用户名: 密码: 验证码:
microRNA在TNF-α诱导的人脐静脉内皮细胞凋亡中作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的(1)建立原代人脐静脉内皮细胞(HUVEC)体外培养方法并探讨TNF-α对HUVEC凋亡程度的影响,筛选出TNF-αt诱导凋亡的最佳作用浓度和时间;(2)探讨TNF-α诱导凋亡的HUVEC microRNA的差异表达谱,验证在TNF-α诱导HUVEC凋亡中显著差异表达的microRNA;(3)根据筛选结果,探讨microRNA-23a在HUVEC凋亡中的调节功能。(4)研究microRNA-23a在TNF-α诱导的内皮细胞凋亡中的作用机制,为对抗内皮细胞凋亡的治疗途径提供理论和实验依据。
     研究方法实验分为四个部分:(1)原代细胞培养参照文献报道方法并加以改进,通过形态学观察和免疫细胞化学法对细胞进行鉴定;然后用不同浓度TNF-α(0、1ng/ml、10ng/ml、40ng/ml、100ng/ml)处理内皮细胞不同时间(0、12h、24h、48h),通过电镜,Hoechst 33258荧光染色,TUNEL法,实时荧光定量PCR及western blot检测HUVEC的凋亡程度,确定TNF-α能够诱导内皮细胞凋亡的最佳作用浓度和时间;(2)采用μParafloTM microRNA芯片技术,将4例空白对照标本与4例TNF-α(10ng/ml,24h)诱导凋亡的HUVEC标本的microRNA进行比对,根据统计学的有关方法分析芯片实验数据,筛选出共同差异表达的候选microRNA;并采用荧光实时定量PCR的方法,分别验证这些候选microRNA的差异表达情况。将芯片和荧光实时定量PCR两种方法结论一致的候选microRNA确定为有意义的共同差异表达microRNA;(3)采用microRNA-23a抑制剂(LNA-anti-miR-23a,50nmol/L)和microRNA-23a前体(Pre-miR-23a,50nmol/L)瞬时转染HUVEC使内皮细胞抑制或过表达microRNA-23a,设立空白对照组,用实时荧光定量PCR法检测转染效率。随后用TNF-α干预转染后的HUVEC,通过Hoechst 33258荧光染色,TUNEL染色,实时荧光定量PCR及western blot等方法检测不同转染组与对照组HUVEC的凋亡程度改变;(4)使用miRanda, picTar和Targetscan软件分析,结合文献查询和基因芯片研究结果,预测与凋亡相关的microRNA-23a的靶基因;用microRNA抑制剂转染HUVEC使microRNA-23a表达水平下调,并采用实时荧光定量PCR法和Western blot法观察其是否引起靶基因表达增多。
     研究结果(1)经相差显微镜观察以及Ⅷ因子染色证实培养的细胞(97.5%)为HUVEC,台盼蓝染色显示95%以上细胞存活良好;TNF-α呈浓度依赖性和时间依赖性引起HUVEC凋亡;(2)TNF-α(10ng/ml)处理HUVEC 24h后,芯片结果示microRNA表达谱有明显变化,其中有12个microRNA表达上调,9个microRNA表达下调;实时荧光定量PCR结果证实miRNA-23a, miRNA-126表达显著减少;(3)Hoechst 33258荧光染色,TUNEL染色,实时荧光定量PCR及western blot结果显示:microRNA-23a抑制剂使TNF-α诱导的HUVEC凋亡数量明显增多;microRNA-23a过表达使得TNF-α诱导的HUVEC凋亡数量明显减少。(4)经过生物信息学分析预测APAF-1, caspase-7和STK4可能是microR-23a的3个候选靶基因,并通过实时荧光定量PCR和Western blot证实microRNA-23a抑制剂组该3个靶基因的表达有显著性升高。
     研究结论(1)本研究在成功建立HUVEC体外培养方法的基础上,建立了TNF-α诱导HUVEC凋亡的模型,确立TNF-α能够诱导内皮细胞凋亡的最佳作用浓度为10ng/ml,时间为24h;(2)运用microRNA芯片技术,首次发现TNF-α诱导凋亡的内皮细胞中microRNA-23a表达明显减少,microRNA-126表达也有明显下调。这为进一步研究microRNA在TNF-α引起的血管内皮疾病中的功能创造了条件。(3) microRNA-23a能明显抑制TNF-α介导的HUVEC凋亡,促进细胞生存,起保护样的作用。(4) microRNA-23a抑制TNF-α介导的HUVEC凋亡作用可能是通过转录后水平抑制其靶基因APAF-1、Caspase-7和STK4的表达而介导的。
Objective (1)To establish culturing technique of HUVECs in vitro. To investigate the effects of TNF-a on apoptosis of HUVECs and then to decide the optimal action time course and concentration; (2) To investigate the effects of TNF-a on the differential expression of microRNAs of HUVECs and to establish the relationship between HUVEC apoptosis and the expression of microRNAs; (3) To select predominantly differential expressed microRNAs of HUVECs after treatment of TNF-αand to investigate their effects on TNF-a induced apoptosis of HUVECs; (4) To investigate the action mechanism of microRNA-23a, so as to provide theoretical and experimental evidence for the elucidation of pathogenesis of apoptosis as well as development of the therapeutic strategies.
     Methods (1) HUVECs were cultured according to references with minor modifications. Endothelial cells were identified by both morpho-logy and immunochemistry response to factorⅧrelated antigen. We measured the extent of TNF-αinduced apoptosis in HUVECs at different concentrations (0,1,10,40,100ng/ml) by different time course (0,12h,24h,48h) by methods of Hoechst 33258 stain、TUNEL stain、qRT-PCR and western blot; (2) RNA was extracted from 4 negative control samples of HUVECs and 4 TNF-a treated samples, and small RNA (200bp) was isolated. Then we detected microRNA profiles in these samples by microRNA microarray (http://microrna.sanger.ac.uk SangermiRNA. May,2009). Meanwhile, we examined the expression of microRNA candidates in these samples by fluorescence based real-time quantitative PCR. Those microRNAs that were identified as differentially expressed by both microRNA microarray and qRT-PCR were considered as significant microRNAs; (3) HUVECs were transfected with LNA-anti-miR-23a (50 nmol/L)/Pre-miR-23a (50 nmol/L) and the transfectional efficacy were measured by qRT-PCR. Following the transfection, HUVECs were treated with TNF-a and the extent of apoptosis was detected by methods of Hoechst 33258 stain、TUNEL stain、qRT-PCR and western blot; (4) The mRNA levels of the potential target genes of microRNA-23a, such as APAF-1, Caspase-7 and STK4 were detected by qRT-PCR and the protein expression of which were examined by Western blot.
     Results (1) HUVECs present cobblestone-shaped and a positive immunochemistry reaction (97.5%). The TNF-a mediated increase in HUVEC apoptosis is in a time-dependent manner and a dose-dependent manner; (2) There are significant differential expressions of microRNAs after TNF-a treatment (p<0.05),12 microRNAs were up-regulated,9 microRNAs were down-regulated. Among them microRNA-23a and microRNA-126 were significantly down-regulated; (3) Pre-miR-23a at concentration of 50nmol/L decreased TNF-a-induced HUVEC apoptosis as determined by Hoechst stain, TUNEL stain, qRT-PCR and Western blot. In contrast, HUVEC apoptosis was increased after treatment with LNA-anti-miR-23a at concentration of 50nmol/L; (4) In LNA-anti-miR-23a transfected HUVECs, significant changes were noted in the mRNA expression levels of potential target genes APAF-1, Caspase-7 and STK4, and the protein expression levels of Western blot were significantly increased than that of control group.
     Conclusion (1) The culture of HUVECs was successful. TNF-αwhich is the core factor in systemic inflammatory response is responsible for tissue damage by inducing apoptosis of HUVEC. (2) Our results suggest that the expression of microRNA-23a is up-regulated in TNF-a-mediated apoptosis of HUVEC for the first time. And that of microRNA-126 is also up-regulated which will provide further verification of microRNAs'roles in apoptosis. (3) microRNA-23a had a protective effect against the TNF-a-induced HUVEC apoptosis. (4) APAF-1, Caspase-7 and STK4 may be the potential target genes that are involved in miR-23a-mediated protective effects on TNF-a-induced apoptosis on HUVECs
引文
[1]Cavaillon JM, Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. Endotoxin Res.2006; 12(3):151-70.
    [2]王静,乔万海.全身炎症反应综合征和多器官功能不全综合征的基因调控和治疗进展。中国全科医学,2006,(9):1634.
    [3]Buchman TG, Abello PA, Smith EH, et al. Induction of heat shock response lesds to apoptosis in endothelial cells previously exposed to endotoxin.Am J Physiol,1993,265:H165-170
    [4]Jaffe EA. Physiologic function of the normal endothelial cell. Vascular medicine.Boston:Little Brown,1992.346
    [5]梁华平,王正国,朱佩芳。针对SIRS的新型抗炎靶点及抗炎策略研究进展-从炎症介质到核因子kB。中国危重病急救医学2001:11(13):11
    [6]Chen PL, Easton A. Apoptotic phenotype alters the capacity of tumor necrosis factor-related apoptosis-inducing ligand to induce human vascular endothelial activation. J Vasc Res.2008; 45(2):111-22.
    [7]Couzin J. Breakthrough of the year. Small RNAs make big splash. Science, 2002,298:2296-7.
    [8]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell,1993, 75:843-854.
    [9]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotid let-7 RNA regulates developmental timing in Caenorhabditielegans [J]. Nature,2000,403 (6772): 901-906.
    [10]金由辛编著,核糖核酸与核糖核酸组学.北京,科学出版社,2005,106-134.
    [11]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs.Nat Genet,2005,37(7):766-770.
    [12]Berezikov E, Guryev V, van de BJ, et al. Phylogenetic shadowing and computa-tional identification of human microRNA genes. Cell,2005, 120(1):21-24.
    [13]Cheng AM, Byrom MW, Ford JS. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res,2005,33(4):1290-1297.
    [14]Cho SG, Choi EJ. Apoptotic signaling pathways:caspases and stress-activated protein kinases. J Biochem Mol Biol.2002,31; 35(1):24-7.
    [15]Caroppi P, Sinibaldi F, Fiorucci L, et al. Apoptosis and human diseases: mitochon-drion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem.2009,16(31):4058-65.
    [16]Okajima K, Harada N, Nakagawa T. Role of endothelial dysfunction in the development of severe sepsis-the pathomechanism, evaluation by laboratory tests and new therapeutic strategies.Rinsho Byori.2007 Mar; 55(3):280-9.
    [17]Bai X, Wang X, Xu Q. Endothelial damage and stem cell repair in atherosclerosis. Vascul Pharmacol.2010, Feb 13.
    [18]Matsuda N, Yamamoto S, Hatakeyama N, et al. Vascular endothelial dysfunction in septic shock. Nippon Yakurigaku Zasshi.2008 Feb; 131(2):96-100.
    [19]Nah DY, Rhee MY. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J.2009 Oct; 39(10):393-8.
    [20]Martin-Ventura JL, Munoz-Garcia B, Egido J, et al. Trail and vascular injury. Front Biosci.2007 May 1; 12:3656-67.
    [21]Holub M. Sepsis:infection and systemic inflammatory response. Cas Lek Cesk.2007; 146(2):109-14.
    [22]Cheung AL. Isolation and culture of human umbilical vein endothelial cells (HUVEC). Curr Protoc Microbiol.2007 Feb
    [23]Larrivee B, Karsan A. Isolation and culture of primary endothelial cells. Methods Mol Biol.2005; 290:315-29.
    [24]Fry G, Parsons T, Hoak J, et al. Properties of cultured endothelium from adult human vessels. Arteriosclerosis.1984 Jan-Feb; 4(1):4-13.
    [25]Munoz AC. Isolation and viability of human endothelial cells in tissue engineering. An R Acad Nac Med (Madr).2008; 125(2):267-76.
    [26]Lamszus K, Schmidt NO, Ergun S, et al. Isolation and culture of human neuromicrovascular endothelial cells for the study of angiogenesis in vitro. Neurosci Res.1999 Feb 1; 55(3):370-81.
    [27]Jaffe EA.Culture of human endothelial cell derived from unbilical veins. Clin Invest,1973,52:2754.
    [28]Mark Lee. Role of Homing Regulation in Coculturing Human Cord blood derived Mesenchymal Stem cells with CD34-Positive Cells from Umbilical Cord Blood. [J].Blood,2008;112:4747.
    [29]Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA.1994 Jan 19; 271 (3): 226-33.
    [30]Pittard AJ, Hawkins WJ, Webster NR. The role of the microcirculation in the multi-organ dysfunction syndrome. Clin Intensive Care.1994; 5(4):186-90.
    [31]Annette J, Christopher A, Leslie C. Apoptosis:molecular regulation of cell death. Eur J Biochem 1996; 236:1-4
    [32]Hohenberger P, Latz E, Kettelhack C, et al. Pentoxifyllin attenuates the systemic inflammatory response induces during isolated limb perfusion with recombinant human tumor necrosis factor alpha and melphalan. Ann Surg Oncol 2003; 10:562-568
    [33]Logan TF, Gooding WE, Whiteside TL, et al. Biological response modulation by tumor necrosis factor alpha (TNF alpha) in a phase Ib trial in cancer patients. J Immunother 1997; 20:387-398
    [34]Terlikowski S, Sulkowska M, Nowak HF. The effect of recombinant human tumor necrosis factor alpha on Ehrlich ascites tumor growth. J Environ Pathol Toxicol Oncol 2002; 21:87-92
    [35]Nooijen PT, Manusama ER, Eggermont AM, et al. Synergistic effects of TNF-a and melphalan in an isolated limb perfusion model of rat sarcoma:A histopathological immunohistochemical and electron microscopical study. Br J Cancer 1996; 74:1908-1915.
    [36]Giannoudis PV, Tosounidis TI, Kanakaris NK, et al. Quantification and characterisation of endothelial injury after trauma. Injury.2007 Dec; 38(12):1373-81.
    [37]Slowik A, Slevin M, Krupinski J, et al. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta 1 in serum of patients with acute ischemic stroke. Stroke.2000.31(8)2000
    [38]Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, et al. Lipopoly--saccharide induces disseminated endothelial apoptosis requiring ceramide generation. Journal of experimental medicine.1997(11)
    [39]Benhamou Y, Favre J, Musette P, et al. Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice. Crit Care Med.2009 May; 37(5):1724-8.
    [40]Fernandez R, Gonzalez S. Lipopolysaccharide-induced carotid body inflame-mation in cats:functional manifestations, histopathology and involvement of tumour necrosis factor-alpha. Exp Physiol.2008 Jul; 93(7):892-907.
    [41]Okajima K, Harada N, Nakagawa T. Role of endothelial dysfunction in the development of severe sepsis-the pathomechanism, evaluation by laboratory tests and new therapeutic strategies. Rinsho Byori.2007 Mar;55(3):280-9.
    [42]Li H, Liang J, Castrillon DH, et al. Fox04 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metaloproteinase 9 gene transcription. Mol Cell Biol 2007; 27:2676-2686
    [43]Peng LM, Liu JJ. A novel method for quantitative analysis of apoptosis. Lab Invest 1997; 77:547-555
    [44]Regueira T, Andresen M, Djafarzadeh S. Mitochondrial dysfunction during sepsis, impact and possible regulating role of hypoxia-inducible factor-1 alpha. Med Intensiva.2009 Nov;33(8):385-92.
    [45]Kiechle FL, Zhang X. Apoptosis:biochemical aspects and clinical implications. Clin Chim Acta.2002 Dec;326(1-2):27-45.
    [46]Tews DS, Goebel HH, Schneider I, et al. DNA fragmentation and expression of apoptosis-related proteins in experimentally denervated and reinnervated rat facial muscle. Neuropathol Appl Neurobiol 1997;23:141
    [47]Pesce M, De Felici M. Apoptosis in mouse primordial germ cells:a study by transmission and scanning electron microscope.Anat Embryol (Berl).1994 May; 189(5):435-40.
    [48]Higuchi R, Fockler C, Dolliger G, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions. Biotechnology (N Y).1993 Sep; 11 (9):1026-30.
    [49]Autret A, Martin SJ. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell.2009 Nov 13;36(3):355-63.
    [50]Jourdain A, Martinou JC. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol.2009 Oct;41(10):1884-9.
    [51]Kang MH, Reynolds CP. Bcl-2 inhibitors:targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res.2009 Feb 15; 15(4):1126-32.
    [52]Chopra M, Reuben JS, Sharma AC. Acute lung injury:apoptosis and signaling mechanisms. Exp Biol Med (Maywood).2009 Apr; 234(4):361-71.
    [53]Shoshan-Barmatz V, Keinan N, Zaid H. Uncovering the role of VDAC in the regulation of cell life and death.Shoshan-Barmatz V,2008 Jun;40(3):183-91.
    [54]Korsmeyer SJ, Yin XM, Oltvai ZN, et al. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta. 1995 May 24; 1271 (l):63-6.
    [55]Alegria-Schaffer A, Lodge A, Vattem K. Performing and optimizing Western blots with an emphasis on chemiluminescent detection.Methods Enzymol. 2009; 463:573-99.
    [56]Solary E.Apoptosis:molecular mechanisms. C R Seances Soc Biol Fil.1998; 192(6):1065-76.
    [57]Budihardjo I, Oliver H, Lutter M, et al.Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol.1999; 15:269-90.
    [58]Budd RC. Curr Opin Immunol. Activation-induced cell death.2001 Jun;13 (3):356-62.
    [59]Vaughan AT, Betti CJ, Villalobos MJ. Surviving apoptosis. Apoptosis.2002 Apr; 7(2):173-7.
    [60]Karran L, Dyer MJ. Proteolytic cleavage of molecules involved in cell death or survival pathways:a role in the control of apoptosis? Crit Rev Eukaryot Gene Expr.2001;11(4):269-77.
    [61]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer.1972 Aug; 26 (4):239-57.
    [62]Larrick JW, Wright SC.Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J.1990 Nov; 4(14):3215-23.
    [63]Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol.2003 Oct 15;66(8):1433-40.
    [64]Yoshizumi M, Fujita Y, Izawa Y, et al. Ebselen inhibits tumor necrosis factor-alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells.Exp Cell Res.2004 Jan 1; 292(1):1-10.
    [65]Basuroy S, Bhattacharya S, Leffler CW, et al. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol.2009 Mar; 296(3):C422-32.
    [66]Chandrasekar B, Mummidi S, Velente AJ, et al.The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt, c-Jun N-terminal kinase, and activator protein-1 signaling. J Biol Chem.2005 Jul 15; 280(28):26263-77.
    [67]Acquavella N, Quiroga MF, Wittig O, et al. Effect of simvastatin on endothelial cell apoptosis mediated by Fas and TNF-alpha. Cytokine.2010 Jan; 49(1):45-50.
    [68]Chao W, Shen Y, Li L, et al. Fas-associated death-domain protein inhibits TNF-alpha mediated NF-kappaB activation in cardiomyocytes. Am J Physiol Heart Circ Physiol.2005 Nov; 289(5):H2073-80.
    [69]Krown KA, Page MT, Nguyen C, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death.1996. J. Clin. Invest.98:2854.
    [70]Matsuda N, Yamamoto S, Teramae H, et al. Novel approach to prevent progressive apoptosis in septic shock. Nippon Yakurigaku Zasshi,2009 Oct; 134(4):198-201.
    [71]Ambros V. microRNAs:tiny regulators with great potential. Cell.2001 Dec 28; 107(7):823-6.
    [72]Banerjee D, Slack F. Control of developmental timing by small temporal RNAs:a paradigm for RNA-mediated regulation of gene expression. Bioessays.2002 Feb; 24(2):119-29. Review
    [73]Ke XS, Liu CM, Liu DP, et al. MicroRNAs:key participants in gene regulatory networks. Curr Opin Chem Biol.2003 Aug; 7(4):516-23.
    [74]Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science.2003 Jul 18; 301(5631):336-8.
    [75]Baehrecke EH. miRNAs:micro managers of programmed cell death. Curr Biol.2003 Jun 17; 13(12):R473-5.
    [76]Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Lett.2005 Oct 31; 579(26):5904-10.
    [77]Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 2005 Aug;15(4):410-5.
    [78]Lu J,Getz G, Miska EA, et al.MicroRNA expression profiles classify human cancers. Nature.2005 435,834-838.
    [79]Hartig JS, Grune I, Najafi-Shoushtari SH, et al. Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. J Am Chem Soc.2004 Jan 28; 126(3):722-3.
    [80]Angelika Kuehbacher, Carmen Urbich, Zeiher AM, et al. Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis. Circulation Research.2007; 101:59
    [81]Jason E. Fish, Massimo M, Mortan SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell.2008 August; 15(2):272-284.
    [82]Wang S, Aurora AB, Johnson BA, et al.The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell.2008 Aug; 15(2):261-71.
    [83]Tamia A Harris, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A.2008:5; 105(5):1516-1521.
    [84]Erik Larsson, Peder Fredlund Fuchs, Heldin J, et al. Discovery of microvascular miRNAs using public gene expression data:miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med.2009; 1(11): 108.
    [85]Xu CF, Yu CH, Li YM, et al. Regulation of hepatic MicroRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice. OMICS.2009 Dec; 13(6):513-20
    [86]Lin Z, Murtaza I, Wang K, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A.2009 Jul 21; 106(29):
    [87]Wang J, Xu R, Lin F, et al. MicroRNA:novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology. 2009;113(2):81-8.
    [88]Chhabra R, Adlakha YK, Hariharan M, et al. Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and-independent apoptosis in human embryonic kidney cells. PLoS One.2009 Jun 9; 4(6):e5848.
    [89]Huang S, He X, Ding J, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer.2008 Aug 15; 123(4):972-8.
    [90]Li Y, Zhu X, Gu J, Dong D, et al. Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci. 2010 Jan 7.
    [91]Hay BA, Huh JR, Guo M. The genetics of cell death:approaches, insights and opportunities in Drosophila. Nat Rev Genet.2004 Dec;5(12):911-22.
    [92]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function.Cell. 2004 Jan 23;116(2):281-97.
    [93]Berezikov E, Guryev V, van de belt J, et al. Phylogenetic shadowing and computational identifi-cation of human microRNA genes. Cell.2005 Jan 14;120(1):21-4.
    [94]Ambros V. microRNAs:tiny regulators with great potential.Cell.2001 Dec 28; 107(7):823-6.
    [95]Tomari Y, Zamore PD. Perspective:machines for RNAi. Genes Dev.2005 Mar 1;19(5):517-29.
    [96]Ambros V. The functions of animal microRNAs.nature.2004.431,350-355
    [97]Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003 Apr 29;13(9):790-5.
    [98]Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003 Apr 4; 113(1):25-36.
    [99]Stark A, Brennecke J, Russell RB, et al. Identification of Drosophila MicroRNA targets. PLoS Biol.2003 Dec; 1(3)
    [100]Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet.2004
    [101]Vernooy SY, Copeland J, Ghaboosi N, et al. Cell death regulation in Drosophila:conservation of mechanism and unique insights. J Cell Biol.2000 Jul 24;150(2):F69-76.
    [102]Parker BJ, Wen J. Predicting microRNA targets in time-series microarray experiments via functional data analysis. BMC Bioinformatics.2009 Jan
    30;10
    [103]Green DR, Evan GI. A matter of life and death. Cancer Cell.2002 Feb; 1(1):1 9-30.
    [104]Bonini NM, Fortini ME. Human neurodegenerative disease modeling using Drosophila. Annu Rev Neurosci.2003; 26:627-56.
    [105]Lewis BP, Burge CB, Bartel DP.Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005 Jan 14; 120(1):15-20.
    [106]Lai EC. Predicting and validating microRNA targets. Genome Biol.2004; 5(9):115.Epub
    [107]Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005 Apr 29; 280(17):16635-41.
    [108]Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA.2004 Mar; 10(3):544-50.
    [109]Braasch DA, Corey DR. Locked nucleic acid (LNA):fine-tuning the recognition of DNA and RNA. Chem Biol.2001 Jan;8(1):1-7.
    [110]Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res.2004 Dec 14; 32(22):e175.
    [111]Summerton J, Weller D.Morpholino antisense oligomers:design, preparation, and properties. Antisense Nucleic Acid Drug Dev.1997 Jun; 7(3):187-95.
    [112]John B, Enright AJ, Aravin A, et al.Human MicroRNA targets. PLoS Biol. 2004 Nov; 2(11):e363. Epub 2004 Oct 5.
    [113]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet.2005 May; 37(5):495-500.
    [114]Hsu PW, Lin LZ, Hsu SD, et al.ViTa:prediction of host microRNAs targets on viruses. Nucleic Acids Res.2007 Jan; 35
    [115]Le XF, Marcelli M, McWattets A, et al. Heregulin-induced apoptosis is mediated by down-regulation of Bcl-2 and activation of caspase-7 and is potentiated by impairment of protein kinase C alpha activity. Oncogene, 2001,20:8258-69.
    [116]Hengartner MO. Apoptosis; corralling the corpses. Cell.2001,104:325-8
    [117]Marcelli M, Cunningham GR, Haidacher SJ, et al. Caspace-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res,1998,58:76-83.
    [118]Thornberry NA, Lazebnik Y. Caspases; enemies within.Science,1998,281:1 312-6.
    [119]Wolf BB, Green DR. Suicidal tendencies; apoptotic cell death by caspase family proteinases. Biol Chem,1999,274:20049-52.
    [120]Cohen GM. Caspases:the executioners of apoptosis. Biochem J,1997, 326:1-16.
    [121]Creasy CL, Chernoff J.Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene.1995 Dec 29;167(1-2):303-6.
    [122]Creasy CL, Chernoff J. Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem.1995 Sep 15; 270(37):21695-700.
    [123]Creasy CL, Ambrose DM, Chernoff J. The Ste20-like protein kinase, Mstl, dimerizes and contains an inhibitory domain. J Biol Chem.1996 Aug 30; 271 (35):21049-53.
    [124]Graves JD, Draves KE, Gotoh Y, et al. Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mstl during CD95/Fas-induced apoptosis. J Biol Chem.2001 May 4; 276(18):14909-15.
    [125]Kakeya H, Onose R, Osada H, et al.Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res.1998 Nov 1;58(21):4888-94.
    [126]Lu ML, Sato M, Cao B, et al. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells. Proc Natl Acad Sci U S A.1996 Aug 20;93(17):8977-82.
    [127]Reszka AA, Halasy-Nagy JM, Masarachia PJ, et al. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mstl kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem.1999 Dec 3;274(49):34967-73.
    [128]Yamamoto S, Yang G, Zablocki D, et al. Activation of Mstl causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest.2003 May; 111(10):1463-74.
    [129]Lee KK, Ohyama T, Yajima N, et al. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. Biol Chem.2001 Jun 1; 276(22):19276-85. Epub 2001 Mar 7
    [130]James C. Walker, Richard M. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev.2009 May 1; 23(9):1046-1051
    [131]Guerin MB, McKernan DP, O'brein CJ, et al. Retinal ganglion cells:dying to survive. Int J Dev Biol.2006; 50(8):665-74.
    [132]Grifiths-Jones S, Saini HK, Van dogen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008 Jan; 36:D154-8.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell,1993, 75:843-854.
    [2]Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer. Res, 2005,65:3509-3512.
    [3]Gregory RI, Chendrimada TP, Cooch N, et al.Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.Cell,2005,123:631-640.
    [4]Couzin J. Breakthrough of The Year:Small RNAs make big splash. Science, 2002,298(5602):2296-2297.
    [5]Finnegan E.J., Matzkc M.A. The small RNA world.J.Cell Sci,2003.116: 4689-4693.
    [6]Pasqninelli A.E., Reinhart B. J., Slack F, et al.Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000,408 (6808):86-89.
    [7]Schmittgen. TD, Jiang J, Liu J, et al. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res,2004,32(4):e43.
    [8]Wu L, Fan J, Belasco G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A,2006,103:4034-4039.
    [9]Rane S, Sayed D, Abdellatif M, et al. MicroRNA with a macrofunction [J]. Cell Cycle,2007,6:1850-1855.
    [10]Sun M, Hurst LD, Carmichael GG, et al. Evidence for a preferential targeting of 3'-UTRs by cis-encoded antisense transcripts [J].Nucleic Acids Res,2005 33:5533-5543.
    [11]Liu J, Sanchez MAV, Hannon GJ, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies[J]. Nat Cell Biol,2005,7:719-723.
    [12]Kobayashi T, Chappell JD, Danthi P, et al. Gene-specific inhibition of reovirus replication by RNA interference [J]. J Virol,2006,80:9053-9063.
    [13]Taganov KD, Boldin MP, Chang KJ, et al. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci,2006,103:12481-12486.
    [14]Walker NI, Harmon BV, Gobe GC, Kerr JF. Patterns of cell death.Methods Achiev Exp Pathol.1988;13:18-54.
    [15]Lushnikov EF, Zagrebin VM.Cellular apoptosis:its morphology, biological role and the mechanisms of its development. Arkh Patol.1987;49(2):84-9.
    [16]Daniel PT. Dissecting the pathways to death. Leukemia,200014(12):2035-2044.
    [17]Zhou P, Chou J, Olear S, et al Solution structure of Apafl CARD and its interaction with caspase-9 CARD:a structure basis for specific adaptor/caspase interaction. Proc Natl Acad Sci,1999,96 (20):11266-11270.
    [18]Ashkenazia, Dixit VM. Death receptors:signaling and modulation. Science, 1998,281(5381):1305-1:308.
    [19]Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol.2003.66(8):1403-1408.
    [20]Muppidi JR, Tschopp J, Siegel RM. Life and death decisions; Secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity, 2004,21(4):461-465.
    [21]Xn B, Bnlfone-Paus S, Aoyama K, et al. Pole of Fas/Fas lligand-meliated apoptosis in murine contact hypersensitivity. Int Im munopharmacol,2003,3(7) 927-938.
    [22]Yew DT, Ping Li, Liu WK. Fas and activated caspasc 8 in normal, Alzheimer and multiple infarct brains. Neurosci Lett,2004,26,367(1):113-117.
    [23]Nakamura K, Bossy-Wetezel E, Burns K, et al. Changes in endoplasmic reticulium luminal environment affect cell sensitivity to apoptosis. JCellBiol, 2000,160(4):731-740.
    [24]Rao R V, Hermel E, Catro-obregons, et al. Coupling endoplasm is reticulum stress to the cell death program:mechanism of caspase activation. J BiolChem, 2001,276(36):33869-33874.
    [25]Mesaelin, Nakamurak, Zvaritch E, et al. Calreticulin is essential for cardiac development J CellBiol,1999,144(5):857-868.
    [26]Hipfner DR, Weigmann K, Cohen SM. The bantam gene regulates Drosophila growth. Genetics.2002;161:1527-1537.
    [27]Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003;113:25-36.
    [28]Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13:790-795.
    [29]Leaman D, Chen PY, Fak J, et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell. 2005; 121:1097-1108.
    [30]Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res.2005;33:1290-1297.
    [31]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006; 103:2257-2261.
    [32]Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev.2007;21:1025-1030.
    [33]Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745-752.
    [34]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.2005;65:6029-6033.
    [35]Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007;67:8994-9000.
    [36]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology.2007; 133:647-658.
    [37]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1(TPM1). J Biol Chem.2007;282:14328-14336.
    [38]Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem.2007
    [39]Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.2005;65:9628-9632.
    [40]Matsubara H, Takeuchi T, Nishikawa E, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene.2007;26:6099-6105.
    [41]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature.2005; 435:828-833.
    [42]Tagawa H, Karube K, Tsuzuki S, et al. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 2007;98:1482-1490.
    [43]Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet.2006;38:1060-1065.
    [44]O'Donnell KA, Wentzel EA, Zeller KI, et 1. c-Myc-regulated microRNAs modulate E2F1 expression. Nature.2005;435:839-843.
    [45]Sylvestre Y, De Guire V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem.2007;282:2135-2143.
    [46]Coller HA, Forman JJ, Legesse-Miller A. "Myc'ed messages":myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet.2007;3:146.
    [47]Stanelle J, Putzer BM. E2F1-induced apoptosis:turning killers into therapeutics. Trends Mol Med.2006; 12:177-185.
    [48]Yamasaki L, Jacks T, Bronson R,et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell.1996;85:537-548.
    [49]Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A.1994;91:3602-3606.
    [50]Lin WC, Lin FT, Nevins JR. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 2001; 15:1833-1844.
    [51]Nahle Z, Polakoff J, Davuluri RV, et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol.2002;4:859-864.
    [52]Hershko T, Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem.2004;279:8627-8634.
    [53]Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 2007;282:2130-2134.
    [54]Ko LJ, Prives C. p53:puzzle and paradigm. Genes Dev.1996; 10:1054-1072.
    [55]Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death Differ. 2006;13:1256-1259.
    [56]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature.2007;447:1130-1134.
    [57]Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell.2007;26:731-743.
    [58]Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle.2007;6:1586-1593.
    [59]Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol.2007; 17:1298-1307.
    [60]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99:15524-15529.
    [61]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005;102:13944-13949.
    [62]Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell.2005;17:393-403.
    [63]Cuconati A, Mukherjee C, Perez D, et al. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev. 2003;17:2922-2932.
    [64]Taniai M, Grambihler A, Higuchi H, et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res.2004;64:3517-3524.
    [65]Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene.2007;26:6133-6140.
    [66]Ovcharenko D, Kelnar K, Johnson C, et al. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res.2007;67:10782-10788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700