用户名: 密码: 验证码:
磁悬浮转子系统建模技术及其虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮转子系统是利用主动或被动磁力轴承对转子进行支承的系统,具有一般传统支承技术所无法比拟的优点;虚拟样机技术是能够减少设计失误、提高设计效率的先进的产品开发方法;本文利用虚拟样机技术,对磁悬浮转子系统虚拟样机及建模技术进行研究,旨在提高磁悬浮转子系统的设计质量、减少开发时间、降低开发成本。本文的主要研究工作包括:
     分析了虚拟样机技术和磁悬浮转子系统设计技术的国内外研究现状、发展趋势和存在的问题,在此基础上,提出了基于ADAMS的磁悬浮转子系统多领域协同仿真模型的开发流程。对磁悬浮转子系统虚拟样机设计系统的技术特点、体系结构和功能进行了研究;分析了磁悬浮转子系统虚拟样机开发的支撑技术,包括系统参数化建模技术、多领域系统模型集成技术、ADAMS二次开发技术以及底层支撑技术等。
     对磁悬浮转子系统虚拟样机中主动磁力轴承和永磁轴承的设计进行了研究。开发了主动磁力轴承结构设计和性能仿真等功能模块,给出了实验验证方法。针对永磁轴承的设计,分析了永磁轴承的基本结构及相关的磁场分析和计算方法,重点研究了多环轴向充磁的永磁轴承的建模,用有限元法对永磁径向轴承的承载力进行了计算与分析,并将分析结果应用于小型风力发电机的转子支承系统的设计中,完成了实验样机,与传统风力发电机的对比实验表明,该设计降低了风力发电机样机的启动阻力矩,验证了研究结果的可行性及有效性。
     分析了复杂产品的多学科领域建模方法,提出了基于接口的磁悬浮转子系统多学科领域建模方法。分析了建模过程中ADAMS软件与其他相关软件的协同。通过ADAMS建立了磁悬浮转子机械系统模型,利用MATLAB/Simulink设计控制策略,将控制与机械系统进行集成,完成了五自由度磁悬浮转子系统机电统一虚拟样机的建模,对协同仿真及虚拟传感器的测量问题进行了分析。
     根据多柔体系统动力学建模理论以及ADAMS的柔性体建模方法,建立了柔性磁悬浮转子系统的ADAMS、MATLAB和ANSYS联合仿真模型。
     对基础运动的磁悬浮转子系统建模进行了分析,针对车载飞轮电池中的磁悬浮转子系统建立了动力学模型。
Magnetic Suspension Rotor (MSR) system supported by active or passive magnetic bearings has more advantages than the traditional one supported by conventional bearings. Virtual Prototyping (VP) is an advanced design method to reduce the design mistake and improve design efficiency. To improve design quality and reduce the developing time and cost of MSR system, modeling techniques and virtual prototype of MSR systems are researched. The main work and achievements are as follows:
     According to the characteristics of MSR system, the multi-disciplinary collaborative simulation model's development process of the system based on ADAMS is developed. The architecture, technique and function of MSR system's VP design system are studied. Then, diversified techniques of the system are researched, which are parametric modeling, multi-disciplinary field modeling, secondary development techniques of ADAMS, and so on.
     The active and permanent magnetic bearing design of the VP is researched. The structure design and performance simulation modules of the magnetic bearing are developed. For the design of the permanent magnetic bearings, the structure and the analysis method of magnetic field are studied, especially, the modeling of multi-ring axial magnetized permanent magnetic bearings. The bearing capacity is calculated through FEM (Finite Element Method). The method is applied into the design the rotor-support system of small wind power generator. The experimental prototype is completed. This design reduces the wind generator starting resistance torque, in compare to the conventional wind power generator. The result shows that the method is feasible and effective.
     The modeling methods of multi-disciplinary field are introduced. The modeling of multi-disciplinary field of MSR system and collaboration technologies between ADAMS and other software are researched. Based on the mechanical & electrical modeling of the magnetic rotor system, the model of mechanical system and the control strategy are established by using ADAMS and Matlab/Simulink. By integrating the control strategy and mechanical system, the model of unified VP of the five-DOF MSR system is developed. The co-simulation and the sensor's measuring problems are discussed.
     According to the flexible multi-body system modeling theory and ADAMS flexible modeling method, the ADMAS, MATLAB and ANSYS combined simulation model of the flexible MSR system is established.
     The dynamic model of the MSR system in consideration of base motion which is applied into vehicle flywheel battery is built.
引文
[1]Schweitzer G, Traxler A, Bleuler H.主动磁轴承基础、性能及应用[M].虞烈,袁崇军译.北京:新时代出版社,1997
    [2]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
    [3]Roberto Bassani. Levitation of passive magnetic bearings and systems[J]. Tribology International, Vol.39(9):963-970.2006
    [4]A. Hamler, V. Gorican, B. Stumberger, M. Jesenik, M. Trlep. Passive magnetic bearing[J]. Journal of Magnetism and Magnetic Materials. Vol.272-276, Part 3, May 2004:2379-2380.
    [5]马光同,王家素,王素玉,等.高温超导块材与永磁体组成的混合磁悬浮[J].稀有金属材料与工程,2008,37(S4):342-345.
    [6]Lyndon Scott Stephens,David L.Trumper,eds. Proceeding of the 9th International Symposium on Magnetic Bearings[C]. Lexington:Bearings and Seals Laboratory, University of Kentucky, Kentucky,2004
    [7]Proceedings of the 10th International Symposium on Magnetic Bearings. ETH Zurich, Switzerland:2006.
    [8]Proceedings of the 11th International Symposium on Magnetic Bearings. Nara, Japan: 2008.
    [9]Dussaux M. The Industrial Applications of the Active Magnetic Bearings Technology[C]. In:Proc.of the 2nd International Symposium on Magnetic Bearings. Tokyo:University of Tokyo,1990.33-38.
    [10]Hannes Bleuler.20 years ISMB:Then, Now, Future[C]. In:Proc.of the 1 lth International Symposium on Magnetic Bearings. Nara, Japan:2008.1-3.
    [11]胡业发.机床主轴可控磁力轴承的结构设计分析与研究[D].哈尔滨工业大学,1988.
    [12]沈钺,虞烈.电磁轴承及控制系统的设计原理及参数选择[J].机械工程学报,2000,369(11):62-64
    [13]祁庆中.电磁轴承磨床电主轴的实验和研究[D].清华大学,1997
    [14]赵雷,张德魁,杨作兴等.电磁轴承最优刚度与系统结构参数关系的研究[J].机械工程学报,2000,36(12):62-64
    [15]谷会东,赵鸿宾,赵雷.电磁轴承功率放大器参数设计[J].机械工程学报,2006,42(2):208-211
    [16]袁崇军,王海英,谢友柏.电磁轴承转子稳定性分析与控制器参数设计[J].西安交通大学学报.1996,30(3):7-14,.
    [17]曹建荣,虞烈,谢友柏.主动磁悬浮轴承的解耦控制[J].西安交通大学学报.1999,33(12):44-48
    [18]谢振宇,丘大谋,虞烈,谢友柏.电磁轴承最优控制参数的分析[J].中国机械工程,1999,10(7):729-732
    [19]徐龙祥,张金淼,余同正.H∞控制理论在磁悬浮轴承系统中的应用研究[J],中国机械工程,2006,17(10):1060-1064
    [20]王晓琳,邓智泉,严仰光.一种新型的五自由度磁悬浮电机[J].南京航空航天大学学报,2004,36(2):210-214
    [21]徐龙祥,周波.磁浮多电航空发动机的研究现状及关键技术[J].航空动力学报,2003,18(1):51-59
    [22]胡业发.基于结构动态特性的磁悬浮主轴系统的研究[D].武汉:武汉理工大学,2001
    [23]胡业发,余先涛,郭顺生等.基于结构动态特性的磁悬浮转子控制系统的设计[J].机械工程学报,2000,36(2):15-17
    [24]王晓光,胡业发,江征风,周祖德.小轴向尺寸磁悬浮转子系统机械耦合的研究[J].中国机械工程,2003,14(10):814-817
    [25]汪希平,陈学军.陀螺效应对电磁轴承系统设计的影响[J].机械工程学报,2001,37(4):48-52
    [26]李云钢,常文森,龙志强.EMS磁浮列车的轨道共振和悬浮控制系统设计[J],国防科技大学学报,1999,21(2):93-96
    [27]吴刚,张育林,刘昆.两轴型混合磁悬浮轴承变结构控制与仿真研究[J].系统仿真学报.2006,18(1):251-253
    [28]陈棣湘,潘孟春,罗飞路,田武刚,胡媛媛.高速磁悬浮列车电磁场的模拟计算[J].国防科技大学学报,2003,25(4):76-78
    [29]Boehm J.,Gerber R.,Kiley N. Sensors for Magnetic Bearings[J]. IEEE Transactions on Magnetics.1993.29(6):2962-2964
    [30]丛华.磁悬浮轴承电涡流传感器研究与设计[D].清华大学,1999.
    [31]http://www.mecos.ch/
    [32]http://www.mmsb.com/
    [33]http://www.esscirc.org/
    [34]J.Lottin,P.Mouille and J.C.ponsart.Nonlinear Control of Active Magnetic Bearings [C]. In:Proc.of the 4th International Symposium on Magnetic Bearings. Zurich,1994:101-106.
    [35]Bei Lu, Heeju Choi, Gregory D. Buckner, Kari Tammi. Linear parameter varying techniques for control of a magnetic bearing system[J]. Control Engineering Practice, Volume 16(10):1161-1172.October 2008
    [36]Zhang, Hai. Robust LPV control of a magnetic bearing suspension system with a convex optimization approach[D]. University of Virginia.2003
    [37]Choi, Heeju. Intelligent control using confidence interval networks:Applications to robust control of active magnetic bearings[D]. North Carolina State University.2005
    [38]Gibson, Nathan Scott. H-infinity control of active magnetic bearings:An intelligent uncertainty modeling approach.by[D]. North Carolina State University.2004
    [39]DeSmidt, Hans A. Robust adaptive active vibration control of alloy and flexible matrix composite rotorcraft drivelines via magnetic bearings:Theory and experiment [D]. Pennsylvania State University.2005
    [40]Thomas R. Grochmal, Alan F. Lynch. Experimental comparison of nonlinear tracking controllers for active magnetic bearings[J].Control Engineering Practice,2007,15(1): 95-107
    [41]K.Y. Zhu, Y. Xiao, Acharya U. Rajendra. Optimal control of the magnetic bearings for a flywheel energy storage system[JJ. Mechatronics,2009,19(8):1221-1235
    [42]杨作兴,赵雷,赵鸿宾.磁轴承MPW开关功率放大器的研究[J].电力电子技术,2000,5:238-250
    [43]谢振宇,邱大谋,虞烈.电磁轴承的线圈绕制与功率放大器型式[J].机械科学与技术,1999,4:6150-6160
    [44]T.Matsubara, K. Tanaka, S.Murakami. Development of Hybrid Magnetic Spindle Synchronous Control with Rotation[C]. In:Proc.of the 5th International Symposium on Magnetic Bearings,Kanazawa,Japan,1996.143-146
    [45]Jagu S. Rao, R. Tiwari. Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms[J]. Mechatronics,2009,19(6):945-964
    [46]M. A. Pichot, J. P. Kajs, B. R. Murphy, et al. Active Magnetic Bearings for Energy Storage Systems for Combat Vehicles[J]. IEEE Transactions on magnetics,2001,37 (1):318-323.
    [47]The NASA Flywheel Battery Project. NASA Environment and Energy Conference,2004
    [48]Flywheel Energy Storage. Federal Energy Management Program USA,2004
    [49]Kenzo NONAMI, Budi RACHMANTO, Kenta KURIYAMA, et al. AMB Flywheel-Powered Electric Vehicle[C]. In:Proc. of the 11th International Symposium on Magnetic Bearings. Nara, Japan:2008.232-237
    [50]http://www.ibagchina.com/
    [51]http://www.flying-science.com/
    [52]H. Ming Chen, Peter A. Chapman, Arthur C. Donahue, et al. A MAGNETICALLY LEVITATED BLOOD PUMP USING LCR CIRCUITS[C]. In:Proc. of the 11th International Symposium on Magnetic Bearings. Nara, Japan:2008.212-216
    [53]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001(13):114-117
    [54]Chace, M.A.; Sheth, P.N. ADAPTATION OF COMPUTER TECHNIQUES TO THE DESIGN OF MECHANICAL DYNAMIC MACHINERY. American Society of Mechanical Engineers (Paper), n 73-DET-58,1973
    [55]Bayazitoglu, Y.O.; Chace, M.A. METHODS FOR AUTOMATED DYNAMIC ANALYSIS OF DISCRETE MECHANICAL SYSTEMS[J].Journal of Applied Mechanics, Transactions ASME, v 40 Ser E, n 3, p 809-811, Sep 1973
    [56]Orlandea, N.; Chace, M.A. SIMULATION OF A VEHICLE SUSPENSION WITH THE ADAMS COMPUTER PROGRAM. SAE Preprints, n 770053, Feb 28--Mar 4 1977
    [57]Haug, E.J.; Arora, J.S.; Feng, T.T. SENSITIVITY ANALYSIS AND OPTIMIZATION OF STRUCTURES FOR DYNAMIC RESPONSE. American Society of Mechanical Engineers (Paper), n 77-DET-40, Sep 26-301977
    [58]Haug,E.J.;Wehage,R.A.;Mani,N.K. DESIGN SENSITIVITY ANALYSIS OF LARGE-SCALE CONSTRAINED DYNAMIC MECHANICAL SYSTEMS[J]. Journal of Mechanisms, Transmissions, and Automation in Design, v 106, n 2, p 156-162, Jun 1984
    [59]Bae, D. S.; Hwang, R.S.; Haug, E.J. Recursive formulation for real-time dynamic simulation. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v 14, p 499-508,1988
    [60]Pan, W.; Haug, E.J. Flexible multibody dynamic simulation using optimal lumped inertia matrices[J]. Computer Methods in Applied Mechanics and Engineering, v 173, n 1, p 189-200,1999
    [61]Roberson, R.E.COMMENT ON SPANNING TREES FOR MULTIBODY DYNAMIC SIMULATION[J]. Computer Methods in Applied Mechanics and Engineering, v 48, n 2, p 237-238, Mar 1985
    [62]Blajer, W.; Schiehlen, W.; Schirm, W. Dynamic analysis of constrained multibody systems using inverse kinematics[J]. Mechanism and Machine Theory, v 28, n 3, p 397-405, May 1993
    [63]Djerassi, S.; Kane, T.R. EQUATIONS OF MOTION GOVERNING THE DEPLOYMENT OF A FLEXIBLE LINKAGE FROM A SPACECRAFT. Journal of the Astronautical Sciences, v 33, n 4, p 417-428, Oct-Dec 1985
    [64]Ponnaganti, V.; Kane, T.R.; White, J.W.DYNAMICS OF HEAD-DISK CONTACT/IMPACT IN MAGNETIC RECORDING. IEEE Transactions on Magnetics, v MAG-23, n 5, p 3435-3437, Sep 1987
    [65]Kane, T.R. SOLUTION OF KINEMATICAL DIFFERENTIAL EQUATIONS FOR A RIGID BODY. Journal of Applied Mechanics, Transactions ASME, v 40 Ser E, n 1, p 109-113, Mar 1973
    [66]Huston, R.L.Multibody dynamics. Modeling and analysis methods. Applied Mechanics Reviews, v 44, n 3, p 109, Mar 1991
    [67]Amirouche, F.M.L.; Huston, R.L. DYNAMICS OF LARGE CONSTRAINED FLEXIBLE STRUCTURES. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v 110, n 1, p 78-83, Mar 1988
    [68]刘延柱,洪嘉振,杨海兴.多刚体动力学[M].北京:高等教育出版社,1989
    [69]张纪元,沈守范.计算机构学[M].北京:国防工业出版社,1996
    [70]张旭.机械系统虚拟样机技术的研究[D].北京:中国农业大学,1999
    [71]S. H. Choi, A. M. M. Chan. A virtual prototyping system for rapid product development[J]. Computer-Aided Design,2004,36(5),401-412
    [72]Heng Li, Ting Huang, C.W. Kong, et al. Integrating design and construction through virtual prototyping[J]. Automation in Construction,2008,17(8):915-922
    [73]S. H. Choi, H. H. Cheung. A multi-material virtual prototyping system[J]. Computer Aided Design,2005,37(1):123-136
    [74]Ting Huang, C.W. Kong, H.L. Guo, et al. A virtual prototyping system for simulating construction processes[J].Automation in Construction,2007,16(5):576-585
    [75]T. Deviprasad, T. Kesavadas. Virtual prototyping of assembly components using process modeling[J]. Journal of Manufacturing Systems,2003,22(1):16-27
    [76]S.H. Choi, H.H. Cheung. A versatile virtual prototyping system for rapid product development[J].Computers in Industry,2008,59(5):477-488
    [77]S.H. Choi, H.H. Cheung. Multi-material virtual prototyping for product development and biomedical engineering[J].Computers in Industry,2007,58(5):438-452
    [78]http://www.mscsoftware.com/Solutions/Success-Stories/Detail.aspx?storyid=47
    [79]李思昆,郭阳,杨强等.协作虚拟样机与协同设计方法[J].系统仿真学报,2001,13(1):124-127
    [80]苟凌怡,熊光楞,杨流辉等.支持虚拟样机的协同仿真平台关键技术研究[J].系统仿真学报,2002,14(3):348-355
    [81]邸彦强,李伯虎,柴旭东,等.多学科虚拟样机协同建模与仿真平台及其关键技术研究[J].计算机集成制造系统,2005,11(7):901-908
    [82]李妮,刘杰,蔡志浩,彭晓源.复杂系统虚拟样机协同建模/仿真支撑平台[J].计算机集成制造系统,2004,10(10):1207-1211
    [83]韩虎,曾庆良,孙成通,王成龙.复杂产品虚拟样机协同开发平台设计与实现[J].计算机工程,2009,35(1):260-265
    [84]王克明,熊光楞.协同仿真平台中模型信息管理技术研究[J].系统仿真学报,2004,16(8):1801-1804
    [85]周克栋.复杂机械的虚拟样机技术.南京理工大学[M].2002
    [86]吴群波,肖田元,韩向利,张心忠.剑杆织机运动机构的实时仿真与运动分析[J],机械科学与技术.2001,20(5):559-661
    [87]胡顺绪.基于虚拟样机技术的新型剑杆织机研究[D].华东理工大学,2006
    [88]洪华杰,李杰,李淑娟.基于虚拟样机的磁悬浮列车运动学仿真分析[J].机车电传动,2005(2):40-44
    [89]解红雨,张为华,王锦荷等.固体火箭发动机虚拟样机集成设计环境[J].固体火箭技术2006,29(1):15-18
    [90]陈娟.磁悬浮转子集成设计系统研究[D].武汉理工大学.2007
    [91]夏平畴.永磁机构[M].北京工业大学出版社,2000,12.
    [92]谭庆昌,修世超,刘明洁等.永磁向心轴承承载力与刚度的计算[J].摩擦学学报,1994,4(14):337-344
    [93]Ravaud, R.; Lemarquand, G.; Lemarquand, V. Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets. Part 1:Axial Magnetization. Magnetics, IEEE Transactions on. Vol.45(7):2996-3002.2009
    [94]Sanz S.,Garcia-Tabares L.,Moya I.,et al. Evaluation of Magnetic Forces in Permanent Magnets. Applied Superconductivity, IEEE Transactions on. Volume:2010,PP(99):1-5
    [95]Yonnet JP. Permanent magnet bearings and couplings[J]. IEEE Transactions on Magnetics.1981,17(1):1169-1173
    [96]Bard Paden, Nelson Groom, James F.Antaki. Design Formulas for Permanent-Magnet Bearings[J]. Journal of Mechanical Design.2003,125:734-738
    [97]田录林.永磁轴承和导轨磁力解析模型的研究[D].西安:西安理工大学,2008
    [98]赵克中.磁耦合传动装置的理论与设计[M].化学工业出版社.北京,2009
    [99]熊光愣,郭斌,陈晓波,等.协同仿真与虚拟样机技术[M].清华大学出版社,北京,2004
    [100]Alexander Siemers, Dag Fritzson, Iakov Nakhimovski. General meta-model based co-simulations applied to mechanical systems[J]. Simulation Modelling Practice and Theory,2009,17(4):612-624
    [101]D.M. Carrillo, J.A. Lopez-Orozco, J.M. Giron-Sierra. Simulation environment for the investigation of automatized cooperation of marine crafts[J]. Mathematics and Computers in Simulation,2008,79(4):947-954
    [102]王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究[J].机械工程学报,2003,39(4):1-5
    [103]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [104]祝效华,廖伟志,黄永安,等.CAD/CAE/CFD/VPT/SC软件协作技术[M].中国水利水电出版社,北京,2004
    [105]温熙森,邱静,陶俊勇编著.机电系统分析动力学及其应用[M].北京:科学出版社,2003
    [106]Hiroyuki Fujiwara, Koji Ebina, et al. Control for Flexible Rotors Supported by Active Magnetic Bearings[C].In:Proc. of the 8th International Symposium on Magnetic Bearings. Mito, Japan:2002.145-150
    [107]Hideo Shida, Mitsuhiro Ichihara, Kazuto Seto et al. Motion and Vibration Control of Flexible Rotor Using Magnetic Bearings[C].In:Proc. of the 8th International Symposium on Magnetic Bearings. Mito, Japan:2002.381-386
    [108]Ming-Jyi Jang, Chieh-Li Chen, Yi-Ming Tsao. Sliding mode control for active magnetic bearing system with flexible rotor[J]. Journal of the Franklin Institute,2005, 342(4):401-419
    [109]Schouteur Adrien, Sapin Julien, Kluyskens Virginie, et al. Study and Control of a Magnetic Bearing for Flywheel Energy Storage System. Power Engineering,2007: 134-139
    [110]Seong-Yeol Yoo, CH Park, SK Choi, et al. Flexible Rotor Modeling for a Large Capacity Flywheel Energy Storage System. Proceedings of the 11th International Symposium on Magnetic Bearings, Nara, Japan,2008.238-242
    [111]K. Murakami, M. Komori, H. Mitsuda, A. Inoue. Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB)[J]. Cryogenics,2007,47(4) 272-277
    [112]张薇薇.基础运动对磁悬浮转子系统动力学特性的影响研究[D].武汉理工大学,2009
    [113]Paul P Acamnley, Barrie C Mecrow, James S Burdess, et al. Design principles for a flywheel energy store for road vehicles[J]. In IEEE Transactions on Industry Applications,1996,32(6):1402-1408
    [114]J. VanMierlo, P. Van den Bossche, G.Maggetto.Models of energy sources for EV and HEV:fuel cells, batteries, ultracapacitors, flywheels and engine-generators[J]. Journal of Power Sources,2004,128(1):76-89
    [115]Pullen,K.R., Ellis, C.W.H. Kinetic energy storage for vehicles[C].Hybrid Vehicle Conference, IET The Institution of Engineering and Technology,2006:91-108
    [116]C.S Hearn, M.M.Flynn, M.C.Lewis, et al. Low Cost Flywheel Energy Storage for a Fuel Cell Powered Transit Bus[C]. Vehicle Power and Propulsion Conference,2007: 829-836
    [117]B.T. Murphy, D. A. Bresie, and J. H. Beno.BEARING LOADS IN A VEHICULAR FLYWHEEL BATTERY. SAE Special Publications, v1243, Feb,1997, Electric and Hybrid Vehicle Design Studies, Proceedings of the 1997 International Congress and Exposition, Feb 24-27 1997, Detroit, Michigan, USA
    [118]Bjorn Bolund, Hans Bernhoff, Mats Leijon. Flywheel energy and power storage systems[J].Renewable and Sustainable Energy Reviews,2007,11(2):235-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700