用户名: 密码: 验证码:
SARA在糖尿病肾病肾小管上皮细胞转分化中的作用与分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病肾病(Diabetic nephropathy, DN)是终末期肾脏疾病(End stage renal disease, ESRD)最常见的原因之一。肾小管间质纤维化(Tubulointerstitial fibrosis, TIF)是糖尿病肾病发展到ESRD的最主要病理改变。。肾小管上皮细胞转分化(Epithelial to mesenchymal transition, EMT)是肾间质纤维化的早期且可逆阶段,细胞外基质(Extracellular matrix, ECM)沉积是肾间质纤维化的主要组织学改变。研究表明高糖可导致肾小管上皮细胞EMT及ECM沉积,而转化生长因子-β1(Transforming growth factor, TGF-β1)在这一过程中起关键作用。TGF-β1/Smads信号通路是TGF-β1诱导EMT及ECM沉积的主要途径,受多个因素的调控。
     Smad锚着蛋白(Smad anchor for receptor activation, SARA)是TGF-β/Smad信号通路的衔接蛋白(Adaptor protein)。SARA可呈递Smad2和Smad3至活化的TGF-βⅠ型受体(TβⅠR),促进其磷酸化,介导TGF-β1信号由其受体活化到核转位的过程。SARA是Smad2磷酸化及核转位的关键因子,而Smad3的活化不依赖于SARA。研究显示SARA与EMT及纤维化呈负相关,靶向SARA的干预策略能够逆转EMT。基于以上分析,我们认为SARA可能与糖尿病肾病肾小管上皮细胞EMT及ECM沉积有关,为此,本实验开展如下的研究。
     目的观察糖尿病肾病患者肾组织中SARA的表达,初步探讨SARA与糖尿病肾病肾间质纤维化的关系。
     方法随机选取经临床和肾脏病理确诊为糖尿病肾病及微小病变患者(原发性肾病)各6人。采用HE、Masson、PASM染色观察肾脏普通病理改变并评价肾间质损伤和胶原沉积程度;免疫组化检测肾脏组织SARA表达变化。
     结果肾脏普通病理结果显示糖尿病肾病患者肾小球系膜基质中重度增生,结节状硬化,基底膜弥漫性或节段性增厚僵硬,肾小管萎缩并代偿性扩张,肾间质可见多灶性纤维化;对照组患者可见系膜细胞及基质轻度增生,基底膜不厚,轻度的肾小管上皮细胞颗粒样变性及空泡变性,肾间质和肾血管未见明显异常。糖尿病肾病患者肾小管间质损伤指数及胶原沉积面积明显高于对照组。免疫组化显示:对照组患者肾小管上皮细胞有明显的SARA表达,在肾小球系膜细胞也有一定量的表达;而糖尿病肾病患者SARA表达明显下调,尤其在肾小管上皮细胞萎缩及发生肾间质纤维化的区域。
     结论糖尿病肾病患者肾组织(特别是肾小管)SARA表达下降;SARA表达下降的同时伴有肾小管间质损伤和胶原沉积,提示SARA可能与糖尿病肾病肾间质纤维化有关。
     目的阐明SARA在高葡萄糖诱导的HK-2细胞EMT及ECM沉积中的作用,探讨以SARA为靶点抑制高葡萄糖诱导的HK-2细胞EMT及ECM沉积的策略。
     方法用高葡萄糖(30mM D-葡萄糖)刺激HK-2细胞,通过细胞免疫荧光、Western blot及Realtime PCR检测波形蛋白(Vimentin)、紧密连接蛋白(Zona occludens-1, ZO-1)及SARA的表达,通过Western blot及Realtime PCR检测纤维粘连蛋白(Fibronectin, FN)和Ⅰ型胶原(CollagenⅠ, ColⅠ)的表达;转染全长SARA质粒(SARA(WT))及敲除SBD结构域的SARA质粒(SARA(dSBD)),再予高糖刺激,检测HK-2细胞Vimentin、ZO-1、FN、ColⅠ的表达变化。
     结果30mM D-葡萄糖刺激后,HK-2细胞ZO-1蛋白及其mRNA表达呈时间依赖性降低,Vimentin、FN和ColⅠ蛋白及其mRNA表达呈时间依赖性升高,而SARA蛋白及其mRNA表达呈时间依赖性下降。与高糖刺激组相比,过表达SARA使HK-2细胞ZO-1表达上调,Vimentin、FN和ColⅠ表达下调;但转染SARA dSBD质粒对高糖诱导的HK-2细胞ZO-1、Vimentin、FN和ColⅠ表达无明显影响。
     结论高糖诱导HK-2细胞转分化及ECM沉积;高糖诱导HK-2细胞SARA表达下调;过表达SARA可逆转HK-2细胞转分化,抑制ECM生成,这一效应依赖于SARA的SBD结构域。
     目的阐明SARA调控高葡萄糖诱导的肾小管上皮细胞EMT及ECM沉积的分子机制。
     方法用高葡萄糖(30mM D-葡萄糖)刺激HK-2细胞,Western blot及Realtime PCR检测TGF-β1、Smad2、Smad3表达,Western blot检测p-Smad2、p-Smad3的表达水平;转染全长SARA质粒及SARA(dSBD)质粒,再予高糖刺激,检测Smad2、Smad3、p-Smad2、p-Smad3的表达变化。
     结果高糖可诱导TGF-β1、Smad3蛋白及其mRNA表达呈时间依赖性上调;Smad2 mRNA表达呈时间依赖性上调,而其蛋白表达呈时间依赖性下调;高糖可促进Smad2和Smad3磷酸化,但Smad3的活化时间更长。过表达SARA可上调Smad2的蛋白表达,但对其mRNA表达水平无明显影响,过表达SARA对Smad3的蛋白及其mRNA表达无明显影响;转染SARA(dSBD)质粒对Smad2、Smad3的表达无明显影响。过表达SARA可延长Smad2活化时间,而Smad3的活化时间相对缩短,从而改变Smad2和Smad3的相对活化水平。转染SARA(dSBD)对Smad2和Smad3的磷酸化无明显影响。
     结论高糖诱导HK-2细胞TGF-β1表达上调,并诱导其通路活化;高糖环境下Smad2和Smad3表达水平改变;SARA通过调节Smad2和Smad3的相对活化水平,调节TGF-β1信号通路的靶效应。
Background Diabetic nephropathy (DN) is one of leading cause of end stage renal disease (ESRD). Tubulointerstitial fibrosis (TIF) is the most common pathological changes in DN. Epithelial to mesenchymal transition (EMT) is the early and reversible stage of TIF and extracellular matrix (ECM) accumulation is the key histological change of TIF. It is established that high glucose can result in EMT and ECM accumulation in renal tubular epithelial cells and Transforming growth factor-β1 (TGF-β1) plays a key role in these process. TGF-β1/Smads is the classical pathway which is involved in TGF-β1 mediated EMT and ECM accumulation. It is reported that TGF-β1/Smad is regulated by many factors such as adaptor protein.
     Smad anchor for receptor activation (SARA) is one adaptor protein which can recruit Smad2 and Smad3 to the activated TGF-βreceptorⅠ(TβⅠR) and promote their phosphorylation. SARA plays an essential role in TGF-βinduced Smad2 activation and Smad3 can be phosphorylated in a SARA-independent way. It is showed that SARA is negatively related to EMT and fibrosis and modulation of SARA can reverse the development of EMT.
     Therefore, SARA may play a key role in the process of EMT of tubular epithelial cells and ECM accumulation in diabetic nephropathy. To this end, experimental research is carried out as follow.
     Objective To investigate the expression of SARA in the kidney and observe the relationship of SARA and TIF in diabetic nephropathy patients.
     Methods 12 patients were enrolled into the study, they were diagnosed as DN (n=6) or minimal changes disease (primary kidney disease, control group, n=6) based on clinical manifestations and renal pathology. Renal pathological changes were observed by HE, Masson and PASM staining. Interstitial damage score and collagen deposition score were evaluated. The expression of SARA was tested by immunohistochemistry and the relationship of SARA and tubular interstitial damage in DN was analyzed.
     Results HE, Masson and PASM staining showed that there were many lesions in the kidneys of DN patients such as moderate to severe proliferation of mesangial matrix, nodular sclerosis, diffuse or segmental thickening of the basement membrane, tubular atrophy and compensatory expansion, local interstitial fibrosis. Meanwhile, the lesions in the kidneys of minimal change disease patients were less severe. There were mild mesangial cell and matrix proliferation, basement membrane is not thick, mild granular degeneration and vacuolar degeneration in renal tubular epithelial cells and no significant abnormalities in interstitial and renal vascular. Interstitial damage score and collagen deposition score in the kidneys of DN patients were higher than that in control group. Immunohistochemistry showed that the expression of SARA was significantly down-regulated in DN patients compared with that in control group.
     Conclusion The expression of SARA is significantly down-regulated in the kidney of DN patients and SARA is negatively related with renal interstitial fibrosis.
     Objective To detect the expression of SARA in human renal proximal epithelial cell lines (HK-2) and investigate the role of SARA in the development of high glucose induced EMT and ECM in HK-2.
     Methods HK-2 cells were exposed to high glucose (30mM D-glucose). The expressions of Vimentin, ZO-1, FN, ColⅠ, SARA were examined by Western blot and Realtime PCR. Furth more, HK-2 cells were transfected with the plasmids of wild-type SARA (SARA (WT)) and SARA mutant (SARA with SBD deletion, called SARA (dSBD)). Then the expressions of Vimentin, ZO-1, FN, ColⅠwere detected.
     Results Stimulation of HK-2 with high glucose resulted in a significant reduce in the expression of ZO-1 and increase in the expressions of Vimentin, FN, ColⅠ. Meanwhile, high glucose reduced the protein and mRNA expression of SARA. Compared with high glucose group, overexpression of SARA in HK-2 unregulated the expression of ZO-1 and downregulated the expression of Vimentin, FN, ColⅠHowever, SARA (dSBD) had no significant effect on the expression ZO-1, Vimentin, FN, ColⅠ
     Conclusion High glucose leads to EMT and ECM accumulation and reduces the expression of SARA in HK-2. Overexpression of SARA can reverse the EMT of HK-2 and inhibit the ECM accumulation, while this effect is depend on the SBD domain of SARA.
     Objective To investigate the mechanism by which SARA modulates the process of high glucose induced EMT and ECM accumulation in renal tubular epithelial cells.
     Methods HK-2 cells was exposed to high glucose (30mM D-glucose) and then the expression of TGF-β1, Smad2, Smad3, p-Smad2, p-Smad3 were detected. Furthermore, HK-2 cells were transfected with the plasmids of wild-type SARA and SARA (dSBD). Then the expressions of Smad2, Smad3, p-Smad2, p-Smad3 were examined.
     Results The expression of TGF-β1 and Smad3 increased after stimulation of high glucose in HK-2. However, the Smad2 mRNA expression level increased while its protein expression was downregulated in a time dependent manner. Smad2 and Smad3 were activated by glucose stimulation and Smad3 kept activation for a longer time than Smad2.
     Overexpression of SARA increased the protein expression of Smad2 and had no effect on its mRNA expression. Meanwhile, Overexpression of SARA didn't change the protein and mRNA expression of Smad3. SARA (dSBD) had no significant effect on both Smad2 and Smad3 expression.
     Overexpression of SARA prolonged the activation time of Smad2 and shortened the activation time of Smad3 and then changed the balance between Smad2 and Smad3. However, SARA (dSBD) had no significant effect on the activation of Smad2 and Smad3.
     Conclusion High glucose induces increase of TGF-β1 and Smad3 and decrease of Smad2 protein expression. SARA can modulate the TGF-β1 pathway by regulating the balance between Smad2 and Smad3.
引文
1 Bojestig M, Arnqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J: Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N Engl J Med 1994;330:15-18.
    2 Ritz E, Stefan ski A:Diabetic nephropathy in type ii diabetes. Am J Kidney Dis 1996;27:167-194.
    3 Raij L:Recommendations for the management of special populations:Renal disease in diabetes. Am J Hypertens 2003;16:46S-49S.
    4 Ina K, Kitamura H, Tatsukawa S, Takayama T, Fujikura Y, Shimada T: Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc 2002;35:87-95.
    5 Ina K, Kitamura H, Tatsukawa S, Miyazaki T, Abe H, Fujikura Y: Contraction of tubulointerstitial fibrosis tissue in diabetic nephropathy, as demonstrated in an in vitro fibrosis model. Virchows Arch 2007;451:911-921.
    6 Kelly DJ, Chanty A, Gow RM, Zhang Y, Gilbert RE:Protein kinase cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy. J Am Soc Nephrol 2005;16:1654-1660.
    7 Kanauchi M, Akai Y, Hashimoto T:Transferrinuria in type 2 diabetic patients with early nephropathy and tubulointerstitial injury. Eur J Intern Med 2002; 13: 190-193.
    8 Phillips AO, Steadman R:Diabetic nephropathy:The central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol 2002;17:247-252.
    9 Wang S, Denichilo M, Brubaker C, Hirschberg R:Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 2001;60:96-105.
    10 Wei M, Gaskill SP, Haffner SM, Stern MP:Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The san antonio heart study. Diabetes Care 1998;21:1167-1172.
    11 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (ukpds 33). Uk prospective diabetes study (ukpds) group. Lancet 1998;352:837-853.
    12 The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The diabetes control and complications trial research group. N Engl J Med 1993;329:977-986.
    13 Hoffman BB, Sharma K, Ziyadeh FN:Potential role of tgf-beta in diabetic nephropathy. Miner Electrolyte Metab 1998;24:190-196.
    14 Chen S, Hong SW, Iglesias-de la Cruz MC, Isono M, Casaretto A, Ziyadeh FN:The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy. Ren Fail 2001;23:471-481.
    15 Oh JH, Ha H, Yu MR, Lee HB:Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney Int 1998;54:1872-1878.
    16 Li J, Zhang Z, Wang D, Wang Y, Li Y, Wu G:Tgf-beta 1/smads signaling stimulates renal interstitial fibrosis in experimental aan. J Recept Signal Transduct Res 2009;29:280-285.
    17 Hills CE, Squires PE:Tgf-betal-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol;31:68-74.
    18 August P, Sharma V, Ding R, Schwartz JE, Suthanthiran M:Transforming growth factor beta and excess burden of renal disease. Trans Am Clin Climatol Assoc 2009;120:61-72.
    19 Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL:Sara, a fyve domain protein that recruits smad2 to the tgfbeta receptor. Cell 1998;95:779-791.
    20 Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA, Blaser K, Schmidt-Weber CB:Sara and hgs attenuate susceptibility to tgf-betal-mediated t cell suppression. Faseb J 2003;17:194-202.
    21 Tao YY, Cui HY, Liu CH:[dynamic characteristics of sara during liver fibrogenesis in rats]. Zhonghua Gan Zang Bing Za Zhi 2006;14:909-913.
    22 Radford MG, Jr., Donadio JV, Jr., Bergstralh EJ, Grande JP:Predicting renal outcome in iga nephropathy. J Am Soc Nephrol 1997;8:199-207.
    23 Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD, Tsai TJ: Pentoxifylline attenuates tubulointerstitial fibrosis by blocking smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol 2005;16:2702-2713.
    24 Najafian B, Kim Y, Crosson JT, Mauer M:Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol 2003;14:908-917.
    25 Bagby SP:Diabetic nephropathy and proximal tubule ros:Challenging our glomerulocentricity. Kidney Int 2007;71:1199-1202.
    26 Gilbert RE, Cooper ME:The tubulointerstitium in progressive diabetic kidney disease:More than an aftermath of glomerular injury? Kidney Int 1999;56:1627-1637.
    27 Brocco E, Fioretto P, Mauer M, Saller A, Carraro A, Frigato F, Chiesura-Corona M, Bianchi L, Baggio B, Maioli M, Abaterusso C, Velussi M, Sambataro M, Virgili F, Ossi E, Nosadini R:Renal structure and function in non-insulin dependent diabetic patients with microalbuminuria. Kidney Int Suppl 1997;63:S40-44.
    28 Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P:Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 2000;26 Suppl 4:8-14.
    29 Fioretto P, Stehouwer CD, Mauer M, Chiesura-Corona M, Brocco E, Carraro A, Bortoloso E, van Hinsbergh VW, Crepaldi G, Nosadini R:Heterogeneous nature of microalbuminuria in niddm:Studies of endothelial function and renal structure. Diabetologia 1998;41:233-236.
    30 Nyengaard JR, Flyvbjerg A, Rasch R:The impact of renal growth, regression and regrowth in experimental diabetes mellitus on number and size of proximal and distal tubular cells in the rat kidney. Diabetologia 1993;36:1126-1131.
    31 Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen UL, Jerums G, Cooper ME: Expression of transforming growth factor-betal and type iv collagen in the renal tubulointerstitium in experimental diabetes:Effects of ace inhibition. Diabetes 1998; 47:414-422.
    32 Slattery C, Campbell E, McMorrow T, Ryan MP:Cyclosporine a-induced renal fibrosis:A role for epithelial-mesenchymal transition. Am J Pathol 2005; 167: 395-407.
    33 Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, Kapus A: Integrity of cell-cell contacts is a critical regulator of tgf-beta 1-induced epithelial-to-myofibroblast transition:Role for beta-catenin. Am J Pathol 2004; 165: 1955-1967.
    34 Rastaldi MP:Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol 2006; 19:407-412.
    35 Liu Y:Epithelial to mesenchymal transition in renal fibrogenesis:Pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004;15:1-12.
    36 Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB:Role of reactive oxygen species in tgf-betal-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 2005;16:667-675.
    37 Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DP:Protein kinase b/akt activity is involved in renal tgf-betal-driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 2008;295:F215-225.
    38 Kanwar YS, Wada J, Sun L, Xie P, Wallner El, Chen S, Chugh S, Danesh FR: Diabetic nephropathy:Mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008;233:4-11.
    39 Ha H, Lee HB:Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl 2000;77:S19-25.
    40 Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z:Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-betal:Potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005; 166:1321-1332.
    41 Zhao BM, Hoffmann FM:Inhibition of transforming growth factor-betal-induced signaling and epithelial-to-mesenchymal transition by the smad-binding peptide aptamer trx-sara. Mol Biol Cell 2006;17:3819-3831.
    42 Holian J, Qi W, Kelly DJ, Zhang Y, Mreich E, Pollock CA, Chen XM:Role of kruppel-like factor 6 in transforming growth factor-betal-induced epithelial-mesenchymal transition of proximal tubule cells. Am J Physiol Renal Physiol 2008;295:F1388-1396.
    43 Song Y, Li C, Cai L:Fluvastatin prevents nephropathy likely through suppression of connective tissue growth factor-mediated extracellular matrix accumulation. Exp Mol Pathol 2004;76:66-75.
    44 Ha H, Lee HB:Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol 2003;14:S246-249.
    45 Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H, Watanabe T, Shinohara H, Takeuchi M, Tsuneyama K, Hashimoto N, Asano M, Takasawa S, Okamoto H, Yamamoto H:Rage control of diabetic nephropathy in a mouse model:Effects of rage gene disruption and administration of low-molecular weight heparin. Diabetes 2006;55:2510-2522.
    46 Fraser D, Brunskill N, Ito T, Phillips A:Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine pdgf loop. Am J Pathol 2003; 163:2565-2574.
    47 Shankland SJ, Scholey JW, Ly H, Thai K:Expression of transforming growth factor-beta 1 during diabetic renal hypertrophy. Kidney Int 1994;46:430-442.
    48 Riser BL, Ladson-Wofford S, Sharba A, Cortes P, Drake K, Guerin CJ, Yee J, Choi ME, Segarini PR, Narins RG:Tgf-beta receptor expression and binding in rat mesangial cells:Modulation by glucose and cyclic mechanical strain. Kidney Int 1999;56:428-439.
    49 Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG:Smads 2 and 3 are differentially activated by transforming growth factor-beta (tgf-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of smads in activated cells is tgf-beta-independent. J Biol Chem 2003;278:11721-11728.
    50 Runyan CE, Hayashida T, Hubchak S, Curley JF, Schnaper HW:Role of sara (smad anchor for receptor activation) in maintenance of epithelial cell phenotype. J Biol Chem 2009;284:25181-25189.
    51 Burt DJ, Gruden G, Thomas SM, Tutt P, Dell'Anna C, Viberti GC, Gnudi L: P38 mitogen-activated protein kinase mediates hexosamine-induced tgfbetal mrna expression in human mesangial cells. Diabetologia 2003;46:531-537.
    52 Saed GM, Diamond MP:Effect of glucose on the expression of type i collagen and transforming growth factor-betal in cultured human peritoneal fibroblasts. Fertil Steril 2003;79:158-163.
    53 Wang X, Shaw S, Amiri F, Eaton DC, Marrero MB:Inhibition of the jak/stat signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells. Diabetes 2002;51:3505-3509.
    54 Xu L, Chen YG, Massague J:The nuclear import function of smad2 is masked by sara and unmasked by tgfbeta-dependent phosphorylation. Nat Cell Biol 2000;2:559-562.
    55 Goto D, Nakajima H, Mori Y, Kurasawa K, Kitamura N, Iwamoto I: Interaction between smad anchor for receptor activation and smad3 is not essential for tgf-beta/smad3-mediated signaling. Biochem Biophys Res Commun 2001;281: 1100-1105.
    56 Flanders KC:Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004;85:47-64.
    57 Fraser D, Wakefield L, Phillips A:Independent regulation of transforming growth factor-betal transcription and translation by glucose and platelet-derived growth factor. Am J Pathol 2002;161:1039-1049.
    58 Holmes DI, Abdel Wahab N, Mason RM:Identification of glucose-regulated genes in human mesangial cells by mrna differential display. Biochem Biophys Res Commun 1997;238:179-184.
    59 Bertoluci MC, Schmid H, Lachat JJ, Coimbra TM:Transforming growth factor-beta in the development of rat diabetic nephropathy. A 10-month study with insulin-treated rats. Nephron 1996;74:189-196.
    60 Inoki K, Haneda M, Maeda S, Koya D, Kikkawa R:Tgf-beta 1 stimulates glucose uptake by enhancing glutl expression in mesangial cells. Kidney Int 1999;55:1704-1712.
    61 Zhang J, Liu Z, Liu H, Li Y, Li L:[regulation of the expression and function of glucose transporter-1 by tgf-beta 1 and high glucose in mesangial cells]. Chin Med J(Engl)2000;113:508-513.
    62 Motojima M, Kakuchi J, Yoshioka T:Association of tgf-beta signaling in angiotensin ii-induced pai-1 mrna upregulation in mesangial cells:Role of pkc. Biochim Biophys Acta 1999;1449:217-226.
    63 Qi W, Chen X, Twigg S, Zhang Y, Gilbert RE, Kelly DJ, Pollock CA:The differential regulation of smad7 in kidney tubule cells by connective tissue growth factor and transforming growth factor-betal. Nephrology (Carlton) 2007; 12:267-274.
    64 Mason RM, Wahab NA:Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003;14:1358-1373.
    65 Weston BS, Wahab NA, Mason RM:Ctgf mediates tgf-beta-induced fibronectin matrix deposition by upregulating active alpha5betal integrin in human mesangial cells. J Am Soc Nephrol 2003;14:601-610.
    66 Iglesias-De La Cruz MC, Ruiz-Torres P, Alcami J, Diez-Marques L, Ortega-Velazquez R, Chen S, Rodriguez-Puyol M, Ziyadeh FN, Rodriguez-Puyol D: Hydrogen peroxide increases extracellular matrix mrna through tgf-beta in human mesangial cells. Kidney Int 2001;59:87-95.
    67 Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME:The differential role of smad2 and smad3 in the regulation of pro-fibrotic tgfbetal responses in human proximal-tubule epithelial cells. Biochem J 2006;393:601-607.
    68 Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB:Functional characterization of transforming growth factor beta signaling in smad2-and smad3-deficient fibroblasts. J Biol Chem 2001;276:19945-19953.
    69 Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, Shafritz DA, Bottinger EP:Deletion of smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006;26:654-667.
    70 Dennler S, Huet S, Gauthier JM:A short amino-acid sequence in mhl domain is responsible for functional differences between smad2 and smad3. Oncogene 1999;18:1643-1648.
    71 Heyer J, Escalante-Alcalde D, Lia M, Boettinger E, Edelmann W, Stewart CL, Kucherlapati R:Postgastrulation smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci U S A 1999;96:12595-12600.
    72 Wang W, Koka V, Lan HY:Transforming growth factor-beta and smad signalling in kidney diseases. Nephrology (Carlton) 2005; 10:48-56.
    73 Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, Kulesz-Martin M, Bottinger E, Wang XJ:Keratinocyte-specific smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 2008; 118:2722-2732.
    1 Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL:Sara, a fyve domain protein that recruits smad2 to the tgfbeta receptor. Cell 1998;95:779-791.
    2 Kuroishi S, Suda T, Fujisawa T, Ide K, Inui N, Nakamura Y, Nakamura H, Chida K:Epithelial-mesenchymal transition induced by transforming growth factor-betal in mouse tracheal epithelial cells. Respirology 2009; 14:828-837.
    3 Li J, Zhang Z, Wang D, Wang Y, Li Y, Wu G:Tgf-betal/smads signaling stimulates renal interstitial fibrosis in experimental aan. J Recept Signal Transduct Res 2009;29:280-285.
    4 Gauldie J, Kolb M, Ask K, Martin G, Bonniaud P, Warburton D:Smad3 signaling involved in pulmonary fibrosis and emphysema. Proc Am Thorac Soc 2006;3:696-702.
    5 Itoh F, Divecha N, Brocks L, Oomen L, Janssen H, Calafat J, Itoh S, Dijke Pt P:The fyve domain in smad anchor for receptor activation (sara) is sufficient for localization of sara in early endosomes and regulates tgf-beta/smad signalling. Genes Cells 2002;7:321-331.
    6 Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C, Fotsis T:Early endosomal regulation of smad-dependent signaling in endothelial cells. J Biol Chem 2002;277:18046-18052.
    7 Hu Y, Chuang JZ, Xu K, McGraw TG, Sung CH:Sara, a fyve domain protein, affects rab5-mediated endocytosis. J Cell Sci 2002;115:4755-4763.
    8 Tang BL, Ng EL:Rabs and cancer cell motility. Cell Motil Cytoskeleton 2009;66:365-370.
    9 Runyan CE, Schnaper HW, Poncelet AC:The role of internalization in transforming growth factor betal-induced smad2 association with smad anchor for receptor activation (sara) and smad2-dependent signaling in human mesangial cells. J Biol Chem 2005;280:8300-8308.
    10 Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJ, Jr., Leof EB: Internalization-dependent and-independent requirements for transforming growth factor beta receptor signaling via the smad pathway. Mol Cell Biol 2002;22:4750-4759.
    11 Lu Z, Murray JT, Luo W, Li H, Wu X, Xu H, Backer JM, Chen YG: Transforming growth factor beta activates smad2 in the absence of receptor endocytosis. J Biol Chem 2002;277:29363-29368.
    12 Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL, Massague J, Shi Y:Structural basis of smad2 recognition by the smad anchor for receptor activation. Science 2000;287:92-97.
    13 Qin BY, Lam SS, Correia JJ, Lin K:Smad3 allostery links tgf-beta receptor kinase activation to transcriptional control. Genes Dev 2002;16:1950-1963.
    14 Xu L, Chen YG, Massague J:The nuclear import function of smad2 is masked by sara and unmasked by tgfbeta-dependent phosphorylation. Nat Cell Biol 2000;2:559-562.
    15 Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG:Smads 2 and 3 are differentially activated by transforming growth factor-beta (tgf-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of smads in activated cells is tgf-beta-independent. J Biol Chem 2003;278:11721-11728.
    16 Runyan CE, Hayashida T, Hubchak S, Curley JF, Schnaper HW:Role of sara (smad anchor for receptor activation) in maintenance of epithelial cell phenotype. J Biol Chem 2009;284:25181-25189.
    17 Goto D, Nakajima H, Mori Y, Kurasawa K, Kitamura N, Iwamoto I: Interaction between smad anchor for receptor activation and smad3 is not essential for tgf-beta/smad3-mediated signaling. Biochem Biophys Res Commun 2001;281: 1100-1105.
    18 Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB:Functional characterization of transforming growth factor beta signaling in smad2-and smad3-deficient fibroblasts. J Biol Chem 2001;276:19945-19953.
    19 Bennett D, Alphey L:Ppl binds sara and negatively regulates dpp signaling in drosophila melanogaster. Nat Genet 2002;31:419-423.
    20 Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X:Gadd34-pplc recruited by smad7 dephosphorylates tgfbeta type i receptor. J Cell Biol 2004;164:291-300.
    21 Tao YY, Cui HY, Liu CH:[dynamic characteristics of sara during liver fibrogenesis in rats]. Zhonghua Gan Zang Bing Za Zhi 2006;14:909-913.
    22 Zhao BM, Hoffmann FM:Inhibition of transforming growth factor-betal-induced signaling and epithelial-to-mesenchymal transition by the smad-binding peptide aptamer trx-sara. Mol Biol Cell 2006;17:3819-3831.
    1 Burt DW, Law AS:Evolution of the transforming growth factor-beta superfamily. Prog Growth Factor Res 1994;5:99-118.
    2 Massague J:Tgf-beta signal transduction. Annu Rev Biochem 1998;67:753-791.
    3 Odekon LE, Blasi F, Rifkin DB:Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent tgf-beta to tgf-beta. J Cell Physiol 1994;158:398-407.
    4 Wrana JL, Attisano L, Wieser R, Ventura F, Massague J:Mechanism of activation of the tgf-beta receptor. Nature 1994;370:341-347.
    5 Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF:Expression cloning of the tgf-beta type ii receptor, a functional transmembrane serine/threonine kinase. Cell 1992;68:775-785.
    6 Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner Ⅰ, Derynck R:The type ii transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 1997;272:14850-14859.
    7 Chen C, Wang XF, Sun L:Expression of transforming growth factor beta (tgfbeta) type iii receptor restores autocrine tgfbetal activity in human breast cancer mcf-7 cells. J Biol Chem 1997;272:12862-12867.
    8 Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P:Identification of smad7, a tgfbeta-inducible antagonist of tgf-beta signalling. Nature 1997;389:631-635.
    9 Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K:Smad6 inhibits signalling by the tgf-beta superfamily. Nature 1997;389:622-626.
    10 Heldin CH, Miyazono K, ten Dijke P:Tgf-beta signalling from cell membrane to nucleus through smad proteins. Nature 1997;390:465-471.
    11 Attisano L, Wrana JL:Signal transduction by the tgf-beta superfamily. Science 2002;296:1646-1647.
    12 Attisano L, Lee-Hoeflich ST:The smads. Genome Biol 2001;2:REVIEWS 3010.
    13 Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O, Mays GG, Sampson BA, Schoen FJ, Gimbrone MA, Jr., Falb D:Vascular mads:Two novel mad-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci U S A 1997;94:9314-9319.
    14 Schiffer M, von Gersdorff G, Bitzer M, Susztak K, Bottinger EP:Smad proteins and transforming growth factor-beta signaling. Kidney Int Suppl 2000;77: S45-52.
    15 Miyazono K, ten Dijke P, Heldin CH:Tgf-beta signaling by smad proteins. Adv Immunol 2000;75:115-157.
    16 Miyazono K:Positive and negative regulation of tgf-beta signaling. J Cell Sci 2000;113(Pt7):1101-1109.
    17 Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M:C-ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999;274: 35269-35277.
    18 Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T:Chromosomal region maintenance 1 (crm1)-dependent nuclear export of smad ubiquitin regulatory factor 1 (smurfl) is essential for negative regulation of transforming growth factor-beta signaling by smad7. J Biol Chem 2003; 278:10716-10721.
    19 Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K:Smurfl regulates the inhibitory activity of smad7 by targeting smad7 to the plasma membrane. J Biol Chem 2002;277:39919-39925.
    20 Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X:Gadd34-pplc recruited by smad7 dephosphorylates tgfbeta type i receptor. J Cell Biol 2004; 164:291-300.
    21 Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG:Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional smad-DNA complex formation. Mol Cell Biol 2007;27:4488-4499.
    22 Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K:Selective inhibitory effects of smad6 on bone morphogenetic protein type i receptors. J Biol Chem 2007;282:20603-20611.
    23 Dong C, Li Z, Alvarez R, Jr., Feng XH, Goldschmidt-Clermont PJ: Microtubule binding to smads may regulate tgf beta activity. Mol Cell 2000;5:27-34.
    24 Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L:Disruption of transforming growth factor-beta signaling in elf beta-spectrin-deficient mice. Science 2003;299:574-577.
    25 Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL:Sara, a fyve domain protein that recruits smad2 to the tgfbeta receptor. Cell 1998;95:779-791.
    26 Xu L, Chen YG, Massague J:The nuclear import function of smad2 is masked by sara and unmasked by tgfbeta-dependent phosphorylation. Nat Cell Biol 2000;2:559-562.
    27 Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG:Smads 2 and 3 are differentially activated by transforming growth factor-beta (tgf-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of smads in activated cells is tgf-beta-independent. J Biol Chem 2003;278:11721-11728.
    28 Runyan CE, Schnaper HW, Poncelet AC:The role of internalization in transforming growth factor betal-induced smad2 association with smad anchor for receptor activation (sara) and smad2-dependent signaling in human mesangial cells. J Biol Chem 2005;280:8300-8308.
    29 Goto D, Nakajima H, Mori Y, Kurasawa K, Kitamura N, Iwamoto I: Interaction between smad anchor for receptor activation and smad3 is not essential for tgf-beta/smad3-mediated signaling. Biochem Biophys Res Commun 2001;281: 1100-1105.
    30 Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA, Blaser K, Schmidt-Weber CB:Sara and hgs attenuate susceptibility to tgf-betal-mediated t cell suppression. Faseb J 2003; 17:194-202.
    31 Tao YY, Cui HY, Liu CH:[dynamic characteristics of sara during liver fibrogenesis in rats]. Zhonghua Gan Zang Bing Za Zhi 2006;14:909-913.
    32 Zhao BM, Hoffmann FM:Inhibition of transforming growth factor-betal-induced signaling and epithelial-to-mesenchymal transition by the smad-binding peptide aptamer trx-sara. Mol Biol Cell 2006; 17:3819-3831.
    33 Kornitzer D, Ciechanover A:Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 2000;182:1-11.
    34 Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, Miyazono K:Arkadia amplifies tgf-beta superfamily signalling through degradation of smad7. Embo J 2003;22:6458-6470.
    35 Lo RS, Massague J:Ubiquitin-dependent degradation of tgf-beta-activated smad2. Nat Cell Biol 1999; 1:472-478.
    36 Lin X, Liang M, Feng XH:Smurf2 is a ubiquitin e3 ligase mediating proteasome-dependent degradation of smad2 in transforming growth factor-beta signaling. J Biol Chem 2000;275:36818-36822.
    37 Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL: Tgf-beta induces assembly of a smad2-smurf2 ubiquitin ligase complex that targets snon for degradation. Nat Cell Biol 2001;3:587-595.
    38 Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K:Ligand-dependent degradation of smad3 by a ubiquitin ligase complex of rocl and associated proteins. Mol Biol Cell 2001;12:1431-1443.
    39 Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A:Degradation of the tumor suppressor smad4 by ww and hect domain ubiquitin ligases. J Biol Chem 2005;280:22115-22123.
    40 Wan M, Cao X, Wu Y, Bai S, Wu L, Shi X, Wang N, Cao X:Jabl antagonizes tgf-beta signaling by inducing smad4 degradation. EMBO Rep 2002;3: 171-176.
    41 Moren A, Hellman U, Inada Y, Imamura T, Heldin CH, Moustakas A: Differential ubiquitination defines the functional status of the tumor suppressor smad4. J Biol Chem 2003;278:33571-33582.
    42 Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL:Smad7 binds to smurf2 to form an e3 ubiquitin ligase that targets the tgf beta receptor for degradation. Mol Cell 2000;6:1365-1375.
    43 Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K:Smurfl interacts with transforming growth factor-beta type i receptor through smad7 and induces receptor degradation. J Biol Chem 2001;276:12477-12480.
    44 Kretzschmar M, Doody J, Massague J:Opposing bmp and egf signalling pathways converge on the tgf-beta family mediator smadl. Nature 1997;389:618-622.
    45 Nonaka K, Shum L, Takahashi I, Takahashi K, Ikura T, Dashner R, Nuckolls GH, Slavkin HC:Convergence of the bmp and egf signaling pathways on smadl in the regulation of chondrogenesis. Int J Dev Biol 1999;43:795-807.
    46 Lo RS, Wotton D, Massague J:Epidermal growth factor signaling via ras controls the smad transcriptional co-repressor tgif. Embo J 2001;20:128-136.
    47 Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S:Regulation of smad signaling by protein kinase c. Faseb J 2001; 15:553-555.
    48 Ghosh AK, Yuan W, Mori Y, Chen S, Varga J:Antagonistic regulation of type i collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/cbp transcriptional coactivators. J Biol Chem 2001;276:11041-11048.
    49 Yao D, Dore JJ, Jr., Leof EB:Fkbp12 is a negative regulator of transforming growth factor-beta receptor internalization. J Biol Chem 2000;275:13149-13154.
    50 Wang T, Donahoe PK:The immunophilin fkbp12:A molecular guardian of the tgf-beta family type i receptors. Front Biosci 2004;9:619-631.
    51 Saika S, Miyamoto T, Tanaka T, Ishida I, Ohnishi Y, Ooshima A:Latent tgfbeta binding protein-1 and fibrillin-1 in human capsular opacification and in cultured lens epithelial cells. Br J Ophthalmol 2001;85:1362-1366.
    52 Saharinen J, Hyytiainen M, Taipale J, Keski-Oja J:Latent transforming growth factor-beta binding proteins (ltbps)-structural extracellular matrix proteins for targeting tgf-beta action. Cytokine Growth Factor Rev 1999;10:99-117.
    53 Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R:Microrna silencing through risc recruitment of eif6. Nature 2007;447:823-828.
    54 Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ:Transforming growth factor-beta and microrna:Mrna regulatory networks in epithelial plasticity. Cells Tissues Organs 2007;185:157-161.
    55 Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R: Microrna-192 in diabetic kidney glomeruli and its function in tgf-beta-induced collagen expression via inhibition of e-box repressors. Proc Natl Acad Sci U S A 2007;104:3432-3437.
    56 Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ: Microrna-155 is regulated by the transforming growth factor beta/smad pathway and contributes to epithelial cell plasticity by targeting rhoa. Mol Cell Biol 2008;28: 6773-6784.
    57 Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R:Tgf-beta activates akt kinase through a microrna-dependent amplifying circuit targeting pten. Nat Cell Biol 2009; 11:881-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700