)中生代中期,中国东北地区已由古亚洲洋构造域转为古太平洋构造域控制,佳木斯地块与松嫩地块的碰撞拼合事件峰期为-190 Ma,受古太平洋板块低角度俯冲作用的影响,中国东北地区岩浆活动逐渐由东部大陆边缘向西部内陆迁移,岩浆事件峰值年龄由东部松嫩与佳木斯地块拼合带区域的-190 Ma到西北部额尔古纳和兴安地块的-160 Ma逐渐年轻。洋壳的低角度俯冲可能导致复合块体下部软流圈地幔上涌,产生大量新生地壳。中生代晚期,古太平洋板块俯冲方向改变,区域构造背景由挤压加厚转换为伸展减薄,挤压加厚的岩石圈地幔重力失稳发生拆沉,并导致软流圈上涌,熔融的软流圈地幔产生大量新生地壳。
     5)分别基于锆石的U-Pb年龄、Hf同位素二阶段模式年龄TDM2、由εHf(t)值划分的U-Pb年龄和模式年龄组合,以及新、老地壳物质的简单二单元混合模型可以得到不同的地壳生长曲线。由U-Pb年龄绘制的曲线主要反映了流域内岩浆活动期次随时间的累积分布;而模式年龄却由于锆石源区的岩浆混合作用而难以解释;由εHf(t)值区分锆石的新、老地壳来源可进一步反映新生地壳的产生时间,该模式显示中-古元古代(1.2-2.2 Ga)和显生宙(100-500Ma)是中国东北地区新生地壳产生的重要时期;混合模型区分了各点Hf同位素数据中新、老地壳物质所占的贡献,可能会更真实的反映新生地壳的生长,但由于本文中缺少氧同位素数据对新生地壳来源的制约,该曲线尚不完善,但相比由εHf(t)值区分锆石的新、老地壳来源绘制的地壳生长曲线,该模型更突显了中国东北地区太古宙和元古宙期间大陆地壳的幕式生长模式。
Northeastern China (NE China) is an eastern part of the Central Asian Orogenic Belt (CAOB). It is generally believed that the growth of continental crust was largely achieved in the Precambrian time and that little new crust has been added during the Phanerozoic. However, significant productions of juvenile crust in the CAOB have been demonstrated. NE China has probably undergone two stages of tectonic evolution related to the closure of the Paleo-Asian Ocean in the Paleozoic, and the subduction of Paleo-Pacific Ocean in the Mesozoic-Cenozoic.
     Clastic sediments and sedimentary rocks, are representative samples of the continental crust derived from large areas, and are ideal for studies of formation, evolution, and chemical composition of the continental crust. Detrital zircons from younger sedimentary, or in modern river sediments, may record crustal material that has not been preserved or is no longer exposed.
     River basin of Nen River, Songhua River, Heilongjiang River, Ussuri River and their tributaries, including Hailar River, Huma River and Hulan River cover the most part of tectonic units (Erguna and Xing'an blocks in the northwest, Songnen block in the middle, Jiamusi blocks in the Southeast) of the NE China. In order to characterize the crustal growth and evolution process of the NE China,1761 concordant detrital zircons in thirteen sand samples from the above mentioned rivers were measured for U-Pb age by excimer laser-ablation ICPMS.1381 zircons from them were measured for Hf isotopic compositions by excimer laser-ablation multi collector ICP-MS.
     The main understanding of this study made the following:
     1) In complicated tectonic background, the river catchment flows over several tectonic units inevitably and result in the complicated source of detrital zircons and fallacy of research. There are significant-2.5 Ga age signatures in all samples from the main stream of the Songhua River and its south headstream, the Second Songhua River. However, there is no large scale-2.5 Ga crystalline basement in NE China. The Second Songhua River drains from the northern part of North China Craton (NCC), and bring a mass of zircons from there.-2.5 Ga is one of the characteristic age of NCC.
     In this study, a series of samples from upper, middle and lower reaches of the main tributaries and the main stream of the Songhua River system were measured for U-Pb age. The proportions of-2.5 Ga in detrital zircon age spectrum decrease with increasing drainage areas represented by sampling points along the Songhua River. The proportion of-2.5 Ga zircons shows significant negative correlation with logarithmic values of the drainage area. Such trends are also significant for detrital zircon source with different times and spaces in NE China. These trends are caused by limited supply of exotic zircons. The exotic zircons deposited during downstram migration but without further supply, and that the increasing drainage area also import other age composition of zircons, it reduce the proportion of exotic zircons further in the lower reaches.
     In contrast, the native zircons, real from the main magmatic events in basin, will be supplied by surrounding source ceaselessly, and keep their proportions drifting within a certain range, which means that various sampling points distributing in the basin are all representative for the characteristic magmatic events within the basin.
     2) The-1.8 Ga crystalline basement might exist in the middle (northeastern Songliao basin), the west (west of the middle-northern Great Xing'an Range) and the east (eastern Jiamusi massif) of present NE China. It might originate from reworked Archean crust (2.5-3.2 Ga). A few scattered Meso- and Neo-proterozoic magmatic zircons exist in the internal parts of NE China. A significant production of juvenile crust is demonstrated by two-stage depleted mantle model ages in this period. Voluminous of this crust was reworked in successive tectonic movements in Phanerozoic. In the complicated tectonic background of NE China, it should be pointed out that the source of zircons may undergo several rework and contamination. The model ages, at this time, may record the results mixed by juvenile and reworked or recycled crustal material. The geological significance represented by zircon Hf model ages must be combined with oxygen isotope composition for further restrictions.
     3) In Paleozoic, the region between Siberian Craton and NCC undergone complicated orogenic movement. Masses of juvenile crust suggested by positiveεHf(t) values were yielded during collision and assemblage between microcontinental blocks and the process of amalgamation between the two cratons. The collision might induce partial melting of asthenospheric or lithospheric mantle, and yielded juvenile crust. Some older crust was reworked during collision and assemblage events, and melted crust and mantle were mixed in various degree.
     The peak time of collision between the Erguna and Xing'an blocks is -495 Ma. Magmatic events occured at 450-460 Ma and -440 Ma by the collision belt reflected the extensional tectonic environment in post-collision process. The collision also induced the -480 Ma magmatic event happened in centre of present Songnen blocks.
     Subduction of the oceanic plate between the Songnen and Xing'an blocks induced magmatic events with peak time of-355 Ma. The assemblage of the two blocks might occur between 350 Ma to 300 Ma. The asthenospheric mantle upwelled subsequently and yielded juvenile crust. At post-orogenic extensional tectonic environment, magmatic events occured between 300 Ma to 280 Ma, all in Xing'an blocks.
     The collision between NCC and the assembled block at margin of Siberian Craton occurred in Late Paleozoic. The asthenospheric mantle under the assembled block upwelled and yielded juvenile crust. The post-orogenic tectonic environment induced several magmatic events in different time and space in NE China. The age peak values were-250 Ma,-240 Ma,-235 Ma and-225 Ma.
     4) In Middle Mesozoic, the NE China had been controlled by Paleo-Pacific Ocean tectonic domain. The peak time of collision between the Jiamusi and Songnen blocks is -190 Ma. Controlled by the subduction of the Paleo-Pacific plate, magmatism migrated westward from the continental margin to intracontinent, and the peak time of magmatic events became younger from-190 Ma at assemblage belt between the Jiamusi and Songnen blocks to-160 Ma at Erguna and Xing'an blocks. The subduction of oceanic plate induced the upwelling of the asthenospheric mantle, and subsequent productions of juvenile crust. In Late Mesozoic, the delamination of thickened crust also induced the upwelling of the asthenospheric mantle, and the mantle melted partially and yielded juvenile crust.
     5) Based on zircon U-Pb ages, Hf isotope two-stage model ages (TDM2), U-Pb age and model age groups distinguished by theεHf(t) value, as well as juvenile and older crustal material end-number mixing model, four crustal growth curves were drawn. Curve drawn by U-Pb ages reflected the cumulative distribution of magmatic activity with age. The model ages are difficult to explain for complex magma source. The distinguished juvenile and older crustal source by theεHf(t) value can be used for further reflecting the growth of juvenile crust. This model showed the Meso- and Paleo-proterozoic (1.2-2.2 Ga) and the Phanerozoic (100-500 Ma) are two of the most important periods of juvenile crustal additions in Northeastern China. The mixing model calculated the proportion of juvenile and older crustal material in each Hf isotope datum, and may be more realistic to reflect the growth of juvenile crust. For lack of oxygen isotopes to restrict the source of juvenile crust, the crustal growth curve based on mixing model was incomplete in this study. Compared to the curve drawn byεHf(t) value distinguishing, the curve by mixing model highlighted the episodic crustal growth of Northeastern China in Archean and Proterozoic.
引文
[1]Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust. Journal of the Geological Society,2010,167:1-20.
    [2]Hawkesworth C J, Kemp A I S. Evolution of the continental crust. Nature,2006,443:811-817.
    [3]Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature,2006,439:580-583.
    [4]Condie K C, Belousova E, Griffin W L, et al. Granitoid events in space and time:Constraints from igneous and detrital zircon age spectra. Gondwana Research,2009,15(3-4):228-242.
    [5]Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution. Blackwell Scientific, Oxford,1985:311 p.
    [6]Goldschmidt V M. Grundlagen der quantitativen Geochemie. Fortschritte der Mineralogie, Kirstllographie und Petrographie,1933,17:112.
    [7]Hu Z C, Gao S. Upper crustal abundances of trace elements:a revision and update. Chemical Geology,2008,253:205-221.
    [8]Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng, and Jixian sections, Loess Plateau of China:eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology,2001,178:71-94.
    [9]McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems,2001,2:Article No. 2000GC000109.
    [10]Rudnick R L, Gao S. Composition of the continental crust. In:R.L. Rudnick (Editor), The Crust,2003, pp.1-70.
    [11]Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Reviews of Geophysics,1995,33:241-265.
    [12]Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica Et Cosmochimica Acta,1983,47: 1897-1905.
    [13]Liu X M, Gao S, Diwu C R, et al. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science,2008,308(4):421-468.
    [14]Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature,1999,399:252-255.
    [15]Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch Central China:provenance and tectonic correlations. Earth and Planetary Science Letters,1997,152:217-231.
    [16]Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience,2008:doi:10.1038/ngeo259.
    [17]Condie K C, Beyer E, Belousova E, et al. U-Pb isotopic ages and Hf isotopic composition of single zircons:The search for juvenile Precambrian continental crust. Precambrian Research, 2005,139(1-2):42-100.
    [18]Coogan L A, Hinton R W. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology,2006,34:633-636.
    [19]DeCelles P G, Gehrels G E, Quade J, et al. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science,2000,288:497-499.
    [20]Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004,131: 231-282.
    [21]Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology,2006,226:144-162.
    [22]Iizuka T, Hirata T, Komiya T, et al. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand:Implications for reworking and growth of continental crust. Geology, 2005,33(6):485-488.
    [231 Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology,2002,182:605-618.
    [24]Maas R, Kinny P D, Williams I S, et al. The Earth's oldest known crust:a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta,1992,56:1281-1300.
    [25]Mojzsis S J, Harrison T M, Pidgeon R T. Oxygenisotope evidence from ancient zircons for liquid water at the Earth's surface 4300 Myr ago. Nature,2001,409:178-181.
    [26]Nutman A P. On the scarcity of > 3900 Ma detrital zircons in >= 3500 Ma metasediments. Precambrian Research,2001,105(2-4):93-114.
    [27]Pietranik A B, Hawkesworth C J, Storey C D, et al. Episodic, mafic crust formation from 4.5 to 2.8 Ga:new evidence from detrital zircons, Slave craton, Canada. Geology,2008,36: 875-876.
    [28]Veevers J J, Saeed A, Belousova E A, et al:U-Pb ages and source composition by Hf-isotope and traceelement analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Science Reviews,2005,68:245-279.
    [29]Vervoort J D, Patchett P J. Behaviour of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica Et Cosmochimica Acta, 1996,60:3717-3733.
    [30]Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:sedimentary record of collision of the North and South China blocks. Geology,2006,34:97-100.
    [31]Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature,2001,409:175-178.
    [32]Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters,2006,252:56-71.
    [33]Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research,2006,146:16-34.
    [34]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science,2005,308:841-844.
    [35]Farry J M, Watson E B. New thermodynamic model and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology,2007, 154:429-437.
    [36]Cawood P A, Nemchin A A, Strachan R, et al. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society,2007,164:257-275.
    [37]Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics,2000,328:89-113.
    [38]Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated Ⅰ-type granites in NE China (Ⅱ): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos,2003, 67(3-4):191-204.
    [39]Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated Ⅰ-type granites in NE China (Ⅰ): geochronology and petrogenesis. Lithos,2003,66(3-4):241-273.
    [40]Wu F-y, Sun D-y, Li H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis. Chemical Geology,2002,187(1-2):143-173.
    [41]Zhang J-H, Ge W-C, Wu F-Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos,2008,102(1-2):138-157.
    [42]Finch R J, Hanchar J M. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry,2003,53:1-25.
    [43]Harley S L, Kelly N M. Zircon Tiny but Timely. Elements,2007,3:13-18.
    [44]Poitrasson F, Hanchar J M, Schaltegger U. The Current State of Accessory Mineral Research. Chemical Geology,2002,191:3-24.
    [45]Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in-situ U-Pb zircon geochronology. Chemical Geology,2004,211:331-335.
    [46]Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock. Science,2001, 293:683-687.
    [47]Cherniak D J, Watson E B. Pb diffusion in zircon. Chemical Geology,2001,172:1999-2017.
    [48]Cherniak D J, Watson E B. Diffusion in Zircon. Reviews in Mineralogy and Geochemistry, 2003,53:112-139.
    [49]Mezger K, Krogstad E J. Interpretation of Discordant U-Pb Zircon Ages:An Elevation. Journal of Metamorphic Geology,1997,15:127-140.
    [50]Chen D G, Li B X, Xia Q K, et al. An evaluation of zircon U-Pb dating for metamorphic rocks and comments on zircon ages of Dabie orogen. Acta Petrologica Sinica,2001,17:129-138.
    [51]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49:1589-1604.
    [52]Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry,2003,53:469-500.
    [53]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and traceelement compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247:100-118.
    [54]谢烈文,张艳斌,张辉煌,et al.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报,2008,53:220-228.
    [55]Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry,2003,53:27-62.
    [56]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircons. Journal of Metamorphic Geology,2000,18:423-439.
    [57]Hidaka H, Shimizu H, Adachi M. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: Evidence for an Archean provenance. Chemical Geology,2002,187:278-293.
    [58]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:Geochronology of the Ivren Zone (Southern Alps). Contributions to Mineralogy and Petrology,1999,134:380-404.
    [59]Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,2002,143: 602-622.
    [60]吴福元,李献华,郑永飞,et al. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23:185-220.
    [61]Yang J, Gao S, Yuan H L, et al. Detrital zircon ages of Hanjiang River:Constraints on evolution of northern Yangtze craton, South China. Journal of China University of Geosciences,2007,18(3):210-222.
    [62]Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chemical Geology,1995,122:241-247.
    [63]Griffin W L, Pearson N J, Belousova E, et al. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,2000,64:133-147.
    [64]Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,2008,23: 1093-1101.
    [65]Valley J W, Chiarenzelli J R, McLelland J M. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters,1994,126:187-206
    [66]King E M, Barrie C T, Valley J W. Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario:magmatic values are preserved in zircon. Geology, 1997.23:1079-1082.
    [67]Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors,2004,146:369-394.
    [68]Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin:Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters,2003,210(1-2):259-268.
    [69]Allen M B, Morton A C, Fanning C M, et al. Zircon age constraints on sediment provenance in the Caspian region. Journal of the Geological Society,2006,163:647-655.
    [70]Seranne M, Bruguier O, Moussavou M. U-Pb single zircon grain dating of Present fluvial and Cenozoic aeolian sediments from Gabon:consequences on sediment provenance, reworking, and erosion processes on the equatorial West African margin. Bulletin De La Societe Geologique De France,2008,179(1):29-40.
    [71]Morton A, Fanning M, Milner P. Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sedimentary Geology,2008, 210(1-2):61-85.
    [72]Chen C H, Lu H Y, Lin W, et al. Thermal event records in SE China coastal areas:Constraints from monazite ages of beach sands from two sides of the Taiwan strait. Chemical Geology, 2006,231(1-2):118-134.
    [73]Griffin W L, Belousova E A, Walters S G, et al. Archaean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia:U-Pb And Hf-isotope studies of detrital zircons. Australian Journal of Earth Sciences,2006,53(1):125-149.
    [74]Bodet F, Scharer U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers Geochimica et Cosmochimica Acta,2000, 64(12):2067-2091
    [75]Belousova E A, Preiss W V, Schwarz M P, et al. Tectonic affinities of the Houghton Inlier, South Australia:U-Pb and Hf-isotope data from zircons in modern stream sediments. Australian Journal of Earth Sciences,2006,53(6):971-989.
    [76]Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia:Age, assembly and reworking of two terranes. Precambrian Research,2007,158(1-2):51-78.
    [77]Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2009,73(9):2660-2673.
    [78]Iizuka T, Komiya T, Rino S, et al. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica Et Cosmochimica Acta,2010, In Press, Corrected Proof.
    [79]Wang C Y, Campbell I H, Allen C M, et al. Rate of growth of the preserved North American continental crust:Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica Et Cosmochimica Acta,2009,73(3):712-728.
    [80]Salnikova E B, Sergeev S A, Kotov A B, et al. U-Pb Zircon Dating of Granulite Metamorphism in the Sludyanskiy Complex, Eastern Siberia. Gondwana Research,1998,1: 195-205.
    [81]Salnikova E B, Kozakov I K, Kotov A B, et al. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt:loss of a Precambrian microcontinent. Precambrian Research,2001,110:143-164.
    [82]葛文春,吴福元,周长勇,et al.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报,2005,50(12):1239-1247.
    [83]武广,孙丰月,赵财胜,et al.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,2005,50(20):2278-2288.
    [84]苗来成,刘敦一,张福勤,et al.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报,2007,52(5):591-601.
    [85]Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc2007, 16(1):156-172.
    [86]张兴洲,杨宝俊,吴福元,et al.中国兴蒙-吉黑地区岩石圈结构基本特征.中国地质,2006,33(4):816-823.
    [87]葛文春,李献华,林强,et al.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义.地质科学,2001,36(2):176-183.
    [88]葛文春,吴福元,周长勇,et al.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报,2005,21(3):749-762.
    [89]葛文春,吴福元,周长勇,et al.兴蒙造山带东段斑岩型Cu、Mo矿床成矿时代及其地球动力学意义.科学通报,2007,52(20):2407-2417.
    [90]Wang F, Zhou X H, Zhang L C, et al. Late mesozoic volcanism in the Great Xing'an range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters,2006,251(1-2):179-198.
    [91]Zhang J H, Ge W C, Wu F Y, et al. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance:zircon U-Pb age and Hf isotopic constraints. Acta Geologica Sinica,2006,80:801-812.
    [92]张玉涛,张连昌,英基丰,et al.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义.岩石学报,2006,22:2733-2742.
    [93]隋振民,葛文春,吴福元,et al.大兴安岭东北部侏罗纪花岗质岩石的锆石年龄、地球化学特征及成因.岩石学报,2007,23(2):461-480.
    [94]葛文春,隋振民,吴福元,et al.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报,2007,23(2):423-440.
    [95]苗来成,范蔚茗,张福勤,et al.小兴安岭西北部新开岭-科洛杂岩锆石年代学研究及其意义.科学通报,2003,48:2315-2323.
    [96]余和中,李玉文,韩守华,et al.松辽盆地古生代构造演化.大地构造与成矿学,2001,25(4):389-396.
    [97]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质,1998,18(3):45-54.
    [98]吴福元,孙德有,李惠民,et al.松辽盆地基底岩石的锆石U-Pb年龄.科学通报,2000,45(6):656-660.
    [99]Wu F Y, Sun D Y, Li H M, et al. The nature of basement beneath the Songliao Basin in NE China:Geochemical and isotopic constraints. Physics and Chemistry of the Earth (Part A), 2001,26(9-10):793-803.
    [100]高福红,许文良,杨德彬,et al.松辽盆地南部基底花岗质岩石锆石LA-ICP-MS U-Pb定年对盆地基底形成时代的制约.中国科学D辑:地球科学,2007,37(3):331-335.
    [101]裴福萍,许文良,杨德彬,et al.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义.科学通报,2006,51(24):2881-2887.
    [102]王兴光,王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义.地质科技情报,2007,26:23-27.
    [103]王颖,张福勤,张大伟,et al.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义.科学通报,2006,51(15):1811-1816.
    [104]章凤奇,陈汉林,董传万,et al.松辽盆地北部存在前寒武纪基底的证据.中国地质,2008,35(3):421-428.
    [105]Wang P J, Liu W Z, Wang S X, et al.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao Basin, NE China:constrains on stratigraphy and basin dynamics. International Journal of Earth Sciences,2002,91:331-340.
    [106]丁日新,舒萍,纪学雁,et al.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义.吉林大学学报(地球科学版),2007,37(3):525-530.
    [107]高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征.吉林大学硕士学位论文,2008.
    [108]章凤奇.松辽盆地北部早白垩世火山事件与地球动力学.浙江大学博士论文,2007.
    [109]章凤奇,陈汉林,董传万,et al.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨.地层学杂志,2008,32(1):15-20.
    [110]裴福萍,许文良,杨德彬,et al.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约.地球科学-中国地质大学学报,2008,33(5):603-617.
    [111]余星,肖骏,陈汉林,et al.松辽盆地基底显生宙岩浆热事件:来自营城组火山岩捕获锆石的SHRIMP定年证据.岩石学报,2008,24(5):1123-1130.
    [112]张吉衡.大兴安岭中生代火山岩年代学及地球化学研究.中国地质大学博士学位论文,2009.
    [113]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化.吉林大学博士学位论文,2007.
    [114]宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义.地球学报,1997,18:306-312.
    [115]Wilde S A, Zhang X Z, Wu F Y. Extension of a newly identified 500 Ma metamorphic terrane in North East China:further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics,2000,328:115-130.
    [116]Wilde S A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石年龄证据及全球大陆再造意义.地球化学,2001,30(1):35-50.
    [117]Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research,2003,122: 311-327.
    [118]朱永峰,孙世华,毛骞,et al.内蒙古锡林格勒杂岩的地球化学研究:从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录.高校地质学报,2004,10(3):343-355.
    [119]施光海,苗来成,张福勤,et al.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,2004,49(4):384-389.
    [120]Chen Y, Zhang Y, Graham D, et al. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos,2007,96(1-2):108-126.
    [121]Wu F Y, Sun D Y, Jahn B M, et al. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences,2004,23:731-744.
    [122]孙德有,吴福元,张艳斌,et al.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据.吉林大学学报(地球科学版),2004,34(2):174-181.
    [123]张艳斌,吴福元,翟明国,et al.和龙地块的构造属性与华北地台北缘东段边界.中国科学D辑:地球科学,2004,34(9):795-806.
    [124]Robinson P T, Zhou M F, Hu X F, et al. Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences,1999,17: 423-442.
    [125]孙德有,吴福元,李惠民,et al.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报,2000,45(20):2217-2222.
    [126]周长勇,吴福元,葛文春,et al.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因.岩石学报,2005,21(3):763-775.
    [127]Chen B, Jahn B M, Wilde S, et al. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications. Tectonophysics,2000,328:157-182.
    [128]石玉若,刘敦一,张旗,et al.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学.地质学报,2004,78(6):789-799.
    [129]石玉若,刘敦一,张旗,et al.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究.岩石学报,2005,21(1):143-150.
    [130]石玉若,刘敦一,张旗,et al.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义.地质通报,2007,26(2):183-189.
    [131]陈志广,张连昌,周新华,et al.满洲里新右旗火山岩剖面年代学和地球化学特征.岩石学报,2006,22(12):2971-2986.
    [132]孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定.地球学 报,2004,25(2):213-218.
    [133]孟恩,许文良,杨德彬,et al.佳木斯地块东缘及东南缘二叠纪火山作用:锆石U-Pb年代学、地球化学及其构造意义.科学通报,2008,53(8):956-965.
    [134]孙德有,吴福元,高山,et al.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘(中国地质大学,北京;北京大学),2005,12(2):263-275.
    [135]赵越,杨振宇,马醒华.东亚大地构造的重要转折.地质科学,1994,29(2):105-119.
    [136]李超文.吉林省东南部晚中生代火山作用及其深部过程研究.中国科学院广州地球化学研究所博士学位论文,2006.
    [137]李锦轶.中国东北及邻区若干地质构造问题的新认识.地质论评,1998,44:339-347.
    [138]李承东,张福勤,苗来成,et al.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征.岩石学报,2007,23(4):767-776.
    [139]Jia D C, Hu R Z, Lu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences,2004,23(2): 211-219.
    [140]Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences,2009,34(3):392-402.
    [141]Zhang Y B, Fuyuan W, A. W S, et al. Zircon U-Pb ages and tectonic implications of Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China. Island Arc,2004,13(4): 484-505.
    [142]Zhang L C, Zhou X H, Ying J F, et al. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China:Implications for their origin and mantle source characteristics. Chemical Geology,2008,256:12-23.
    [143]纪伟强.吉黑东部中生代晚期火山岩的年代学和地球化学.吉林大学硕士学位论文,2007.
    [144]李超文,郭锋,范蔚茗,et al.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义.中国科学D辑:地球科学,2007,37(3):319-330.
    [145]裴福萍,许文良,杨德彬,et al.吉林通化赤柏松辉长岩锆石SHRIMP U-Pb定年及其地质意义.中国科学D辑:地球科学,2005,35(5):393-398.
    [146]隋振民,葛文春,吴福元,et al.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因.世界地质,2006,25(3):229-236.
    [147]张彦龙,葛文春,柳小明,et al.大兴安岭新林镇岩体的同位素特征及其地质意义.吉林大学学报(地球科学版),2008,38(2):177-186.
    [148]隋振民,葛文春,吴福元,et al.大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义.吉林大学学报(地球科学版),2009,39(5):849-856.
    [149]Jahn B-m, Wu F, Capdevila R, et al. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 2001,59(4):171-198.
    [150]吴福元,林强,葛文春,et al.张广才岭新华屯岩体的形成时代与成因研究.岩石矿物学杂志,1998,17(3):226-234.
    [151]孙德有,吴福元,林强,et al.张广才岭燕山早期白石山岩体成因与壳幔相互作用.岩石学报,2001,17(2):227-235.
    [152]Wu F Y, Wilde S A, Zhang G L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences,2004,23:781-797.
    [153]张广良,吴福元.吉林红旗岭地区造山后镁铁-超镁铁岩体的年代测定及其意义.地震地质,2005,27(4):600-608.
    [154]章凤奇,程晓敢,陈汉林,et al.松辽盆地东南缘晚中生代火山事件的锆石年代学与地球化学制约.岩石学报,2009,25(1):39-54.
    [155]程瑞玉,吴福元,葛文春,et al.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构 造演化.岩石学报,2006,22(2):353-376.
    [156]高阳,张招崇,杨铁铮.黑龙江宝山一带海西晚期强过铝花岗岩地质地球化学及岩石成因.岩石矿物学杂志,2009,28(5):433-449.
    [157]梁细荣,李献华,刘永康,et al.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U-Pb定年.地球化学,2000,29:1-5.
    [158]Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect:SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology,2004,206: 115-140.
    [159]刘海臣,朱炳泉,张展霞.LAM-ICPMS法用于单颗粒锆石定年研究.科学通报,1998,43(10):1103-1106
    [160]Li X H, Liang X R, Sun M, et al. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chemical Geology,2001,175:209-219.
    [161]袁洪林,吴福元,高山,et al.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,2003,48:1511-1520.
    [162]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research,2004,28:353-370.
    [163]Paul B, Woodhead J D, Hergt J M. Improved in situ isotope analysis of low-Pb materials using LA-MC-ICP-MS with parallel ion counter and Faraday detection. Journal of Analytical Atomic Spectrometry,2005,20:1350-1357.
    [164]柳小明,高山,第五春荣,et al.单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定.科学通报,2007,52:228-235.
    [165]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,2010,51:537-571.
    [166]Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 2010:in press.
    [167]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257: 34-43.
    [168]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research,1995,19(1-23):1.
    [169]Ludwig K R. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. California, Berkeley:Berkeley Geochronology Center,2003.
    [170]Slama J, Kosler J, Condon D J, et al. Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,2008,249:1-35.
    [171]Blacka L P, Kamob S L, Allenc C M, et al. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology,2003,200:155-170.
    [172]Vermeesch P. How many grains are needed for a provenance study? Earth and Planetary Science Letters,2004,224:441-451.
    [173]李锦轶,和政军,莫申国,et al.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报,2004,23(2):120-129.
    [174]李锦轶,莫申国,和政军,et al.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘(中国地质大学,北京),2004,11(3):157-168.
    [175]秦克章,李惠民,李伟实,et al.内蒙古乌奴格吐山斑岩铜钥矿床的成岩、成矿时代.地质论评,1999,45(2):180-185.
    [176]秦克章,田中亮吏,李伟实,et al.满洲里地区印支期花岗岩Rb-Sr等时线年代学证据.岩石矿物学杂志,1998,17(3):235-240.
    [177]Guo F, Fan W M, Li C W, et al. Early Cretaceous highly positive epsilon(Nd) felsic volcanic rocks from the Hinggan Mountains, NE China:origin and implications for Phanerozoic crustal growth. International Journal of Earth Sciences,2009,98(6):1395-1411.
    [178]许文良,孙德有,尹秀英.大兴安岭海西期造山带的演化:来自花岗质岩石的证据.长春科技大学学报,1999,29(4):319-323.
    [179]张吉衡.大兴安岭地区中生代火山岩的年代学格架.吉林大学硕士学位论文,2006.
    [180]张连昌,英基丰,陈志广,et al.大兴安岭南段三叠纪基性火山岩时代与构造环境.岩石学报,2008,24(4):911-920.
    [181]路孝平,吴福元,郭敬辉,et al.通化地区古元古代晚期花岗质岩浆作用与地壳演化.岩石学报,2005,21(3):721-736.
    [182]路孝平,吴福元,张艳斌,et al.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景.岩石学报,2004,20(3):382-392.
    [183]葛文春,吴福元,孙德有,et al.吉林省南部辉石花岗岩类的构造意义.吉林地质,1997,16(2):51-55.
    [184]颉颃强,张福勤,苗来成,et al.吉林中部漂河川镁铁-超镁铁质杂岩带的特征对华北东北缘构造带性质和演化的约束.地质通报,2007,26(7):810-822.
    [185]路孝平,吴福元,赵成弼,et al.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系.科学通报,2003,48(8):843-849.
    [186]吴福元,葛文春,孙德有,et al.吉林南部太古代花岗岩Sm-Nd、Rb-Sr同位素年龄测定.岩石学报,1997,13(4):499-506.
    [187]Liu W, Siebel W, Li X-j, et al. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China:constraints on basaltic underplating. Chemical Geology,2005,219(1-4):5-35.
    [188]郭锋,范蔚茗,李超文,et al.早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据.中国科学D辑:地球科学,2009,39(5):569-579.
    [189]罗镇宽,关康,苗来成.吉林夹皮沟金矿带岩脉和蚀变绢云母定年及金矿成矿时代.现代地质,2002,16(1):19-25.
    [190]施光海,刘敦一,张福勤,et al.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报,2003,48(20):2187-2192.
    [191]吴华英,张连昌,周新华,et al.大兴安岭中段晚中生代安山岩年代学和地球化学特征及成因分析.岩石学报,2008,24(6):1339-1352.
    [192]张辉煌,徐义刚,葛文春,et al.吉林伊通-大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义.岩石学报,2006,22(6):1579-1596.
    [193]张艳斌,吴福元,李惠民,et al.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄.岩石学报,2002,18(4):475-481.
    [194]张艳斌,吴福元,孙德有,et al.延边“早海西期”棉田花岗岩和仲坪紫苏辉石闪长岩的单颗粒锆石U-Pb定年.地质论评,2002,48(4):424-429.
    [195]许文良,裴福萍,高福红,et al.伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义.地球科学-中国地质大学学报,2008,33(2):145-150.
    [196]陈雷,孙景贵,陈行时,et al.张广才岭东侧英城子金矿区花岗岩锆石U-Pb年龄及地质意义.地质学报,2009,83(9):1327-1334.
    [197]纪伟强,许文良,杨德彬,et al.黑龙江东部中生代火山岩的形成时代.矿物岩石地球化学通报,2005,24:120.
    [198]颉颃强,苗来成,陈福坤,et al.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约.地质通报,2008,27(12):2127-2137.
    [199]颉颃强,张福勤,苗来成,et al.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义.岩石学报,2008,24(6):1237-1250.
    [200]李锦轶,牛宝贵,宋彪.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义.地球学报,1995,16(3):331-333.
    [201]Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China craton:implications for Paleoproterozoic tectonic evolution. Precambrian Research,2000,103:55-88.
    [202]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research,2001,107:45-73.
    [203]Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research,2005,136:177-202.
    [204]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature,2004,432:892-897.
    [205]孙德有,铃木和博,吴福元,et al.吉林省南部荒沟山地区中生代花岗岩CHIME定年.地球化学,2005,34(4):305-314.
    [206]Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. Island Arc,1997,6:121-142.
    [207]Hirata T, Iizuka T, Orihashi Y. Reduction of mercury background on ICP-mass spectrometry for in situ U-Pb age determinations of zircon samples. Journal of Analytical Atomic Spectrometry,2005,20:696-701.
    [208]Storey C D, Jeffries T E, Smith M. Common leadcorrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite. Chemical Geology,2006,227:37-52.
    [209]Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 2004,209:121-135.
    [210]DeBievre P, Taylor P D P. Table of the isotopic composition of the elements.. International Journal of Mass Spectrometry, Ion Process,1993,123:149.
    [211]Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry,2002,17:1567-1574.
    [212]Iizuka T, Hirata T. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology,2005,220: 121-137.
    [213]Bichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148:243-258.
    [214]Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology,2007, 153:177-190.
    [215]Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology,2005,221: 127-156.
    [216]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,1999,15:181-189.
    [217]吴福元,葛文春,孙德有,et al.中国东部岩石圈减薄研究中的几个问题.地学前缘(中国地质大学,北京),2003,10(3):51-59.
    [218]吴福元,孙德有,张广良.任向文论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379-388.
    [219]Sagong H, Kwon S T. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics,2005,24:(2004TC001720).
    [220]Wu F Y, Han R H, Yang J H, et al. Initial constraints on granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology,2007,238:232-248.
    [221]Huang J L, Zhao D P. High-resolution mantle tomography of China and Surrounding regions. Journal of Geophysical Research,2006,111:B09305.
    [222]Tang Q S, Chen L. Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh Wave Dispersion Analysis. Tectonophysics,2008,455:43-52.
    [223]Rudnick R L, Gao S. Composition of the Continental Crust. In:H.D. Holland and K.K. Turekian (Editors), The Crust, Treatise on Geochemistry Elsevier,2003, pp.1-64.
    [224]Liu Y S, Hu Z C, Gao S, et al. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257: 34-43.
    [225]Gagnon J E, Fryer B J, Samson I M, et al. Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. Journal of Analytical Atomic Spectrometry,2008,23:1529-1537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700