用户名: 密码: 验证码:
二维、三维超声检测胎儿胸腺及胎儿先心病与22q11微缺失关联性探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     胸腺是一个淋巴上皮器官,在胎儿时期T淋巴细胞在胸腺内发育,胸腺为T淋巴细胞的分化和选择提供环境,且胸腺随着胎儿生长发育而不断生长。多项研究表明,胸腺发育不全或者胸腺缺如与孕妇酗酒及多种疾病相关,例如22q11微缺失综合征,DiGeorge综合征,Ellis-van Creveld综合征,重症联合免疫缺陷,HIV感染,胎儿宫内发育迟缓,急性疾病以及绒毛膜羊膜炎等。
     胸腺发育不全或者胸腺缺如,需要与胎儿正常胸腺大小比较,才能确立其诊断。以往的研究都是应用二维超声观测胸腺,Felker等应用前后径(APD), Jeppesen和Cho等应用横径(MTD), Zalel等应用周长(TC)评估胎儿胸腺的大小。但从解剖学角度考虑,胸腺位于前上纵隔内,其前方是胸骨,后方和腹侧是心包和心脏发出的大血管,两侧是肺脏,而且胸腺是一个不规则、分叶状的实质性器官。应用二维超声测量单个切面获得的参数,反映胸腺的大小存在局限性。随着超声技术的日益发展,三维和四维超声也随之不断发展,并且开始在多个医学领域中应用,尤其是产前诊断。三维超声中虚拟器官计算机辅助分析(VOCAL)技术,可以把胸腺作为一个整体进行分析,并整合多个二维切面的信息,重建三维模型,克服了二维超声测量只能反映单一平面信息的局限性。
     在胚胎发育过程中,咽器内起源于神经嵴的间充质细胞生发了心脏圆锥动脉干血管的平滑肌,以及胸腺和甲状旁腺的结缔组织。咽器各个结构的发育对于环境和基因的改变非常敏感。任何能够影响咽器发育的因素,都可能导致胎儿胸腺发育不全或者胸腺缺如和先天性的心脏畸形。22q11微缺失综合征(22号染色体长臂第11.2位点微缺失)是一类临床表现丰富多变的基因异常疾病,其与180多种表型相关联,其中心脏畸形和胸腺发育不全或者缺失是最常见的临床表现。
     此外,多项研究表明22q11微缺失与先天性心脏病关系最为密切。而且在引起先天性心脏病的原因中,22q11微缺失是最常见原因之一。然而,在患有先天性心脏病的高危胎儿中,22q11微缺失综合征的产前发生率并不十分清楚。
     本研究旨在:
     1.建立胎儿胸腺二维各径线和三维体积的正常值,并比较胎儿胸腺的二维、三维超声测量。
     2.探讨胎儿先天性心脏病和胎儿胸腺发育不全或者缺如的关联性。
     3.探讨胎儿先天性心脏病和22q11微缺失的关联性。
     方法:
     于2006年6月至2007年11月,应用GE公司Voluson 730彩色多普勒高分辨率超声诊断系统,二维腹部探头频率为4-6MHz,测量347例正常胎儿的胸腺周长(TC组)和28例先天性心脏病并尸解证实的胎儿(CHD组Ⅰ)的胸腺周长。
     于2007年12月至2010年2月,应用Philips公司IU22彩色多普勒高分辨率超声诊断系统,三维腹部探头频率为6MHz和GE公司Voluson730彩色多普勒高分辨率超声诊断系统,三维腹部探头频率为4-6MHz,测量567例胎儿胸腺最大横径(MTD组)、前后径(APD组)、上下径(SID组)和最大横截面积(MTA组)。同时应用三维超声的虚拟器官计算机辅助分析(VOCAL)技术,测量胎儿胸腺体积(TV组)。同期测量20例先天性心脏病胎儿(CHD组Ⅱ)的胸腺体积。
     计算TC组、TV组、MTD组、APD组、SID组、MTA组在每个孕周的均值和90%置信区间,分别将MTD组、APD组、SID组、MTA组与GA的相关性和TV组与GA的相关性相对比。比较TC组和CHD组Ⅰ胎儿胸腺周长,比较TV组和CHD组Ⅱ胎儿胸腺体积。
     应用队列研究回顾性分析,于1998年6月到2008年6月,在耶鲁大学医学院母胎医学中心,59例进行常规胎儿超声心动图检查且存在22q11微缺失高危因素胎儿的资料,探讨先天性心脏病与22q11微缺失的关联性。
     统计学分析,应用线性回归分析、Fisher's Z值转换分析、大样本t检验。p值<0.05认为具有统计学意义。
     本研究均获得耶鲁大学医学院和中南大学湘雅二医院伦理委员会的批准。
     结果:
     567例正常胎儿中,成功获得541例胎儿胸腺的最大横径、前后径、上下径、最大横截面积和体积,成功测量率95.4%;347例正常胎儿中,成功获得320例胎儿的胸腺周长,成功测量率92.2%。胎儿胸腺二维各径线和三维体积均随孕周增加而增加,与孕周均呈直线相关,回归方程分别为:TC(cm)=-4.147+0.443×GA(周),r=0.980;MTD(cm)=-0.8031+0.1393xGA(周),r=0.9114;APD(cm)=-0.4808+0.0597xGA(周),r=0.8559;SID(cm)=-0.2741+0.0826×GA(周),r=0.8420;MTA(cm2)=-5.3551+0.3282×GA(周),r=0.9381;TV(ml)=-7.5098+0.4538xGA(周),r=0.9907,以上均有统计学意义,(p<0.01)。经过Fisher's Z值转换检验,分别将MTD组、APD组、SID组、MTA组与GA的相关性,和TV组与GA的相关性进行比较,胎儿胸腺三维体积与孕周的相关性明显高于各二维径线值与孕周的相关性(p<0.05)。
     CHD组Ⅰ胎儿胸腺周长明显小于TC组胎儿胸腺周长(p<0.05)。28例胎儿中,13例超声检测胸腺周长小于正常参考值第五个百分位数,其中12例尸解证实胸腺明显减小,1例尸解未发现胸腺明显减小;15例超声检测胸腺周长在正常范围内,尸解证实14例胎儿胸腺无明显减小,1例胎儿胸腺左侧叶缺如。CHD组Ⅱ胎儿胸腺体积明显小于TV组胎儿胸腺体积(p<0.05)。20例胎儿中,11例胸腺体积小于正常参考值第五个百分位数,余9例胸腺体积在正常范围内。
     1998年6月至2008年6月,8220例在耶鲁大学母胎医学中心进行胎儿超声心动图检查的胎儿,其中59例胎儿存在22q11微缺失综合征高危因素。43例胎儿进行染色体核型和22q11微缺失检测,16例胎儿的母亲拒绝羊水穿刺术未能进行染色体核型的分析和22q11微缺失的检测。5例胎儿确诊为22q11微缺失综合征,其中2例胎儿患有法洛氏四联症,2例胎儿患有主动脉弓异常合并室间隔缺损,1例胎儿有22q11微缺失家族史。
     结论:
     1.本研究建立了胎儿胸腺二维超声面积、周长、直径、横径和三维超声体积的正常参考值。三维超声测量胎儿胸腺体积与孕周相关性更高,提示较二维超声测量更为准确。
     2.胎儿先天性心脏病与胎儿胸腺发育不全或胸腺缺如具有关联性。因此对超声检测发现胸腺发育不全或者胸腺缺如的胎儿,应进行详细的超声心动图检查。
     3.胎儿先天性心脏病与22q11微缺失具有关联性,先天性心脏病、胸腺发育不全或者胸腺缺如、22q11微缺失三者间是否具有关联性,仍需要大样本,密切追踪观察的长期研究。
Background:
     The thymus is a lymphoepithelial organ, providing the environment for T-lymphocyte differentiation and selection, in which T-lymphocytes develop during fetal life. The thymus is believed to grow throughout the fetal life. Thymic hypoplasia or aplasia has been reported as an associated finding in various diseases, such as 22q11 micro-deletion syndrome, DiGeorge syndrome, Ellis-van Creveld syndrome, severe combined immunodeficiency, HIV infection, intrauterine growth retardation, acute illness, exposure to ethanol and chorioamnionitis ect.
     Assessment of thymic hypoplasia or aplasia requires normal data for thymic size at each gestational age. In previous studies, Felker et al measured the thymic anterior-posterior diameter (APD), Jeppesen and Cho et al measured the thymic maximum transverse diameter (MTD), Zalel et al measured the thymic circumference (TC) to assess the size of the fetal thymus. However, in anatomy, the thymus occupies anterior-superior mediastinum, behind the sternum, in front of and ventral to the pericardium and great vessels of the heart (pulmonary artery, aorta and superior vena cava), between the lungs, which is asymmetric lobulated parenchymatous organ. Utility of 2DUS (two-dimensional Ultrasound) to assess the size of the fetal thymus might get limitation. With the development and application of 3DUS (three-dimensional Ultrasound) and 4DUS (four-dimensional Ultrasound) in medical field, especially in prenatal diagnosis, VOCAL (Virtual Organ Computer-Aided Analysis) from 3DUS, could globally analyze and measure the whole fetal thymus and reconstruct 3D model from multiple 2D plans, which conquers the limitation of single plan information from 2DUS.
     During the embryo development, the pharyngeal arches, mesenchymal cells which derived from neural crest give rise to smooth muscles of the conotruncal vessels and connective tissue of the thymus and the parathyroid gland. The development of the derivatives of the pharyngeal apparatus is highly sensitive to environmental and genetic insults. Any cause affects pharyngeal apparatus fail to develop, which could result in abnormal thymus growth and congenital heart defects. The 22q11 micro-deletion (del22q11.2) is the most common micro-deletion syndrome, associate with a markedly variable phenotypic expression, more than 180 clinical findings, in which congenital heart defects and thymic hypoplasia or aplasia are the most common clinical expression.
     Moreover, a great deal of studies show that micro-deletion at the 22q11 position is strongly associated with congenital heart defects (CHD). The 22q11 micro-deletion is the second most common chromosomal cause of congenital heart defects after trisomy 21. However, prenatal frequency of the micro-deletion in the fetuses with increased risk for congenital heart defects has not been completely elucidated.
     Aim:
     1. Establishing the normative data of the 2DUS and 3DUS measurements of the developing fetal thymus and comparing the 2DUS and 3DUS measurements of the fetal thymus.
     2. Discussing the relevance between congenital heart defects and thymic hypoplasia or aplasia
     3. Discussing the relevance between congenital heart defects and 22q11 micro-deletion.
     Material & Methods:
     Between June 2006 and November 2007, applying GE Voluson 730 high-resolution color Doppler ultrasound diagnose system,4-6 MHz transabdominal probe, measured the fetal thymic circumference (TC) in 347 normal singletons (TC group) and 28 singletons with CHD and proved by autopsy (CHD I group).
     Between December 2007 and February 2010, applying Philips IU22 high-resolution color Doppler ultrasound diagnose system,6 MHz transabdominal probe, measured the fetal thymic maximum transverse diameter (MTD group), anterior-posterior diameter (APD group), superior-inferior diameter (SID group) and maximum transverse area (MTA group), meantime utilizing 3DUS VOCAL technique to measure the thymic volume (TV group) in 567 normal singletons. During the same period, the thymic volumes of 20 singletons with CHD (CHD II group) were measured.
     The predicted mean and 90% confidence interval of 2DUS and 3DUS measurements were calculated at each gestational week, compared the correlation of thymic MTD, APD, SID, MTA measurements and GA with that of TV and GA. Between TC group and CHDⅠgroup, fetal thymus circumferences were compared, and between TV group and CHDⅡgroup, fetal thymus volumes were also compared.
     Then, a retrospective cohort study of 59 consecutive patients undergoing fetal echocardiogram and evaluation for 22q11 micro-deletion at the department of Maternal-Fetal Medicine of Yale University Medical School from June 1998 to June 2008, was done to discuss the relevance between CHD and 22q11 micro-deletion.
     Linear regression analysis, correlation coefficients comparison after Fisher's Z-transformation and large sample t test were used where appropriate. A p value<0.05 was considered statistically significant. Institutional review board approval was obtained from Yale University, School of Medicine, Maternal-Fetal-Medicine and Central South University, The Second Xiangya Hospital prior to the study.
     Results:
     2DUS,3DUS assessments of the fetal thymic MTD, APD, SID, MTA and TV were possible in 95.8% of 567 normal singletons and 2DUS assessment of the fetal circumference was possible in 92.2% of 347 normal singletons. The fetal thymic 2D diameters/area and 3D volume grow with the GA in linear correlation, regression equations are:TC (cm) =-4.147+0.443×GA (week), r=0.980; MTD (week)=-0.8031+0.1393×GA (week), r=0.9114; APD (cm)=-0.4808+0.0597×GA (week), r=00.8559; SID (cm)=-0.2741+0.0826×GA (week), r=0.8420; MTA (cm2)=-5.3551+0.3282×GA (week), r=0.9381; TV (ml)=-7.5098+0.4538×GA (week), r=0.9907, (all p<0.01). After Fisher's Z-transformation the correlation between the 3D-US thymus volume measurements and GA was significantly higher than that of any individual 2D-US measurements and GA (p<0.05).
     Thymus circumference of CHDⅠgroup was significantly lower than that of TC group (p< 0.05).28 cases of CHDⅠgroup,13 cases of them were lower than 5th percentile of normal range. The fetal thymus significantly decreased in 12 cases, and no significant decrease in 1 case, which were proved by autopsy. Thymus circumference was in normal range in another 15 cases,14 cases of them were no significant decrease, and 1 case was one lobe of thymus aplasia. Thymus volume of CHDⅡgroup was significantly lower than that of TV group (p< 0.05).20 cases of CHDⅡgroup,11 cases of them were lower than 5th percentile of normal rang, another 9 cases were in normal range.
     Between June 1998 and June 2008, of 8220 fetal echocardiograms performed,59 singleton fetuses were identified as being high risk for 22q11 micro-deletion.43 fetal karyotypes and FISH (Fluorescence In Situ Hybridization) tests were obtained. Sixteen mothers declined amniocentesis.5 of 43 fetuses were discovered to have the 22q11 micro-deletion. Fetuses diagnosed with 22q11 micro-deletion,2 of them had tetralogy of Fallot,2 of them had aorta arch abnormality with ventricular septal defects, and one case had positive family history.
     Conclusion:
     ①This study presents the normative data of the 2DUS and 3DUS measurements of the developing fetal thymus.3DUS fetal thymus volume is more significantly correlated to GA than the other 2DUS measurements, which indicates 3DUS measurement of the fetal thymus is more accurate than that of 2DUS.
     ②Thymic aplasia or hypoplasia is associated with congenital heart defect. Therefore, when detecting thymic aplasia or hypoplasia in fetus, the detail fetal echocardiogram is really necessary.
     ③Congenital heart defect is associated with 22q11 micro-deletion. The relevance among the fetal thymic hypoplasia or aplasia, congenital heart defect and 22q11 micro-deletion should further study, because of the limitation of sample quantity.
引文
[1]. Lavini C, Moran CA, Morandi U, Schoenhuber R:Thymus Gland Pathology Clinical, Diagnostic, and Therapeutic Features; in Palumbo C:Embryology and Anatomy of the Thymus Gland,1st ed. Springer,9788847008281,13-18.
    [2]. Haynes BF, Hale LP. The human thymus. A chimeric organ comprised of central and peripheral lymphoid components. Immunol Res.1998; 18(3):175-92. Review.
    [3]. Haynes BF, Denning SM:Lymphopoiesis; in Stamatoyannopoulos G, Nienhuis A, Majerus P, Varmus H (eds):The Molecular Basis of Blood Diseases,2nd ed. W. B. Saunders, t993,425-452.
    [4]. Haynes BF, Denning SM, Le PT, Singer KH:Human intrathymic T cell differentiation. Sem Immunol 1990;2:67-77.
    [5]. Hale LP, Haynes BF:Overview of development and function of lymphocytes; in Gallin J, Snyderman R, Fearon D, Haynes B, Nathan C (eds):Inflammtion:Basic Principles and Clinical Correlates,3rd ed. Raven, New York,1998, in press.
    [6]. Haynes BF:Human thymic epi-thelium and T cell development:current issues and future direction. Thymus 1990;t6:143-157.
    [7]. Jeppesen DL, Hasselbalch H, Nielsen SD, Sorensen TU, Ersboll AK, Valerius NH, Heilmann C. Thymic size in preterm neonates:a sonographic study. Acta Paediatr. 2003 Jul;92(7):817-22.
    [8]. Dodson WE, Alexander D, Al-Aish M, De La Cruz F. The DiGeorge syndrome. Lancet.1969 Mar 15;1(7594):574-5.
    [9]. Ichijima K, Yamabe H, Kobashi Y, Ogawa H, Akaishi K. An unusual case of metaphyseal chondrodysplasia with an abnormal perilacunar matrix associated with agranulocytosis and hypoplasia of the thymus.
    [10]. Martin JP, Aguilar FT. Thymic hypoplasia with severe combined immunodeficiency. Ann Allergy.1977 Sep;39(3):196-200.
    [11]. Hartge R, Jenkins DM, Kohler HG. Low thymic weight in small-for-dates babies. Eur J Obstet Gynecol Reprod Biol.1978 Jun;8(3):153-5.
    [12]. Van-Baarlen SJ, Achuurman HJ, Huber J. 1988. Acute thymic involution in infancy and childhood:a reliable marker for duration of acute illness. Hum Pathol 19:1155-1160.
    [13]. Ewald SJ, Frost WW. Effect of prenatal exposure to ethanol on development of the thymus. Thymus.1987;9(4):211-5.
    [16]. Felker RE, Cartier MS, Emerson DS, Brown DL. Ultrasound of the fetal thymus. J Ultrasound Med.1989 Dec;8(12):669-73
    [14]. Toti P, De Felice C, Stumpo M, Schurfeld K, Di Leo L, Vatti R, Bianciardi Q Buonocore G, Seemayer TA, Luzi P. Acute thymic involution in fetuses and neonates with chorioamnionitis. Hum Pathol.2000 Sep;31(9):1121-8.
    [15]. Zalel Y, Gamzu R, Mashiach S, Achiron R. The development of the fetal thymus: an in utero sonographic evaluation. Prenat Diagn.2002 Feb;22(2):114-7..
    [17]. Cho JY, Min JY, Lee YH, McCrindle B, Hornberger LK, Yoo SJ. Diameter of the normal fetal thymus on ultrasound. Ultrasound Obstet Gynecol.2007 Jun;29(6):634-8.
    [18]. Chaoui R, Kalache KD, Heling KS, Tennstedt C, Bommer C, Korner H. Absent or hypoplastic thymus on ultrasound:a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol.2002 Dec;20(6):546-52.
    [19]. Akar H, Konuralp C, Baysal K, Kolbakir F. Ellis-van Creveld syndrome associated with thymic hypoplasia. Asian Cardiovasc Thorac Ann.2002 Dec;10(4):336-8.
    [20].周启昌,曹丹鸣,章鸣,等.三血管观在胎儿复杂心脏病超声诊断中的应用.中国超声医学杂志,2005,21:942-944.
    [1]. Graham A. Development of the pharyngeal arches. Am J Med Genet A.2003 Jun 15;119A(3):251-6. Review.
    [2]. Hollander G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y. Cellular and molecular events during early thymus development. Immunol Rev.2006 Feb;209:28-46. Review.
    [3]. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059-1061.
    [4]. Kirby ML, Turnage KL, Hays BM (1985) Characterization of conotruncal malformations following ablation of "cardiac" neural crest. Anat Rec 213:87-93.
    [5]. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125-154.
    [6]. Iserin L, de Lonlay P, Viot G, Sidi D, Kachaner J, Munnich A, Lyonnet S, Vekemans M, Bonnet D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr.1998 Nov;157(11):881-4.
    [7]. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22qll.2 deletion syndrome. Scand J Immunol.2007 Jul;66(1):1-7. Review.
    [8]. Driscoll DA, Salvin J, Sellinger B, Budarf ML, McDonald-McGinn DM, Zackai EH, Emanuel BS. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes:implications for genetic counselling and prenatal diagnosis. J Med Genet.1993 Oct;30(10):813-7.
    [9]. Tezenas Du Montcel S, Mendizabai H, Ayme S, Levy A, Philip N. Prevalence of 22q11 microdeletion. J Med Genet 1996; 33:719.
    [10]. Goodship J, Cross I, LiLing J, Wren C. A population study of chromosome 22q11 deletions in infancy. Arch Dis Child 1998; 79:348-51.
    [11]. Levy-Mozziconacci A, Piquet C, Heurtevin P, Philip N. Prenatal diagnosis of 22q11 microdeletion. Prenat Diagn.1997;17:1033-1037.
    [12]. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet.2007 Oct 20;370(9596):1443-52.
    [13]. Rychik J,Ayres N, Cuneo B, et al. American society of echocardiography guidelines and standards for performance of the fetal echocardiography. J Am Soc Echocardiogr,2004,17(7):803-10.
    [14]. Cook AC, Yates RW, Anderson RH. Normal and abnormal fetal cardiac anatomy. Prenat Diagn,2004,24(13):1032-48.
    [15]. Allan L. Technique of fetal echocardiography. Pediatr Cardiol, 2004,25(3):223-33.
    [16]. Chaoui R, Kalache KD, Heling KS, Tennstedt C, Bommer C, Korner H. Absent or hypoplastic thymus on ultrasound:a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol.2002 Dec;20(6):546-52.
    [17]. Horstadius S. The neural crest:Its properties and derivatives in the light of experimental research. London,Oxford University Press; 1950.
    [18]. Le Douarin NM, Kalcheim C. The neural crest.2nd ed. Cambridge:Cambridge University Press; 1999.
    [19]. Kirby ML, Turnage KL, Hays BM. Characterization of conotruncal malformations following ablation of "cardiac" neural crest. Anat Rec 1985;213:87-93
    [20]. Bockman DE, KirbyML. Dependence of thymus development on derivatives of the neural crest. Science 1984;223:498-500.
    [21]. Le'Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 1975;34:125-54.
    [22]. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to aorticopulmonary septation. Science 1983;220:1059-61.
    [23]. Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 1999;208:307-23.
    [24]. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res 2006;98:1547-54.
    [25]. Poelmann RE, Gittenberger-de Groot AC. A subpopulation of apoptosis prone cardiac neural crest cells targets to the venous pole:multiple functions in heart development. Dev Biol 1999;207:271-86.
    [26]. Hutson MR, Kirby ML. Neural Crest and Cardiovascular Development:A 20-Year Perspective. Birth Defects Research (Part C) 69:2-13 (2003)
    [27]. Gonzalez J, Rodriguez JI. Neural-crest derived defects in experimental congenital diaphragmatic hernia. Pediatr surg Int 2001; 17:294-298.
    [28]. Cuneo BF. 22q11.2 deletion syndrome:DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr Opin Pediatr.2001 Oct;13(5):465-72. Review. Erratum in:Curr Opin Pediatr 2002 Apr;14(2):286.
    [29]. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999,401:379-382.
    [30]. Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E. Tbxl expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development.2005 Dec;132(23):5307-15.
    [31]. Merscher S, Funke B, Epstein JA, et al. TBX1 is for cardiovascular defects in velocardiofacial/DiGeorge syndrome. Cell 2001,104:619-629.
    [32]. Nishibatake M, Kirby ML, van Mierop LH. Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 1987;75:255-64.
    [1]. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, et al. Spectrum of clinical features associated with interstitial chromosome 22qll deletions:a European collaborative study. J Med Genet.1997 Oct;34(10):798-804
    [2]. McDonald-McGinn DM, Kirschner R, Goldmuntz E, Sullivan K, Eicher P, Gerdes M, Moss E, Solot C, Wang P, Jacobs I, Handler S, Knightly C, Heher K, Wilson M, Ming JE, Grace K, Driscoll D, Pasquariello P, Randall P, Larossa D, Emanuel BS, Zackai EH. The Philadelphia story:the 22q11.2 deletion:report on 250 patients. Genet Couns.1999; 10(1):11-24.
    [3]. Pike AC, Super M. Velocardiofacial syndrome. Postgrad Med J.1997 Dec;73(866):771-775
    [4]. Thomas JA, Graham JM Jr. Chromosomes 22q11 deletion syndrome:an update and review for the primary pediatrician. Clin Pediatr (Phila).1997 May;36(5):253-266
    [5]. Barrea C, Yoo SJ, Chitayat D, Valsangiacomo E, Winsor E, Smallhorn JF, Hornberger LK. Assessment of the thymus at echocardiography in fetuses at risk for 22q11.2 deletion. Prenat Diagn.2003 Jan;23(1):9-15
    [6]. Shprintzen RJ. Velo-cardio-facial syndrome:30 Years of study. Dev Disabil Res Rev.2008;14(1):3-10.
    [7]. Hultman CS, Riski JR,Cohen ST et. Chiari malformation, cervical spine anomalies, and neurologic deficits in velocardiofacial syndrome. Plat Reconstr Surg.2000; 106:16-24.
    [8]. McDonald-McGinn DM, Zackai EH. Genetic counseling for the 22q11.2 deletion Dev Disabil Res Rev.2008;14(1):69-74.
    [9]. Devriendt K, Fryns JP, Mortier G, van Thienen MN, Keymolen K. The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet.1998 Sep;35(9):789-90.
    [10]. Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O'Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM. A population-based study of the 22q11.2 deletion:phenotype, incidence, and contribution to major birth defects in the population. Pediatrics.2003 Jul;112(1 Pt 1):101-7.
    [11]. Morrow B, Goldberg R, Carlson C, Das Gupta R, Sirotkin H, Collins J, Dunham I, O'Donnell H, Scambler P, Shprintzen R, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet.1995 Jun;56(6):1391-403.
    [12]. Fernhoff PM. The 22q11.2 deletion syndrome:more answers but more questions. J Pediatr.2000 Aug; 137(2):145-147.
    [13]. Driscoll DA. Prenatal diagnosis of the 22qll.2 deletion syndrome. Genet Med. 2001;3(1):14-8.
    [14]. Robin NH, Shprintzen RJ. Defining the clinical spectrum of deletion 22q11.2. J Pediatr.2005 Jul;147(1):90-96.
    [15]. Murphy KC, Scambler PJ, editors. Velo-cardio-facial syndrome:a model for understanding microdeletion disorders. Cambridge University Press.2005;p47-82
    [16]. Achiron R, Glaser J, Gelernter I, Hegesh J, Yagel S. Extended fetal echocardiographic examination for detecting cardiac malformations in low risk pregnancies. BMJ.1992 Mar 14;304(6828):671-674.
    [17]. Stumpflen I, Stumpflen A, Wimmer M, Bernaschek G. Effect of detailed fetal echocardiography as part of routine prenatal ultrasonographic screening on detection of congenital heart disease. Lancet.1996 Sep 28;348(9031):854-857
    [18]. Sinclair BG, Sandor GG, Farquharson DF. Effectiveness of primary level antenatal screening for severe congenital heart disease:a population-based assessment. J Perinatol.1996 Sep-Oct;16(5):336-340.
    [19]. Wimalasundera RC and Gardiner HM. Congenital heart disease and aneuploidy. Prenatal Diagn.2004;24:1116-22.
    [20]. Manji S, Robertson JR, Wiktor A, et al. Prenatal diagnosis of 22q11.2 deletion when ultrasound examination reveals a heart defect. Genetics in Medicine. 2001;3:65-66.
    [21]. Chaoui R, Kalache KD, Heling KS, Tennstedt C, Bommer C, Korner H. Absent or hypoplastic thymus on ultrasound:a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol.2002 Dec;20(6):546-52.
    [22]. Boudjemline Y, Fermont L, Le Bidois J, Lyonnet S, Sidi D, Bonnet D. Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects:a 6-year prospective study. J Pediatr.2001Apr;138(4):520-4.
    [23]. Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, Reed L, McDonald-McGinn D, Chien P, Feuer J, Zackai EH, Emanuel BS, Driscoll DA. Frequency of 22qll deletions in patients with conotruncal defects. J Am Coll Cardiol.1998 Aug;32(2):492-8.
    [24]. Copel JA, Cullen M, Green JJ, Mahoney MJ, Hobbins JC, Kleinman CS:The frequency of aneuploidy in prenatally diagnosed congenital heart disease:An indication for fetal karyotyping. Am J Obstet Gynecol 1988;158:409-413.
    [25]. Goldmuntz E, Emanuel BS. Genetic disorders of cardiac morphogenesis:the DiGeorge and velocardiofacial syndromes. Circ Res.1997;80:437-443.
    [26]. Gong W, Emanuel BS, Collins J, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum Mol Genet. 1996; 5:789-800.
    [27]. Daw S, Taylor C, Kraman M, Call K, Mao J, Schuffenhauer S, Meitinger T, Lipson T, Goodship J, Scambler P. A common region of 10p deleted in DiGeorge ad velocardiofacial syndromes. Nat Genet 1996,13:458-60.
    [28]. Ziolkowska L, Kawalec W, Turska-Kmiec A, Krajewska-Walasek M et al, Chromosome 22q11.2 microdeletion in children with conotruncal heart defects: frequency, associated cardiovascular anomalies, and outcome following cardiac surgery. Eur J Pediatr (2008) 167:1135-1140.
    [29]. Graham A. Development of the pharyngeal arches. Am J Med Genet A.2003 Jun 15; 119A(3):251-6. Review.
    [30]. Hollander G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y. Cellular and molecular events during early thymus development. Immunol Rev.2006 Feb;209:28-46. Review.
    [31]. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059-1061.
    [32]. Kirby ML, Turnage KL, Hays BM (1985) Characterization of conotruncal malformations following ablation of "cardiac" neural crest. Anat Rec 213:87-93.
    [33]. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125-154.
    [34]. Iserin L, de Lonlay P, Viot G, Sidi D, Kachaner J, Munnich A, Lyonnet S, Vekemans M, Bonnet D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr.1998 Nov;157(11):881-4.
    [35]. Hutson MR, Kirby ML. Neural Crest and Cardiovascular Development:A 20-Year Perspective. Birth Defects Research (Part C) 2003,69:2-13.
    [36]. Gonzalez J, Rodriguez JI. Neural-crest derived defects in experimental congenital diaphragmatic hernia. Pediatr surg Int 2001; 17:294-298.
    [37]. Cuneo BF. 22q11.2 deletion syndrome:DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr Opin Pediatr.2001 Oct;13(5):465-72. Review. Erratum in:Curr Opin Pediatr 2002 Apr;14(2):286.
    [38]. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999,401:379-382.
    [39]. Xu H, Cerrato F, Baldini A. Timed mutation and cell-fate mapping reveal reiterated roles of Tbxl during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development.2005 Oct;132(19):4387-95. Epub 2005 Sep 1
    [40]. Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E. Tbxl expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development.2005 Dec;132(23):5307-15.
    [41]. Merscher S, Funke B, Epstein JA, et al. TBX1 is for cardiovascular defects in velocardiofacial/DiGeorge syndrome. Cell 2001,104:619-629.
    [42]. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22q11.2 deletion syndrome. Scand J Immunol.2007 Jul;66(1):1-7. Review.
    [43]. Genetics home reference:your guide to understanding genetic conditions (22q11.2 deletion syndrome); 2006. Available at: http://ghr.nlm.nih.gov/condition=22q12deletionsyndrome [Retrieved June 17, 2006].
    [44]. McDonald-McGinn DM, Emanuel BS, Zackai EH.22q11.2 deletion syndrome; 2005 (Original work published 1999) Available at:www.geneclinics.org [Retrieved June 17,2006].
    [45]. Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8:1157-1167.
    [46]. Rauch A, Zink S, Zweier C, et al. Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. J Med Genet. 2005;42:871-876.
    [47]. Levy A, Demczuk S, Aurias A, et al. Interstitial 22q11 microdeletion excluding the ADU breakpoint in a patient with DiGeorge syndrome. Hum Mol Genet.1995: 2417-2419.
    [48]. McQuade L, Christodoulou J, Budarf M, et al. Patient with a 22q11.2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR). Am J Med Genet.1999;86:27-33.
    [49]. O'Donnell H, McKeown C, Gould C, et al. Detection of an atypical 22q11 deletion that has no overlap with the DiGeorge syndrome critical region. Am J Hum Genet.1997; 60:1544-1548.
    [50]. Funke B, Pandita RK, Morrow BE. Isolation and characterization of a novel gene containing WD40 repeats from the region deleted in velo-cardio-facial/DiGeorge syndrome on chromosome 22q11. Genomics.2001 May1;73(3):264-71.
    [51]. Pizzuti A, Novelli G, Ratti A, Amati F, Mari A, Calabrese G, Nicolis S, Silani V, Marino B, Scarlato G, Ottolenghi S, Dallapiccola B. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome. Hum Mol Genet.1997 Feb;6(2):259-65.
    [52]. Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science.1999 Feb 19;283(5405):1158-61.
    [53]. McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002;70:1077-88.
    [54]Paylor R, Glaser B, Mupo A, et al. Tbxl haploinsufficiency is linked to behavioral disorders in mice and humans:implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 2006:103;7729-34.
    [55]. Iwarsson E, Ahrlund-Richter L, Inzunza J, et al. Preimplantation genetic diagnosis of DiGeorge syndrome. Mol Hum Reprod.1998;4:871-875.
    [56]. Greenberg F. DiGeorge syndrome:an historical review of clinical and cytogenetic features. J Med Genet.1993 Oct;30(10):803-6.
    [57]. Rychik J,Ayres N, Cuneo B, et al. American society of echocardiography guidelines and standards for performance of the fetal echocardiography. J Am Soc Echocardiogr,2004,17(7):803-10.
    [58]. Cook AC, Yates RW, Anderson RH. Normal and abnormal fetal cardiac anatomy. Prenat Diagn,2004,24(13):1032-48.
    [59]. Allan L. Technique of fetal echocardiography. Pediatr Cardiol, 2004,25(3):223-33.
    1. Goncalves LF, W Lee, J Espinoza, et al. Three-and 4-dimensional ultrasound in obstetric practice:does it help? J Ultrasound Med 24 (2005) 1599.
    2. Kurjak A, FA Chervenak:Ultrasound and fetal behavior:an evolving challenge. Ultrasound Rev Obstet Gynecol 4 (2004) 1.
    3. Abuhamad AZ:Standardization of 3-dimensional volumes in obstetric sonography: A required step for training and automation. J Ultrasound Med 24 (2005) 397.
    4. Benacerraf BR, CB Benson, AZ Abuhamad, JA Copel, JS Abramowicz, GR Devore, et al. Three-and four-dimensional ultrasound in obstetrics and gynecology:proceedings of the american institute of ultrasound in medicine consensus conference. J Ultrasound Med 24 (2005) 1587
    5. Timor-Tritsch IE, LD Platt:Three-dimensional ultrasound experience in obstetrics. Curr Opin Obstet Gynecol 14 (2002) 569.
    6. Merhi ZO, S Haberman, JL Robertset al.Prenatal diagnosis of palatal teratoma by 3-dimensional sonography and color Doppler imaging. J Ultrasound Med 24 (2005)1317.
    7. Merz E, C Welter C:2D and 3D ultrasound in the evaluation of normal and abnormal fetal anatomy in the second and third trimesters,in a level Ⅲ center. Ultraschall Med 26 (2005) 9.
    8. Paladini D, M Vassallo, G Sglavo et al. Cavernous lymphangioma of the face and neck:prenatal diagnosis by three-dimensional ultrasound. Ultrasound Obstet Gynecol 26 (2005) 300.
    9. Tonni G, G Centini, L Rosignoli:Prenatal screening for fetal face and clefting in a prospective study on low-risk population:can 3-and 4-dimensional ultrasound enhance visualization and detection rate? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100 (2005) 420.
    10. Rankin RN, Fenster A, Downey DB et al. Three-dimensional sonographic reconstruction:techniques and diagnostic applications. AJR Am J Roentgenol. 1993 Oct;161(4):695-702. Review.
    11. Kurjak A, Miskovic B, Andonotopo W et al. How useful is 3D and 4D ultrasound in perinatal medicine? J Perinat Med.2007;35(1):10-27. Review.
    12. Sunden B. On the diagnostic value of ultrasound in obstetrics and gynecology. Thesis. Acta Obstetrica et Gynecologica Scandinavica 1964; 43 (supplement): 1-121.
    13. Blaas HG, Eik-Nes SH, Berg S. Three-dimensional fetal ultrasound. Baillieres Best Pract Res Clin Obstet Gynaecol.2000 Aug;14(4):611-27. Review.
    14. Benacerraf BR, TD Shipp, B Bromley. How sonographic tomography will change the face of obstetric sonography:a pilot study. J Ultrasound Med 24 (2005) 371.
    15. Feichtinger W, Strohmer H, Feldner-Buszlin M. Laser surgery under snographic control:Preliminary experimental investigation. Ultrasound Obstet. Gynecol. 1993,45,722-25.
    16. Steiner H, Gregg AR, Bogner G First trimester three-dimensional ultrasound volumetry of the gestational sac. Arch. Gynecol. Obstet.1994,255,165-170
    17. Blaas H-G, Eik-Nes SH, Berg S & Torp H. In-vivo three-dimensional Ultrasound reconstructions of embryos and early fetuses; Lancet 1998; 352:1182-1186.
    18. Streeter GL. Weight, sitting height, head size, foot length, and menstrual age of the human embryo. In Contributions to Embryology. Washington:Carnegie Institute of Washington,1920; 11:143-170.
    19. Kurjak S, Kupesic GC, DiRenzo R. Recent advances in perinatal sonography. Pernat. Neonat. Med 1998,3,194-207.
    20. Blaas HG, Eik-Nes SH, Kiserud T et al:Three-dimen-sional imaging of the brain cavities in human embryos. Ultrasound Obstet Gynecol 1995,5:228-232.
    21. Blaas HG, Eik-Nes SH, Berg S, et al:In-vivo three-dimensional ultrasound reconstructions of embryos and early fetuses. Lancet 1998 352:1182-1186,
    22. Pooh RK, Pooh K. Transvaginal 3D and Doppler ultrasonography of the fetal brain. Semin Perinatol.2001 Feb;25(1):38-43. Review.
    23. Pooh RK. Fetal cranial bone formation:Sonographic assessment, in Margulies M, Voto LS, Eik-Nes S (eds):9 th World Congress of Ultrasound in Obstetrics and Gynecology. Monduzzi Editore, Bologna, Italy,1999,407-410
    24. Smith DW, Tondury G. Origin of the calvaria and its sutures. AmJ Dis Child 1978.132:662-666.
    25. Pooh RK, Nakagawa Y, Pooh KH, et al:Fetal craniofacial structure and intracranial morphology in a case of Apert syndrome. Ultrasound Obstet Gynecol.1999,13:274-280.
    26. Taipale P, Hiilesmaa V, Salonen R et al. Increased nuchal translucency as a marker for fetal chromosomal defects. N Engl J Med.1997 Dec 4;337(23):1654-8
    27. Snijders RJ, Noble P, Sebire N, et al. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet.1998 Aug 1;352(9125):343-6.
    28. Souka AP, Snijders RJ, Novakov A et al. Defects and syndromes in chromosomally normal fetuses with increased nuchal translucency thickness at 10-14 weeks of gestation. Ultrasound Obstet Gynecol. 1998 Jun;11(6):391-400.
    29. Hyett J, Perdu M, Sharland G et al. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10-14 weeks of gestation:population based cohort study. BMJ.1999 Jan 9;318(7176):81-5.
    30. Kurjak A, Kupesic S, Ivanci?-Kosuta M. Three-dimensional transvaginal ultrasound improves measurement of nuchal translucency. J Perinat Med. 1999;27(2):97-102.
    31. Maymon R, Herman A, Ariely Set al. Three-dimensional vaginal sonography in obstetrics and gynaecology. Hum Reprod Update.2000 Sep-Oct;6(5):475-84. Review.
    32. Maymon R, Halperin R, Weinraub Z et al.Three-dimensional transvaginal sonography of conjoined twins at 10 weeks:a case report. Ultrasound Obstet Gynecol.1998 Apr; 11(4):292-4.
    33. Lee W, Goncalves LF, Espinoza J, Romero R. Inversion mode:a new volume tool for 3-dimensional sonography. J Ultrasound Med 2005; 24:201-207
    34. Bonilla-Musoles FM, Raga F, Osborne N & Blanes J. Use of three-dimensional ultrasound for the study of normal and pathologic morphology of the human embryo and fetus:preliminary report. Journal of Ultrasound in Medicine 1995; 14: 75-765.
    35. Merz E, Bahlmann F, Welter C & Miric-Tesanic D. Transvaginale 3-D Sonographie in der Fruhgraviditat. Gyna Ekologe 1999; 32:213-219.
    36. Merz E, Bahlmann F, Weber G & Macchiella D. Three-dimensional ultrasonography in prenatal diagnosis. Journal of Perinatal Medicine 1995; 23: 213-222
    37. Merz E, Weber G, Bahlmann F & Miric-Tesanic D. Application of transvaginal and abdominal three-dimensional ultrasound for the detection or exclusion of malformations of the fetal face. Ultrasound in Obstetrics and Gynecology 1997; 9: 237-243
    38. Azumendi G, A Kurjak, JM Carrera et al.3D and 4D sonography in the evaluation of normal and abnormal fetal facial expression. In:Carrera JM, Kurjak A (eds):Atlas of Clinical Application of Ultra-sound in Obstetrics and Gynecology. Jaypee Brothers Medical Publishers, NewDelhi 2006,250.
    39. Azumendi G, A Kurjak:Three-dimensional and four-dimensional sonography in the study of the fetal face. Ultrasound Rev Obstet Gynecol 3 (2003) 160
    40. Hata T, K Kanenishi, M Akiyama, H Tanaka, K Kimura:Real-time 3-D sonographic observation of fetal facial expression. J Obstet Gynaecol Res 31 (2005) 337.
    41. Kuno A, M Akiyama, C Yamashiro et al. Three-dimensional sonographic assessment of fetal behavior in the early second trimester of pregnancy. J Ultrasound Med 20 (2001) 1271.
    42. Kurjak A, M Stanojevic, G Azumendi, JM Carrera:The potential of four-dimensional (4D) ultrasonography in the assessment of fetal awareness. J Perinat Med 33 (2005).
    43. Kurjak A, W Andonotopo, M Stanojevic, D Milenkovic, G Azumendi, T Hafner, et al. Longitudinal study of fetal behavior by 4D sonography. Ultrasound Rev Obstet Gyne-col 5 (2005) 259.
    44. Kurjak A, W Andonotopo, T Hafner et al. Normal standards for fetal neurobehavioral developments-longitudinal quantification by four-dimensional sonography. J Perinat Med 34 (2006) 56.
    45. Levy DS, P Zielinsky, AM Aramayo et al. Repeatability of the sonographic assessment of fetal sucking and swallowing movements. Ultrasound Obstet Gynecol 26 (2005) 745.
    46. Pretorius DH, House M, Nelson TR & Hollenbach KA. Evaluation of normal and abnormal lips in fetuses:comparison between three-and two-dimensional sonography. American Journal of Roentgenology 1995; 165:1233-1237.
    47. Lee A, Deutinger J & Bernaschek G. Three dimensional ultrasound: abnormalities of the fetal face in surface and volume rendering mode. British Journal of Obstetrics and Gynaecology 1995; 102:302-306.
    48. Merz E. Three-dimensional ultrasound in the evaluation of fetal malformations. In Baba K & Jurkovic D (eds) Three-dimensional Ultrasound in Obstetrics and Gynecology. London:Parthenon Publishers,1997.37-44.
    49. Merz E, Bahlmann F, Weber G & Miric-Tesanic D. Fetal malformations: assessment by three-dimensional ultrasound in the surface mode. In Merz E (ed.) 3-D Ultrasound in Obstetrics and Gynecology. Philadelphia:Lippincott Williams & Wilkins,1998,109-120.
    50. Baba K, Okai T, Kozuma S & Taketani Y. Fetal abnormalities:evaluation with real-time-processablethree-dimensional US ±preliminary report. Radiology 1999; 211:441-446.
    51. Yeo L, ER Guzman, CV Ananth et al. Prenatal Detection of Fetal Aneuploidy by Sonographic Ear Length. J Ultrasound Med 22 (2003) 565.
    52. Lee W, T Chaiworapongsa, R Romero et al.:A diagnostic approach for the evaluation of spina bifida by three-dimensional ultrasonography. J Ultrasound Med 21 (2002)619
    53. Chaoui R, JM Levaillant, B Benoit et al. Three-dimensional sonographic description of abnormal metopic suture in second-and third-trimester fetuses. Ultrasound Obstet Gynecol 26 (2005) 761.
    54. Faro C, B Benoit, P Wegrzyn et al. Three-dimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol 26 (2005) 618.
    55. Faro C, P Wegrzyn, B Benoit, R Chaoui, KH Nicolaides. Metopic suture in fetuses with trisomy 21 at 11 q 0to13 q 6 weeks of gestation. Ultrasound Obstet Gynecol 3 (2006) 286.
    56. Faro C, R Chaoui, P Wegrzyn et al. Metopic suture in fetuses with Apert syndrome at 22-27 weeks of gestation. Ultrasound Obstet Gynecol 27 (2006) 28.
    57. Azumendi G, JB Arenas, W Andonotopo, A Kurjak:Three dimensional sonoembriology. In:Kurjak A, JB Arenas (eds):Textbook of Trans vaginal Sonography. Taylor & Fran-cis, London 2005,39
    58. Merz E, Miric-Tesanic D, Bahlmann F & Sedlaczek H. Prenatal diagnosis of fetal ambiguous gender using three-dimensional sonography. Ultrasound in Obstetrics and Gynecology 1999; 13:217-218.
    59. Wataganara T, M Metzenbauer, I Peter, KL Johnson, DW Bianchi. Placental volume, as measured by 3-dimensional sonography and levels of maternal plasma cell-free fetal DNA. Am J Obstet Gynecol 193 (2005) 496.
    60. Bonilla-Musoles F, LE Machado, NG Osborne et al. Morphological assessment of the umbilical cord with three-dimensional ultrasonography. Ultrasound Rev Obstet Gynecol 2 (2002) 17.
    61. Monni G, MA Zoppi. New ultrasonographic markers of aneuploidies:nasal bones. Ultrasound Rev Obstet Gynecol 2 (2002) 229.
    62. Benoit B, R Chaoui. Three-dimensional ultrasound with maximal mode rendering:a novel technique for the diagnosis of bilateral or unilateral absence or hypoplasia of nasal bones in second-trimester screening for Down syndrome. Ultrasound Obstet Gynecol 25 (2005) 19.
    63. Pooh RK, Pooh K, Nakagawa Y, Nishida S, Ohno Y. Clinical application of three-dimensional ultrasound in fetal brain assessment. Croat Med J 41 (2000) 245.
    64. Stanojevic M, RK Pooh, A Kurjak, M Kos:Three-dimensional ultrasound assessment of the fetal and neonatal brain. Ultrasound Rev Obstet Gynecol 3 (2003) 117.
    65. Sciaky-Tamir Y, SM Cohen, D Hochner-Celnikier, DV Valsky, B Messing, S Yagel:Three-dimensional power Doppler (3DPD) ultrasound in the diagnosis and follow-up of fetal vascular anomalies. Am J Obstet Gynecol 194 (2006) 274.
    66. Chang F-M, Hsu K-F, Ho H-C et al. Three-dimensional ultrasound assessment of fetal liver volume in normal pregnancy:a comparison of reproducibility with two-dimensional ultrasound and a search for a volume constant. Ultrasound in Medicine and Biology 1997; 23:381-389.
    67. Schild RL, Fimmers R & Hansmann M. Kann die 3D-Volumetrie von fetalem Oberarm und Oberschenkel konventionelle 2D-Gewichtsscha Etzungen verbessern? Ultraschall in der Medizin 1999; 20:31-37
    68. Lee A, Kratochwil A, Stumpfen I et al. Fetal lung volume determination by three-dimensional ultrasonography. American Journal of Obstetrics and Gynecology 1996; 175:588-592.
    69. Laudy JAM, Janssen MMM, Struyk PC et al. Three-dimensional ultrasonography of normal fetal lung volume:a preliminary study. Ultrasound in Obstetrics and Gynecology 1998; 11:13-16.
    70. Pohls UG & Rempen A. Fetal lung volumetry by three-dimensional ultrasound. Ultrasound in Obstetrics and Gynecology 1998; 11:6-12.
    71. Tutschek B, Sahn DJ. Three-dimensional echocardiography for studies of the fetal heart:present status and future perspectives. Cardiol Clin.2007 May;25(2):341-55. Review.
    72. Chaoui R, KS Heling:New developments in fetal heart scanning:three-and four-dimensional fetal echocardiography. Semin Fetal Neonatal Med 10 (2005) 567
    73. Ghi T, E Cera, M Segata, L Michelacci, G Pilu, G Pelusi:Inversion mode spatio-temporal image correlation (STIC) echocardiography in three-dimensional rendering of fetal ventricular septal defects. Ultrasound Obstet Gynecol 26 (2005) 679.
    74. Lee W, LF Goncalves, J Espinoza, R Romero:Inversion mode:a new volume analysis tool for 3-dimensional ultrasonography. J.Ultrasound Med 24 (2005) 201.
    75. Pooh RK, A Korai:B-flow and B-flow spatio-temporal image correlation in visualizing fetal cardiac blood flow. Croat Med J 46 (2005) 808.
    76. Shih JC, CP Chen:Spatio-temporal image correlation (STIC):innovative 3D/4D technique for illustrating unique and independent information and diagnosing complex congenital heart diseases. Croat Med J 46 (2005) 812.
    77. Yagel S, Cohen SM, Shapiro I, Valsky DV.3D and 4D ultrasound in fetal cardiac scanning:a new look at the fetal heart. Ultrasound Obstet Gynecol.2007 Jan;29(1):81-95. Review.
    78. DeVore GR, Falkensammer P, Sklansky MS, Platt LD. Spatio-temporal image correlation (STIC):new technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol.2003 Oct;22(4):380-7.
    79. Turan S, Turan O, Baschat AA. Three-and four-dimensional fetal echocardiography. Fetal Diagn Ther.2009;25(4):361-72. Epub 2009 Sep 30. Review.
    80. Chaoui R, Hoffmann J, Heling KS. Three-dimensional (3D) and 4D color Doppler fetal echocardiography using spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol.2004 Jun;23(6):535-45.
    81. Goncalves LF, Lee W, Espinoza J, Huang R, Chaiworapongsa T, Schoen ML, et al. Four-dimensional fetal echocardiography with spatio-temporal image correlation (STIC):a systematic study of standard cardiac views as-sessed by different observers. Ultrasound Obstet Gynecol 2003;22(Suppl.):50.
    82. Meyer-Wittkopf M, Cooper S, Vaughan J, Sholler G. Three-dimensional (3D) echocardiographic analysis of congenital heart disease in the fetus:comparison with cross-sectional (2D) fetal echocardiography. Ultrasound Obstet Gynecol 2001;17:485e92.
    83. Chaoui R, Hoffmann J, Heling KS. Basal cardiac view on 3D/4D fetal echocardiography for the assessment of AV-valves and great vessels arrangement. Ultrasound Obstet Gynecol 2004;22:228.
    84. Goncalves LF, Espinoza J, Lee W,Nien JK et al. A new approach to fetal echocardiography:digital casts of the fetal cardiac chambers and great vessels for detection of congenital heart disease. J Ultrasound Med 2005; 24:415-424.
    85. Volpe P, Campobasso G, Stanziano A, et al. Novel application of 4D sonography with B-flow imaging and spatiotemporal image correlation (STIC) in the assessment of the anatomy of pulmonary arteries in fetuses with pulmonary atresia and ventricular septal defect. Ultrasound Obstet Gynecol 2006;28:40-6.
    86. Hafner T, Kurjak A, Fundk-Kurjak B. Assessment of early chorionic circulation by three-dimensinal power Doppler. J Perinat Med 30(2002)33.
    87. Chang F-M, Hsu K-F, Ho H-C et al. Three-dimensional ultrasound assessment of fetal liver volume in normal pregnancy:a comparison of reproducibility with two-dimensional ultrasound and a search for a volume constant. Ultrasound in Medicine and Biology 1997; 23:381-389.
    88. Schild RL, Fimmers R & Hansmann M. Kann die 3D-Volumetrie von fetalem Oberarm und Oberschenkel konventionelle 2D-Gewichtsscha E tzungen verbessern? Ultraschall in der Medizin 1999; 20:31-37.
    89. Hughes SW, D'Arcy TJ, Maxwell DJ & Saunders JE. In vitro estimation of foetal liver volume using ultrasound, x-ray computed tomography and magnetic resonance imaging. Physiology and Measurements.1997; 18:401-410.
    1. Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O'Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM. A population-based study of the 22q11.2 deletion:phenotype, incidence, and contribution to major birth defects in the population. Pediatrics.2003; 112:101-107.
    2. Shooner KA, Rope AF, Hopkin RJ, Andelfinger GU, Benson DW. Genetic analyses in two extended families with deletion 22q11 syndrome:importance of extracardiac manifestations. J Pediatr.2005 Mar; 146(3):382-7.
    3. Barisic I, Morozin Pohovski L, Petkovic I, Cvetko Z, Stipancic G, Bagatin M. Screening of patients at risk for 22q11 deletion. Coll Antropol.2008 Mar;32(1):165-9.
    4. Thomas JA, Graham JM Jr. Chromosomes 22q11 deletion syndrome:and update and review for the primary pediatrician. Clin Pediatr (Phila).1997 May;36(5):253-266
    5. Robin NH, Shprintzen RJ. Defining the clinical spectrum of deletion 22q11.2. J Pediatr.2005;147:90-96
    6. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions:a European collaborative study. J Med Genet.1997 Oct;34(10):798-804
    7. McDonald-McGinn DM, Kirschner R, Goldmuntz E, Sullivan K, Eicher P, Gerdes M, Moss E, Solot C, Wang P, Jacobs I, Handler S, Knightly C, Heher K, Wilson M, Ming JE, Grace K, Driscoll D, Pasquariello P, Randall P, Larossa D, Emanuel BS, Zackai EH. The Philadelphia story:the 22q11.2 deletion:report on 250 patients. Genet Couns.1999;10(1):11-24.
    8. Pike AC, Super M. Velocardiofacial syndrome. Postgrad Med J.1997 Dec;73(866):771-775
    9. Barrea C, Yoo SJ, Chitayat D, Valsangiacomo E, Winsor E, Smallhorn JF, Hornberger LK. Assessment of the thymus at echocardiography in fetuses at risk for 22q11.2 deletion. Prenat Diagn.2003 Jan;23(1):9-15
    10. Shprintzen RJ. Velo-cardio-facial syndrome:30 Years of study. Dev Disabil Res Rev.2008;14(1):3-10.
    11. Iserin L, de Lonlay P, Viot G, Sidi D, Kachaner J, Munnich A, Lyonnet S, Vekemans M, Bonnet D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr.1998 Nov;157(11):881-4
    12. McDonald-McGinn DM, Zackai EH. Genetic counseling for the 22q11.2 deletion. Dev Disabil Res Rev.2008;14(1):69-74.
    13. Donnenfeld AE, Cutillo D, Horwitz J, Knops J. Prospective study of 22q11 deletion analysis in fetuses with excess nuchal translucency. Am J Obstet Gynecol. 2006; 194:508-511.
    14. Genetics home reference:your guide to understanding genetic conditions (22q11.2 deletion syndrome); 2006. Available at: http://ghr.nlm.nih.gov/condition=22q12deletionsyndrome [Retrieved June 17, 2006].
    15. Katzman PJ, Wang B, Sawhney M, Wang N. Differential detection of deletion 22q11.2 syndrome by specialty and indication. Pediatr Dev Pathol. 2005;8:557-567.
    16. Lindsay EA, Rizzu P, Antonacci R, et al. A transcription map in the CATCH22 critical region:identification, mapping, and ordering of four novel transcripts expressed in heart. Genomics.1996;32:104-112.
    17. Moore JW, Binder GA, Berry R. Prenatal diagnosis of aneuploidy and deletion 22q11.2 in fetuses with ultrasound detection of cardiac defects. Am J Obstet Gynecol.2004; 191:2068-2073.
    18. Portnoi M, Lebas F, Gruchy N, et al.22q11.2 duplication syndrome:two new familial cases with some overlapping features with DiGeorge/velocardiofacial syndromes. Am J Med Genet.2005;137A:47-51.
    19. Towbin JA, Casey B, Belmont J. Human genetics'99:the cardiovascular system (the molecular basis of vascular disorders). Am J Hum Genet.1999;64:678-684.
    20. Yakut T, Kilic SS, Cil E, et al. FISH investigation of 22q11.2 deletion in patients with immunodeficiency and/or cardiac abnormalities. Pediatr Surg Int. 2006;22:380-383.
    21. Perez E, Sullivan KE. Chromosome 22qll.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr.2002;14:678-683.
    22. McDonald-McGinn DM, Emanuel BS, Zackai EH.22qll.2 deletion syndrome; 2005 (Original work published 1999) Available at:www.geneclinics.org [Retrieved June 17,2006].
    23. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome:the chromosome 22q11.2 deletion syndromes. Lancet.2007 Oct 20;370(9596):1443-52.
    24. Levy-Mozziconacci A, Piquet C, Heurtevin P, Philip N. Prenatal diagnosis of 22q11 microdeletion. Prenat Diagn.1997;17:1033-1037.
    25. Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and micro-deletions of 22q11. Am J Hum Genet. 1992;50:924-933.
    26. Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8:1157-1167.
    27. Larson RS, Butler MG. Use of fluorescence in situ hybridization (FISH) in the diagnosis of DiGeorge sequence and related diseases. Diagn Mol Pathol. 1995;4:274-278.
    28. Iwarsson E, Ahrlund-Richter L, Inzunza J, et al. Preimplantation genetic diagnosis of DiGeorge syndrome. Mol Hum Reprod.1998;4:871-875.
    29. Greenberg F. DiGeorge syndrome:an historical review of clinical and cytogenetic features. J Med Genet.1993 Oct;30(10):803-6.
    30. Daw S, Taylor C, Kraman M, Call K, Mao J, Schuffenhauer S, Meitinger T, Lipson T, Goodship J, Scambler P. A common region of 10p deleted in DiGeorge ad velocardiofacial syndromes. Nat Genet 1996,13:458-60.
    31. Goldmuntz E, Emanuel BS. Genetic disorders of cardiac morphogenesis:the DiGeorge and velocardiofacial syndromes. Circ Res.1997;80:437-443.
    32. Gong W, Emanuel BS, Collins J, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum Mol Genet. 1996; 5:789-800.
    33. Rauch A, Zink S, Zweier C, et al. Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. J Med Genet. 2005;42:871-876.
    34. Levy A, Demczuk S, Aurias A, et al. Interstitial 22q11 microdeletion excluding the ADU breakpoint in a patient with DiGeorge syndrome. Hum Mol Genet.1995: 2417-2419.
    35. McQuade L, Christodoulou J, Budarf M, et al. Patient with a 22qll.2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR). Am J Med Genet.1999;86:27-33.
    36. O'Donnell H, McKeown C, Gould C, et al. Detection of an atypical 22q11 deletion that has no overlap with the DiGeorge syndrome critical region. Am J Hum Genet. 1997; 60:1544-1548
    37. Funke B, Pandita RK, Morrow BE. Isolation and characterization of a novel gene containing WD40 repeats from the region deleted in velo-cardio-facial/DiGeorge syndrome on chromosome 22q11. Genomics.2001 May 1;73(3):264-71.
    38. Pizzuti A, Novelli G, Ratti A, Amati F, Mari A, Calabrese G, Nicolis S, Silani V, Marino B, Scarlato G, Ottolenghi S, Dallapiccola B. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome. Hum Mol Genet.1997 Feb;6(2):259-65.
    39. Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science. 1999 Feb 19;283(5405):1158-61
    40. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999,401:379-382.
    41. Xu H, Cerrato F, Baldini A. Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development.2005 Oct; 132(19):4387-95. Epub 2005 Sep 1.
    42. Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E. Tbxl expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development.2005 Dec;132(23):5307-15.
    43. Merscher S, Funke B, Epstein JA, et al. TBX1 is for cardiovascular defects in velocardiofacial/DiGeorge syndrome. Cell 2001,104:619-629.
    44. McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002;70:1077-88.
    45. Paylor R, Glaser B, Mupo A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans:implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA2006:103;7729-34.
    46. Cuneo BF.22q11.2 deletion syndrome:DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr Opin Pediatr.2001 Oct;13(5):465-72. Review. Erratum in:Curr Opin Pediatr 2002 Apr;14(2):286.
    47. Duke SG, Mcguirt WF Jr, Jewett T, et al.:Velocardiofacial syndrome:incidence of immune cytopenias. Arch Otolaryngol Head Neck Surg 2000,126:1141-1145.
    48. Smith CA, Driscoll DA, Emanuel BS, et al.:Increased prevalence of immunoglobulin A deficiency in patients with the chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Diagn Lab Immunol 1998,5:415-417.
    49. Junker AK, Driscoll DA:Humoral immunity in DiGeorge syndrome. J Pediatr 1995,127:231-237.
    50. Sullivan KE, Jawad AF, Randall P, et al.:The frequency and severity of immunodeficiency in chromosome 22q11.2 deletion syndromes (DiGeorge syndrome/velocardiofacial syndrome). Clin Immunol Immunopathol 1998, 86:141-146.
    51. Moran AM, Colan SD, Mayer JE Jr, et al.:Echocardiographic identification of thymic hypoplasia in tetralogy of Fallot/tetralogy pulmonary atresia. Am J Cardiol 1999,84:1268-1271.
    52. Yeager SB, Sanders SP:Echocardiographic identification of thymic tissue in neonates with congenital heart disease. Am Heart J 1995,129:837-839.
    53. Markert ML, Boeck A, Hale LP, et al:Transplantation of thymus tissue in complete DiGeorge syndrome. N Engl J Med 341:1180-1189,1999
    54. Markert ML, Devlin BH, Alexieff MJ, et al:Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation:Outcome of 44 consecutive transplants. Blood 109:4539-4547,2007.
    55. Digilio MC, Marino B, Cappa M, et al.:Auxological evaluation in patients with DiGeorge velocardiofacial syndrome (deletion 22q11.2 syndrome). Genet Med 2001,3:30-33.
    56. Kirscher RE. Palatal anomalies and velopharyngeal dysfunction associated with velocardiofacial syndrome. In:Velocardiofacial syndrome:a model for understanding microdeletion disorders. Cambridge (MA):Cambridge University Press; 2005.83-104.
    57. Shprintzed RJ,Goldberg RB, LewinML, et al.:A new syndrome involving cleft palate, cardiac anomalies, typical facies and learning disabilities:velocardiofacial syndrome. Cleft Palate J 1978,15:56-62.
    58. Flint J, Yule W:Behavioral phenotypes. In Child and Adolescent Psychiatry, edn 3. Edited by Rutter M, Faylor E, Hersov L. Oxford:Blackwell Scientific; 1994:666-687.
    59. Tsui KM, Ng YY, YuWL, Lam TS. The use of fluorescence in situ hybridization in the diagnosis of DiGeorge anomaly. Hong Kong Med J.1995; 1:263-265.
    60. Levy-Mozziconacci A, Piquet C, Heurtevin PC, Philip N. Prenatal diagnosis of 22q11 microdeletion. Prenat Diagn.1997Nov;17(11):1033-7.
    61. Debrus S, Berger G, de Meeus A, Sauer U, Guillaumont S, Voisin M, Bozio A, Demczuk S, Aurias A, Bouvagnet P. Familial non-syndromic conotruncal defects are not associated with a 22q11 microdeletion. Hum Genet.1996 Feb;97(2):138-44.
    62. Derbent M, Yilmaz Z, Baltaci V, Saygili A, Varan B, Tokel K. Chromosome 22q11.2 deletion and phenotypic features in 30 patients with conotruncal heart defects. Am J Med Genet A.2003 Jan 15;116A(2):129-35.
    63. Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, Reed L, McDonald-McGinn D, Chien P, Feuer J, Zackai EH, Emanuel BS, Driscoll DA. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol.1998 Aug;32(2):492-8.
    64. Kessler-Icekson G, Birk E, Weintraub AY, Barhum Y, Kotlyar V, Schlesinger H, Rockah R, Vidne BA, Frisch A. Association of tetralogy of Fallot with a distinct region of del22q11.2. Am J Med Genet.2002 Feb 1;107(4):294-8.
    65. Trainer AH, Morrison N, Dunlop A, Wilson N, Tolmie J. Chromosome 22q11 microdeletions in tetralogy of Fallot. Arch Dis Child.1996 Jan;74(1):62-3.
    66. Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol.2001 Mar;28(1):1-10. Review.
    67. Tobias ES, Morrison N, Whiteford ML, Tolmie JL. Towards earlier diagnosis of 22q11 deletions. Arch Dis Child.1999 Dec;81(6):513-4.
    68. Devine PC, Malone FD. First trimester screening for structural fetal abnormalities: nuchal translucency sonography. Semin Perinatol.1999 Oct;23(5):382-92. Review.
    69. Boudjemline Y, Fermont L, Le Bidois J, Villain E, Sidi D, Bonnet D. Can we predict 22q11 status of fetuses with tetralogy of Fallot? Prenat Diagn.2002 Mar;22(3):231-4.
    70. Machlitt A, Tennstedt C, K?rner H, Bommer C, Chaoui R. Prenatal diagnosis of 22q11 microdeletion in an early second-trimester fetus with conotruncal anomaly presenting with increased nuchal translucency and bilateral intracardiac echogenic foci. Ultrasound Obstet Gynecol.2002 May;19(5):510-3.
    71. Johnson MC, Strauss AW, Dowton SB, et al. Deletion within chromosome 22 is common in patients with absent pulmonary valve syndrome. Am J Cardiol 1995.76(1):66-69.
    72. Kornfeld SJ, Zeffren B, Christodoulou CS, Day NK, Cawkwell G, Good RA. DiGeorge anomaly:a comparative study of the clinical and immunologic characteristics of patients positive and negative by fluorescence in situ hybridization. J Allergy Clin Immunol 2000.105(5):983-987.
    73. Chaoui R, Kalache KD, Heling KS, Tennstedt C, Bommer C. Absent or hypoplastic thymus on ultrasound:a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol.2002 Dec;20(6):546-52.
    74. Barrea C, Yoo SJ, Chitayat D, Valsangiacomo E, Winsor E, Smallhorn JF, Hornberger LK. Assessment of the thymus at echocardiography in fetuses at risk for 22q11.2 deletion. Prenat Diagn.2003 Jan;23(1):9-15.
    75. Momma K, Kondo C, Matsuoka R, Takao A. Cardiac anomalies associated with a chromosome 22q11 deletion in patients with conotruncal anomaly face syndrome. Am J Cardiol.1996 Sep 1;78(5):591-4.
    76. Hofbeck M, Leipold G, Rauch A, Buheitel G, Singer H. Clinical relevance of monosomy 22q11.2 in children with pulmonary atresia and ventricular septal defect. Eur J Pediatr.1999 Apr;158(4):302-7.
    77. Azancot A, Eydoux P, Vuillard E, Cusin V, Baumann C, Blot P. Clinical spectrum of prenatal tetralogy of Fallot. Arch Mal Coeur Vaiss.2000 May;93(5):587-93. French.
    78. Hopkin RJ, Schorry EK, Bofinger M, Saal HM. Increased need for medical interventions in infants with velocardiofacial (deletion 22q11) syndrome. J Pediatr. 2000Aug;137(2):247-9.
    79. Goodship J, Robson SC, Sturgiss S, Cross IE, Wright C. Renal abnormalities on obstetric ultrasound as a presentation of DiGeorge syndrome. Prenat Diagn.1997 Sep;17(9):867-70.
    80. Devriendt K, Van Schoubroeck D, Eyskens B, Vantrappen G, Swillen A, Gewillig M, Dumoulin M, Moerman P, Vandenberghe K, Fryns JP. Polyhydramnios as a prenatal symptom of the digeorge/velo-cardio-facial syndrome. Prenat Diagn. 1998Jan;18(1):68-72.
    81. Volpe P, Marasini M, Caruso G, Marzullo A, Buonadonna AL, Arciprete P, Di Paolo S, Volpe G, Gentile M.22q11 deletions in fetuses with malformations of the outflow tracts or interruption of the aortic arch:impact of additional ultrasound signs. Prenat Diagn.2003 Sep;23(9):752-7.
    82. Oh DC, Min JY, Lee MH, Kim YM, Park SY, Won HS, Kim IK, Lee YH, Yoo SJ, Ryu HM. Prenatal diagnosis of tetralogy of Fallot associated with chromosome 22q11 deletion. J Korean Med Sci.2002 Feb;17(1):125-8.
    83. Yamagishi H. The 22q11.2 deletion syndrome. Keio J Med.2002 Jun;51(2):77-88. Review.
    84. Morrow B, Goldberg R, Carlson C, Das Gupta R, Sirotkin H, Collins J, Dunham I, O'Donnell H, Scambler P, Shprintzen R, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet.1995 Jun;56(6):1391-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700