用户名: 密码: 验证码:
酵母双杂交筛选帕金森病相关基因LRRK2互作蛋白以及LRRK2和UCH-L1基因启动子区与帕金森病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是发病率仅次于老年痴呆症的一种进行性神经系统退行性疾病。它多发于中老年人,在50岁以上的人群中发病率约1%。还有一小部分患者,在儿童期或青春期即发病。PD的主要临床症状表现为静止性震颤、肌肉强直、运动迟缓和姿势不稳。除此以外,PD患者还存在一些其他的特殊症状,包括姿势异常、自主神经机能异常、肌张力障碍和痴呆。PD的主要病理改变为大脑黑质多巴胺能神经元的减少,以及包括黑质、蓝斑、基底核、下丘脑和大脑皮层在内的大脑多个区域神经元内出现嗜酸性包涵体—Lewy小体。但常染色体隐性遗传的青少年型PD(Autosomal Recessive Juvenile Parkinson's disease,AR-JP)除外,这种类型的PD患者中不形成Lewy小体。虽然绝大多数PD患者属于散发,遗传因素在PD发病机制中的作用也不可忽视。相关分子遗传学研究已经定位了12个位点与PD相关,并在其中的8个位点上找到了相关基因,包括与常染色体显性遗传PD相关的α-SYNUCLEIN、LRRK2和UCH-L1,以及与常染色体隐性遗传PD相关的PARKIN、PINK1、DJ-1、ATP13A2和HTRA2.
     LRRK2基因突变是迄今所有遗传因素中与常染色显性遗传PD和原发性PD联系最紧密的。在散发PD患者中,该基因突变的携带者也达到了史无前例的0.5-3%。LRRK2基因是目前为止与PD发病机制联系最密切的因子。UCH-L1基因是泛素羧基末端水解酶家族的一员,能够从泛素化蛋白中水解出泛素单体,并与其结合,在泛素系统中调节泛素单体的浓度。它特异性的表达于神经系统和生殖系统,通过泛素通路参与包括染色质结构的维持、转录激活、核糖体组装、抗原提呈、蛋白迁移、内涵体-溶酶体形成、细胞周期以及细胞凋亡的调控、DNA修复、精子发生和病毒基因表达的调节等在内的各种细胞学机制。在Lewy小体中发现了UCH-L1蛋白的存在,再考虑到它在蛋白酶体通路中的重要作用,UCH-L1基因很可能在PD的发病机制中发挥重要作用。因此,阐明该基因突变引起神经退行性变的致病机制对于了解并最终战胜PD具有特殊重要的意义。
     本研究包括两部分:第一部分是综合生物信息学信息选择LRRK2蛋白的结构域,应用酵母双杂交技术筛选在人胎脑文库中与之互作的蛋白,并通过回交进行初步验证;在第二部分中,在已经定位的LRRK2基因和UCH-L1基因的核心启动子区,设计引物对该区域及其附近的启动子序列进行测序,在PD患者和正常人对照中进行突变检测。
     研究发现:1.LRRK2蛋白可能的互作蛋白:以LRRK2蛋白的COR结构域及其两侧序列为诱饵,应用酵母双杂交技术在人胎脑文库中筛选到6个不同的阳性克隆,它们包含的序列在以下几个基因的开放阅读框中:STRBP、BAG、PTPN23、L3MBTL3、KIAA1783; 2.LRRK2基因启动子区突变筛查结果:在108例散发PD患者和197例正常人对照中的LRRK基因启动子区检测到4个SNP位点-838 g/a、-523 a/g、-275 t/c和-221 g/c,所有变异均以杂合的形式存在,未检测到纯合突变。统计学分析不能排除它们与PD的联系;此外,在PD患者中-551a/g和-469g/t变异各检出1例携带者。在正常人中检出1例-696c/t变异携带者。3.UCH-L1基因启动子区突变筛查结果:在118例散发PD患者和246例正常人对照中的UCH-L1基因启动子区检测到5个SNP位点-892 t/c、-307 g/a、-24 g/a、-16 t/c和+247g/c。统计学分析表明,后面4个SNP位点可能位于同一个单体型中影响PD的发生、发病年龄以及其他临床症状的出现;此外,分别在PD患者和正常人中检出-306 g/a.-232a/g、-150 t/c和-974c/t、-957 c/t、-615 t/g、-165 g/c、+52 t/g各1例。
Parkinson's disease (PD) is the second most common neurogenic disorder after Alzheimer disease (AD). The disease is progressive and mostly occurs during middle or old age, affecting approximately 1% of the population over age 50. In very rare cases, symptoms are developed at young age. The primary symptoms of PD includes resting tremor, muscular rigidity, bradykinesia, and postural instability. Additional features are characteristic postural abnormalities, dysautonomia, dystonic cramps, and dementia. Pathologic features of classic PD include by a loss of dopaminergic neurons in the substantia nigra (SN) and the presence of eosinophilic intracytoplasmic inclusions known as Lewy bodies, in surviving neurons in various areas of the brain,including substantia nigra, locus ceruleus, nucleus basalis, hypothalamus, and cerebral cortex. Autosomal recessive juvenile Parkinson's disease, however, does not have Lewy body pathology. Although the vast majority of PD cases are thought to be sporadic, the role of genetic factors in PD has been valued more and more. Recent progress in molecular genetics studies of families with PD has led to the identification of 12 loci that are linked to certain inherited forms of PD. These includeα-SYNUCLEIN (PARK1), UCH-L1 (PARK5) and LRRK2 (PARK8) leading to autosomal dominant PD, as well as PARKIN (PARK2), PINK1(PARK6), DJ-1 (PARK7), HTRA2(?ARK12) and ATP13A2(PARK9) leading to early onset recessive PD.
     Mutations in LRRK2 are thus far the most frequent genetic cause associated with autosomal dominant and idiopathic PD. Its mutations are found in approximately 2-13% of patients with familial PD. Importantly, mutations have also been associated with sporadic PD with unprecedented 0.5-3% prevalence. LRRK2 has emerged as, perhaps, the most relevant player in PD pathogenesis identified to date. UCH-L1 is a member of a gene family whose products hydrolyze small C-terminal adducts of ubiquitin to generate the ubiquitin monomer. Expression of UCH-L1 is highly specific to neurons and testis/ovary. Besides its hydrolase activity, UCH-L1 can also associate with monoubiquitin to control ubiquitin levels in the ubiquitin pathway, which has been functionally implicated in various cellular mechanisms, including maintenance of chromatin structurre, transcriptional activation, ribosomal assembly, antigen processing, protein translocation, endosome-lysosome biogenesis, control of the cell cycle and programmed cell death, DNA repair, spermatogenesis, and regulation of viral gene expression et al. Its occurrence in Lewy bodies and its function in the proteasome pathway make it a compelling candidate gene in Parkinson's disease. Therefore, study of LRRK2 and UCH-L1 pathogenic mechanisms relating to neurodegeneration is of crucial importance in understanding and combating PD.
     The work includes two parts:In part1, we isolated parts of LRRK2 protein and performed a yeast two-hybrid analysis to isolate and identify its potential binding partners in the human fetal brain cDNA library; In part 2, we sequenced the identified minimum promoter region of LRRK2 gene and UCH-L1 gene in PD patients and unrelated control samples to screen for mutations related with PD.
     Our results show that:1.Potential binding partners of LRRK2 in the human fetal brain cDNA library:Employing a sequence containing full-length of COR domain and part of ROC and MAPKKK domain as bait, we identified STRBP、BAG5、PTPN23、L3MBTL3、RALYL and KIAA1783 as potential binding partners of LRRK2 in the human fetal brain cDNA library through yeast two-hybrid screens; 2.Mutations in the promoter region of LRRK2 gene:In 108 sporadic PD patients and 197 unrelated control samples, we found 4 SNP positions,-838 g/a,-523 a/g,-275 t/c and -221 g/c, in the promoter region of LRRK2 gene and statistical analysis could not completely eliminate the possibility that they are associated with PD. In the region, we also found 2 mutations,-551 a/g and -469 g/t, carried in different PD patients and 1 mutation,-696 c/t,in a healthy control; 3. Mutations in the promoter region of UCH-L1 gene: In 118 sporadic PD patients and 246 unrelated control samples, we found 5 SNP positions,-892 t/c,-307 g/a,-24 g/a,-16 t/c and +247 g/c, in the promoter region of UCH-L1 gene and statistical analysis showed that the last 4 SNP positions may participate in the same haplotype block associated with PD. Besides, we also found-306 g/a,-232 a/g and -150 t/c once in different PD patients and-974 c/t,-957 c/t,-615 t/g,-165 g/c and +52 t/g once in different healthy control.
引文
1. Parkinson, J., An essay on the shaking palsy.1817. J Neuropsychiatry Clin Neurosci, 2002.14(2):p.223-36; discussion 222.
    2. Blandini, F., G. Nappi, C. Tassorelli, et al., Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol,2000.62(1):p.63-88.
    3. Zhang, Z.X., G.C. Roman, Z. Hong, et al., Parkinson's disease in China:prevalence in Beijing, Xian, and Shanghai. Lancet,2005.365(9459):p.595-7.
    4. Twelves, D., K.S. Perkins, and C. Counsell, Systematic review of incidence studies of Parkinson's disease. Mov Disord,2003.18(1):p.19-31.
    5. Polymeropoulos, M.H., J.J. Higgins, L.I. Golbe, et al., Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science,1996.274(5290):p.1197-9.
    6. Polymeropoulos, M.H., C. Lavedan, E. Leroy, et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science,1997.276(5321):p.2045-7.
    7. Matsumine, H., M. Saito, S. Shimoda-Matsubayashi, et al., Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet,1997.60(3):p.588-96.
    8. Kitada, T., S. Asakawa, N. Hattori, et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature,1998.392(6676):p.605-8.
    9. Plowey, E.D., S.J. Cherra,3rd, Y.J. Liu, et al., Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem,2008.
    10. Gasser, T., B. Muller-Myhsok, Z.K. Wszolek, et al., A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat Genet,1998.18(3):p.262-5.
    11. Singleton, A.B., M. Farrer, J. Johnson, et al., alpha-Synuclein locus triplication causes Parkinson's disease. Science,2003.302(5646):p.841.
    12. Leroy, E., R. Boyer, G. Auburger, et al., The ubiquitin pathway in Parkinson's disease. Nature,1998.395(6701):p.451-2.
    13. Valente, E.M., A.R. Bentivoglio, P.H. Dixon, et al., Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet,2001.68(4):p.895-900.
    14. Valente, E.M., P.M. Abou-Sleiman, V. Caputo, et al., Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science,2004.304(5674):p.1158-60.
    15. van Duijn, C.M., M.C. Dekker, V. Bonifati, et al., Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet,2001.69(3):
    p.629-34.
    16. Bonifati, V., P. Rizzu, M.J. van Baren, et al., Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003.299(5604):p.256-9.
    17. Funayama, M, K. Hasegawa, H. Kowa, et al., A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol,2002.51(3):p.296-301.
    18. Zimprich, A., S. Biskup, P. Leitner, et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron,2004.44(4):p. 601-7.
    19. Paisan-Ruiz, C., S. Jain, E.W. Evans, et al., Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron,2004.44(4):p.595-600.
    20. Hicks, A.A., H. Petursson, T. Jonsson, et al., A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol,2002.52(5):p.549-55.
    21. Li, Y.J., W.K. Scott, D.J. Hedges, et al., Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet,2002.70(4):p.985-93.
    22. Ramirez, A., A. Heimbach, J. Grundemann, et al., Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006.38(10):p.1184-91.
    23. Pankratz, N., W.C. Nichols, S.K. Uniacke, et al., Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet, 2002.71(1):p.124-35.
    24. Pankratz, N., W.C. Nichols, S.K. Uniacke, et al., Significant linkage of Parkinson disease to chromosome 2q36-37. Am J Hum Genet,2003.72(4):p.1053-7.
    25. Pankratz, N., W.C. Nichols, S.K. Uniacke, et al., Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet,2003.12(20):p.2599-608.
    26. Scott, W.K., M.A. Nance, R.L. Watts, et al., Complete genomic screen in Parkinson disease:evidence for multiple genes. Jama,2001.286(18):p.2239-44.
    27. Strauss, K.M., L.M. Martins, H. Plun-Favreau, et al., Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet,2005.14(15):p. 2099-111.
    28. Kachergus, J., I.F. Mata, M. Hulihan, et al., Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism:evidence of a common founder across European populations. Am J Hum Genet,2005.76(4):p.672-80.
    29. Gilks, W.P., P.M. Abou-Sleiman, S. Gandhi, et al., A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet,2005.365(9457):p.415-6.
    30. Di Fonzo, A., C.F. Rohe, J. Ferreira, et al., A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet,2005.365(9457):p.412-5.
    31. Nichols, W.C., N. Pankratz, D. Hernandez, et al., Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet,2005.365(9457):p.410-2.
    32. Lesage, S., P. Ibanez, E. Lohmann, et al., G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Ann Neurol,2005.58(5):p.784-7.
    33. Ozelius, L.J., G. Senthil, R. Saunders-Pullman, et al., LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med,2006.354(4):p.424-5.
    34. Bosgraaf, L. and P.J. Van Haastert, Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta,2003.1643(1-3):p.5-10.
    35. Guo, L., W. Wang, and S.G. Chen, Leucine-rich repeat kinase 2:relevance to Parkinson's disease. Int J Biochem Cell Biol,2006.38(9):p.1469-75.
    36. West, A.B., D.J. Moore, S. Biskup, et al., Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A,2005. 102(46):p.16842-7.
    37. Lewis, P.A., E. Greggio, A. Beilina, et al., The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun,2007.357(3):p.668-71.
    38. Li, X., Y.C. Tan, S. Poulose, et al., Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem,2007.103(1):p.238-47.
    39. Smith, W.W., Z. Pei, H. Jiang, et al., Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci,2006.9(10):p.1231-3.
    40. Greggio, E., S. Jain, A. Kingsbury, et al., Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis,2006.23(2):p.329-41.
    41. Day, I.N. and R.J. Thompson, Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett, 1987.210(2):p.157-60.
    42. Wilkinson, K.D., K.M. Lee, S. Deshpande, et al., The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science,1989.246(4930):p.670-3.
    43. Thompson, R.J., J.F. Doran, P. Jackson, et al., PGP 9.5-a new marker for vertebrate neurons and neuroendocrine cells. Brain Res,1983.278(1-2):p.224-8.
    44. Bradbury, J.M. and R.J. Thompson, Immunoassay of the neuronal and neuroendocrine marker PGP 9.5 in human tissues. J Neurochem,1985.44(2):p.651-3.
    45. Lowe, J., H. McDermott, M. Landon, et al., Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol,1990.161(2):p.153-60.
    46. Liu, Y., L. Fallon, H.A. Lashuel, et al., The UCH-L1 gene encodes two opposing
    enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell,2002.111(2):p.209-18.
    47. Lincoln, S., J. Vaughan, N. Wood, et al., Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson's disease. Neuroreport, 1999.10(2):p.427-9.
    48. Osaka, H., Y.L. Wang, K. Takada, et al., Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet,2003.12(16):p.1945-58.
    49. Castegna, A., M. Aksenov, M. Aksenova, et al., Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part Ⅰ:creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med,2002. 33(4):p.562-71.
    50. Choi, J., A.I. Levey, S.T. Weintraub, et al., Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem,2004.279(13):p.13256-64.
    51. Butterfield, D.A., A. Gnjec, H.F. Poon, et al., Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease:an initial assessment. J Alzheimers Dis,2006.10(4):p.391-7.
    52. Sekiguchi, S., A. Takatori, T. Negishi, et al., Localization of ubiquitin carboxyl-terminal hydrolase-L1 in cynomolgus monkey placentas. Placenta,2005.26(1):p.99-103.
    53. Sun, Z.G., W.H. Kong, S. Yan, et al., [The functions in the progesterone-induced oocyte maturation of toad ubiquitin carboxyl-terminal hydrolase (tUCH) is independent of its UCH activity]. Shi Yan Sheng Wu Xue Bao,2003.36(2):p.105-12.
    54. Sekiguchi, S., J. Kwon, E. Yoshida, et al., Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol,2006.169(5):p.1722-9.
    55. Susor, A., Z. Ellederova, L. Jelinkova, et al., Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction,2007.134(4):p.559-68.
    56. Kwon, J., Y.L. Wang, R. Setsuie, et al., Two closely related ubiquitin C-terminal hydrolase isozymes function as reciprocal modulators of germ cell apoptosis in cryptorchid testis. Am J Pathol,2004.165(4):p.1367-74.
    57. Kwon, J., K. Mochida, Y.L. Wang, et al., Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod,2005.73(1):p.29-35.
    58. Wang, Y.L., W. Liu, Y.J. Sun, et al., Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev,2006.73(1):p. 40-9.
    59. Ermisch, B. and K. Schwechheimer, Protein gene product (PGP) 9.5 in diagnostic (neuro-) oncology. An immunomorphological study. Clin Neuropathol,1995.14(3):p.130-6.
    60. Liu, Y., H.A. Lashuel, S. Choi, et al., Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol,2003.10(9):p.837-46.
    61. Ovaa, H., B.M. Kessler, U. Rolen, et al., Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc Natl Acad Sci U S A,2004. 101(8):p.2253-8.
    62. Tanaka, T., Y. Kuramitsu, M. Fujimoto, et al., Downregulation of two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 correlates with high metastatic potentials of human SN12C renal cell carcinoma cell clones. Electrophoresis,2008. 29(12):p.2651-9.
    63. Wang, W.J., Q.Q. Li, J.D. Xu, et al., Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells. Chemotherapy,2008.54(4):p. 291-301.
    64. Kim, H.J., Y.M. Kim, S. Lim, et al., Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene,2009.28(1):p.117-27.
    65. Xiong, H., D. Wang, L. Chen, et al., Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest,2009.119(3):p.650-60.
    66. Tang, B., H. Xiong, P. Sun, et al., Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet,2006.15(11):p.1816-25.
    67. Clark, I.E., M.W. Dodson, C. Jiang, et al., Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature,2006.441(7097):p.1162-6.
    68. Greene, J.C., A.J. Whitworth, I. Kuo, et al., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A,2003. 100(7):p.4078-83.
    69. Pesah, Y., T. Pham, H. Burgess, et al., Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development,2004. 131(9):p.2183-94.
    70. Park, J., S.Y. Kim, G.H. Cha, et al., Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene,2005.361:p.133-9.
    71. Ravagnan, L., T. Roumier, and G. Kroemer, Mitochondria, the killer organelles and their weapons. J Cell Physiol,2002.192(2):p.131-7.
    72. Tanaka, Y., S. Engelender, S. Igarashi, et al., Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet,2001.10(9):p.919-26.
    73. Stefanis, L., K.E. Larsen, H.J. Rideout, et al., Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci,2001. 21(24):p.9549-60.
    74. Chen, L., M.J. Thiruchelvam, K. Madura, et al., Proteasome dysfunction in aged human alpha-synuclein transgenic mice. Neurobiol Dis,2006.23(1):p.120-6.
    75. Spillantini, M.G., M.L. Schmidt, V.M. Lee, et al., Alpha-synuclein in Lewy bodies. Nature,1997.388(6645):p.839-40.
    76. Zimprich, A., B. Muller-Myhsok, M. Farrer, et al., The PARK8 locus in autosomal dominant parkinsonism:confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet,2004.74(1):p.11-9.
    77. Marchler-Bauer, A. and S.H. Bryant, CD-Search:protein domain annotations on the fly. Nucleic Acids Res,2004.32(Web Server issue):p. W327-31.
    78. Gaig, C., M. Ezquerra, M.J. Marti, et al., LRRK2 mutations in Spanish patients with Parkinson disease:frequency, clinical features, and incomplete penetrance. Arch Neurol, 2006.63(3):p.377-82.
    79. Pankratz, N., M.W. Pauciulo, V.E. Elsaesser, et al., Mutations in LRRK2 other than G2019S are rare in a north American-based sample of familial Parkinson's disease. Mov Disord,2006.21(12):p.2257-60.
    80. Tan, E.K., L. Skipper, E. Chua, et al., Analysis of 14 LRRK2 mutations in Parkinson's plus syndromes and late-onset Parkinson's disease. Mov Disord,2006.21(7):p. 997-1001.
    81. Guo, L., P.N. Gandhi, W. Wang, et al., The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res,2007.313(16):p.3658-70.
    82. Ferreira, J.J., L.C. Guedes, M.M. Rosa, et al., High prevalence of LRRK2 mutations in familial and sporadic Parkinson's disease in Portugal. Mov Disord,2007.22(8):p. 1194-201.
    83. Jaleel, M., R.J. Nichols, M. Deak, et al., LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem J, 2007.405(2):p.307-17.
    84. Gloeckner, C.J., N. Kinkl, A. Schumacher, et al., The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet,2006. 15(2):p.223-32.
    85. Di Fonzo, A., Y.H. Wu-Chou, C.S. Lu, et al., A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics,
    2006.7(3):p.133-8.
    86. Tan, E.K., Y. Zhao, L. Skipper, et al., The LRRK2 Gly2385Arg variant is associated with Parkinson's disease:genetic and functional evidence. Hum Genet,2007.120(6):p. 857-63.
    87. Mata, I.F., W.J. Wedemeyer, M.J. Farrer, et al., LRRK2 in Parkinson's disease:protein domains and functional insights. Trends Neurosci,2006.29(5):p.286-93.
    88. Smith, W.W., Z. Pei, H. Jiang, et al., Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A, 2005.102(51):p.18676-81.
    89. Marin, I., The Parkinson disease gene LRRK2:evolutionary and structural insights. Mol Biol Evol,2006.23(12):p.2423-33.
    90. Cohen, O., E. Feinstein, and A. Kimchi, DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. Embo J,1997.16(5):p.998-1008.
    91. Bosgraaf, L., H. Russcher, J.L. Smith, et al., A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. Embo J,2002.21(17):p. 4560-70.
    92. Abysalh, J.C., L.L. Kuchnicki, and D.A. Larochelle, The identification of patsl, a novel gene locus required for cytokinesis in Dictyostelium discoideum. Mol Biol Cell,2003. 14(1):p.14-25.
    93. Van Aelst, L., M. Barr, S. Marcus, et al., Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci U S A,1993.90(13):p.6213-7.
    94. Dachsel, J.C., J.P. Taylor, S.S. Mok, et al., Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord,2007.13(7):p.382-5.
    95. St Johnston, D., N.H. Brown, J.G. Gall, et al., A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A,1992.89(22):p.10979-83.
    96. Bernstein, E., A.A. Caudy, S.M. Hammond, et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001.409(6818):p.363-6.
    97. Knight, S.W. and B.L. Bass, A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science,2001.293(5538):p. 2269-71.
    98. Hutvagner, G., J. McLachlan, A.E. Pasquinelli, et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001.293(5531):p.834-8.
    99. Saunders, L.R., D.J. Perkins, S. Balachandran, et al., Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and-2,
    that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem,2001.276(34):p.32300-12.
    100. Shim, J., H. Lim, R.Y. J, et al., Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell,2002.10(6):p.1331-44.
    101. Patterson, J.B., D.C. Thomis, S.L. Hans, et al., Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology,1995.210(2):p.508-11.
    102. Park, H., M.V. Davies, J.O. Langland, et al., TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci U S A,1994.91(11):p. 4713-7.
    103. Clemens, M.J. and A. Elia, The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res,1997.17(9):p.503-24.
    104. Patel, R.C. and G.C. Sen, PACT, a protein activator of the interferon-induced protein kinase, PKR. Embo J,1998.17(15):p.4379-90.
    105. Schumacher, J.M., K. Lee, S. Edelhoff,'et al., Spnr, a murine RNA-binding protein that is localized to cytoplasmic microtubules. J Cell Biol,1995.129(4):p.1023-32.
    106. Pires-daSilva, A., K. Nayernia, W. Engel, et al., Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol,2001.233(2):p.319-28.
    107. Schumacher, J.M., K. Artzt, and R.E. Braun, Spermatid perinuclear ribonucleic acid-binding protein binds microtubules in vitro and associates with abnormal manchettes in vivo in mice. Biol Reprod,1998.59(1):p.69-76.
    108. Coolidge, C J. and J.G. Patton, A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Res,2000.28(6):p.1407-17.
    109. Ben-Asouli, Y., Y. Banai, Y. Pel-Or, et al., Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell,2002.108(2):p.221-32.
    110. Hsu, L.C., J.M. Park, K. Zhang, et al., The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature,2004.428(6980):p. 341-5.
    111. Kuhen, K.L., X. Shen, E.R. Carlisle, et al., Structural organization of the human gene (PKR) encoding an interferon-inducible RNA-dependent protein kinase (PKR) and differences from its mouse homolog. Genomics,1996.36(1):p.197-201.
    112. Meurs, E., K. Chong, J. Galabru, et al., Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell,1990. 62(2):p.379-90.
    113. Liu, Y.Y. and G.A. Brent, Thyroid hormone-dependent gene expression in differentiated embryonic stem cells and embryonal carcinoma cells:identification of novel thyroid hormone target genes by deoxyribonucleic acid microarray analysis. Endocrinology,2005. 146(2):p.776-83.
    114. Oppenheimer, J.H. and H.L. Schwartz, Molecular basis of thyroid hormone-dependent brain development. Endocr Rev,1997.18(4):p.462-75.
    115. Lazarus, J.H., Thyroid hormones and neurodevelopment. Clin Endocrinol (Oxf),1999. 50(2):p.147-8.
    116. Sakaguchi-Nakashima, A., J.Y. Meir, Y. Jin, et al., LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol,2007.17(7):p. 592-8.
    117. MacLeod, D., J. Dowman, R. Hammond, et al., The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron,2006.52(4):p.587-93.
    118. Takayama, S. and J.C. Reed, Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol,2001.3(10):p. E237-41.
    119. Song, J., M. Takeda, and R.I. Morimoto, Bagl-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol,2001.3(3):p. 276-82.
    120. Briknarova, K., S. Takayama, L. Brive, et al., Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol,2001.8(4):p.349-52.
    121. Hohfeld, J. and S. Jentsch, GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. Embo J,1997.16(20):p.6209-16.
    122. Sondermann, H., C. Scheufler, C. Schneider, et al., Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science,2001. 291(5508):p.1553-7.
    123. Takayama, S., D.N. Bimston, S. Matsuzawa, et al., BAG-1 modulates the chaperone activity of Hsp70/Hsc70. Embo J,1997.16(16):p.4887-96.
    124. Zeiner, M., M. Gebauer, and U. Gehring, Mammalian protein RAP46:an interaction partner and modulator of 70 kDa heat shock proteins. Embo J,1997.16(18):p.5483-90.
    125. Kalia, S.K., S. Lee, P.D. Smith, et al., BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron,2004.44(6):p.931-45.
    126. Auluck, P.K., H.Y. Chan, J.Q. Trojanowski, et al., Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science,2002. 295(5556):p.865-8.
    127. McLean, P.J., H. Kawamata, S. Shariff, et al., TorsinA and heat shock proteins act as molecular chaperones:suppression of alpha-synuclein aggregation. J Neurochem,2002.
    83(4):p.846-54.
    128. Sherman, M.Y. and A.L. Goldberg, Cellular defenses against unfolded proteins:a cell biologist thinks about neurodegenerative diseases. Neuron,2001.29(1):p.15-32.
    129. Adachi, H., M. Katsuno, M. Minamiyama, et al., Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci,2003.23(6):p.2203-11.
    130. Cummings, C.J., Y. Sun, P. Opal, et al., Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet, 2001.10(14):p.1511-8.
    131. Ichioka, F., E. Takaya, H. Suzuki, et al., HD-PTP and Alix share some membrane-traffic related proteins that interact with their Brol domains or proline-rich regions. Arch Biochem Biophys,2007.457(2):p.142-9.
    132. Castiglioni, S., J.A. Maier, and M. Mariotti, The tyrosine phosphatase HD-PTP:A novel player in endothelial migration. Biochem Biophys Res Commun,2007.364(3):p.534-9.
    133. Jankovic, J., M. McDermott, J. Carter, et al., Variable expression of Parkinson's disease:a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology, 1990.40(10):p.1529-34.
    134. Zetusky, W.J., J. Jankovic, and F.J. Pirozzolo, The heterogeneity of Parkinson's disease: clinical and prognostic implications. Neurology,1985.35(4):p.522-6.
    135. Sambrook J, R.D., Molecular Cloning:A Laboratry Manual.3rd ed. 分子克隆实验指南 2002:p.463-471.
    136. Warren, L., R. Gibson, L. Ishihara, et al., A founding LRRK2 haplotype shared by Tunisian, US, European and Middle Eastern families with Parkinson's disease. Parkinsonism Relat Disord,2008.14(1):p.77-80.
    137. Zabetian, C.P., H. Morino, H. Ujike, et al., Identification and haplotype analysis of LRRK2 G2019S in Japanese patients with Parkinson disease. Neurology,2006.67(4):p. 697-9.
    138. Kobayashi, H., H. Ujike, J. Hasegawa, et al., Identification of a risk haplotype of the alpha-synuclein gene in Japanese with sporadic Parkinson's disease. Mov Disord,2006. 21.(12):p.2157-64.
    139. Coulson, J.M., Transcriptional regulation:cancer, neurons and the REST. Curr Biol,2005. 15(17):p. R665-8.
    140. Lunyak, V.V. and M.G. Rosenfeld, No rest for REST:REST/NRSF regulation of neurogenesis. Cell,2005.121(4):p.499-501.
    141. Herdegen, T. and V. Waetzig, AP-1 proteins in the adult brain:facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene,2001.20(19):p.2424-37.
    142. Jentsch, S., The ubiquitin-conjugation system. Annu Rev Genet,1992.26:p.179-207.
    143. Finley, D. and V. Chau, Ubiquitination. Annu Rev Cell Biol,1991.7:p.25-69.
    144. Ciechanover, A. and K. Iwai, The ubiquitin system:from basic mechanisms to the patient bed. IUBMB Life,2004.56(4):p.193-201.
    145. Lowe, J. and R.J. Mayer, Ubiquitin, cell stress and diseases of the nervous system. Neuropathol Appl Neurobiol,1990.16(4):p.281-91.
    146. Wilson, P.O., P.C. Barber, Q.A. Hamid, et al., The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br J Exp Pathol, 1988.69(1):p.91-104.
    147. Doran, J.F., P. Jackson, P.A. Kynoch, et al., Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem,1983.40(6):p.1542-7.
    148. Mann, D.A., A.R. Trowern, F.L. Lavender, et al., Identification of evolutionary conserved regulatory sequences in the 5'untranscribed region of the neural-specific ubiquitin C-terminal hydrolase (PGP9.5) gene. J Neurochem,1996.66(1):p.35-46.
    149. Wilkinson, K.D., Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. Faseb J,1997.11(14):p.1245-56.
    150. Hochstrasser, M., Ubiquitin-dependent protein degradation. Annu Rev Genet,1996.30:p. 405-39.
    151. D'Andrea, A. and D. Pellman, Deubiquitinating enzymes:a new class of biological regulators. Crit Rev Biochem Mol Biol,1998.33(5):p.337-52.
    152. Nishikawa, K., H. Li, R. Kawamura, et al., Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun,2003.304(1):p.176-83.
    153. Kwon, J., The new function of two ubiquitin C-terminal hydrolase isozymes as reciprocal modulators of germ cell apoptosis. Exp Anim,2007.56(2):p.71-7.
    154. Kent, C. and P.J. Clarke, The immunolocalisation of the neuroendocrine specific protein PGP9.5 during neurogenesis in the rat. Brain Res Dev Brain Res,1991.58(1):p.147-50.
    155. Schofield, J.N., I.N. Day, R,J. Thompson, et al., PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Brain Res Dev Brain Res,1995.85(2):p.229-38.
    156. Kwon, J., Y.L. Wang, R. Setsuie, et al., Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod,2004.71(2): p.515-21.
    157. Son, O.L., H.T. Kim, M.H. Ji, et al., Cloning and expression analysis of a Parkinson's
    disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun, 2003.312(3):p.601-7.
    158. Day, I.N., L.J. Hinks, and R.J. Thompson, The structure of the human gene encoding protein gene product 9.5 (PGP9.5), a neuron-specific ubiquitin C-terminal hydrolase. Biochem J,1990.268(2):p.521-4.
    159. Figdor, M.C. and C.D. Stern, Segmental organization of embryonic diencephalon. Nature, 1993.363(6430):p.630-4.
    160. Dawson, S.J., S.O. Yoon, D.M. Chikaraishi, et al., The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter. Nucleic Acids Res,1994.22(6):p.1023-8.
    161. Trowern, A.R. and D.A. Mann, A bi-functional activator/repressor element required for transcriptional activity of the human UCH-L1 gene assembles a neuron-specific protein: single-strand DNA complex. Neurosci Lett,1999.272(1):p.25-8.
    162. Gaston, K. and M. Fried, CpG methylation and the binding of YYl and ETS proteins to the Surf-1/Surf-2 bidirectional promoter. Gene,1995.157(1-2):p.257-9.
    163. Gaston, K. and M. Fried, CpG methylation has differential effects on the binding of YY1 and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes. Nucleic Acids Res,1995.23(6):p.901-9.
    164. Cedar, H., DNA methylation and gene activity. Cell,1988.53(1):p.3-4.
    165. Bittencourt Rosas, S.L., O.L. Caballero, S.M. Dong, et al., Methylation status in the promoter region of the human PGP9.5 gene in cancer and normal tissues. Cancer Lett, 2001.170(1):p.73-9.
    166. A haplotype map of the human genome. Nature,2005.437(7063):p.1299-320.
    167. Wang, D.G., J.B. Fan, C.J. Siao, et al., Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998. 280(5366):p.1077-82.
    168. Li, W.H. and L.A. Sadler, Low nucleotide diversity in man. Genetics,1991.129(2):p. 513-23.
    169. Nickerson, D.A., S.L. Taylor, K.M. Weiss, et al., DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet,1998.19(3):p.233-40.
    170. Chae, J.H., G.H. Stein, and J.E. Lee, NeuroD:the predicted and the surprising. Mol Cells, 2004.18(3):p.271-88.
    171. van Roon-Mom, W.M., S.J. Reid, R.L. Faull, et al., TATA-binding protein in neurodegenerative disease. Neuroscience,2005.133(4):p.863-72.
    172. Pfeifer, A.C., J. Timmer, and U. Klingmuller, Systems biology of JAK/STAT signalling. Essays Biochem,2008.45:p.109-20.
    173. Priyadarshi, A., S.A. Khuder, E.A. Schaub, et al., Environmental risk factors and Parkinson's disease:a metaanalysis. Environ Res,2001.86(2):p.122-7.
    174. Di Monte, D.A., M. Lavasani, and A.B. Manning-Bog, Environmental factors in Parkinson's disease. Neurotoxicology,2002.23(4-5):p.487-502.
    175. Davis, G.C., A.C. Williams, S.P. Markey, et al., Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res,1979.1(3):p.249-54.
    176. Langston, J.W., P. Ballard, J.W. Tetrud, et al., Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science,1983.219(4587):p.979-80.
    177. Morens, D.M., J.W. Davis, A. Grandinetti, et al., Epidemiologic observations on Parkinson's disease:incidence and mortality in a prospective study of middle-aged men. Neurology,1996.46(4):p.1044-50.
    178. Schoenberg, B.S., B.O. Osuntokun, A.O. Adeuja, et al., Comparison of the prevalence of Parkinson's disease in black populations in the rural United States and in rural Nigeria: door-to-door community studies. Neurology,1988.38(4):p.645-6.
    179. Heikkila, R.E., L. Manzino, F.S. Cabbat, et al., Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature,1984.311(5985):p.467-9.
    180. Markey, S.P., J.N. Johannessen, C.C. Chiueh, et al., Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature,1984.311(5985):p. 464-7.
    181. Javitch, J.A., R.J. D'Amato, S.M.. Strittmatter, et al., Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine:uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A,1985.82(7):p.2173-7.
    182. Giovanni, A., B.A. Sieber, R.E. Heikkila, et al., Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. J Pharmacol Exp Ther,1991.257(2):p.691-7.
    183. Dunnett, S.B. and A. Bjorklund, Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature,1999.399(6738 Suppl):p. A32-9.
    184. Chun, H.S., G.E. Gibson, L.A. DeGiorgio, et al., Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem,2001.76(4):p.1010-21.
    185. Langston, J.W., L.S. Forno, J. Tetrud, et al., Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol,1999.46(4):p.598-605.
    186. Sanghera, M.K., K. Manaye, A. McMahon, et al., Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. Neuroreport,1997.8(15):p.3327-31.
    187. Braungart, E., M. Gerlach, P. Riederer, et al., Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings. Neurodegener Dis,2004.1(4-5): p.175-83.
    188. Schneider, J.S., A. Yuwiler, and C.H. Markham, Production of a Parkinson-like syndrome in the cat with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP):behavior, histology, and biochemistry. Exp Neurol,1986.91(2):p.293-307.
    189. Langston, J.W., I. Irwin, E.B. Langston, et al., Pargyline prevents MPTP-induced parkinsonism in primates. Science,1984.225(4669):p.1480-2.
    190. Heikkila, R.E., Differential neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Swiss-Webster mice from different sources. Eur J Pharmacol,1985.117(1):p.131-3.
    191. Jarvis, M.F. and G.C. Wagner, Neurochemical and functional consequences following 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and methamphetamine. Life Sci, 1985.36(3):p.249-54.
    192. Matsubara, K., M.A. Collins, A. Akane, et al., Potential bioactivated neurotoxicants, N-methylated beta-carbolinium ions, are present in human brain; Brain Res,1993.610(1): p.90-6.
    193. Kotake, Y., Y. Tasaki, Y. Makino, et al.,1-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-inducing agent:a novel endogenous amine in mouse brain and parkinsonian CSF. J Neurochem,1995.65(6):p.2633-8.
    194. Neafsey, E.J., R. Albores, D. Gearhart, et al., Methyl-beta-carbolinium analogs of MPP+ cause nigrostriatal toxicity after substantia nigra injections in rats. Brain Res,1995. 675(1-2):p.279-88.
    195. Betarbet, R., T.B. Sherer, G. MacKenzie, et al., Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci,2000.3(12):p.1301-6.
    196. Sherer, T.B., R. Betarbet, C.M. Testa, et al., Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci,2003.23(34):p.10756-64.
    197. Corasaniti, M.T., M.C. Strongoli, D. Rotiroti, et al., Paraquat:a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol,1998.83(1):p.1-7.
    198. Sanchez-Ramos, J.R., F. Hefti, and W.J. Weiner, Paraquat and Parkinson's disease. Neurology,1987.37(4):p.728.
    199. Naylor, J.L., P.S. Widdowson, M.G. Simpson, et al., Further evidence that the blood/brain barrier impedes paraquat entry into the brain. Hum Exp Toxicol,1995.14(7):p.587-94.
    200. Widdowson, P.S., M.J. Farnworth, M.G. Simpson, et al., Influence of age on the passage of paraquat through the blood-brain barrier in rats:a distribution and pathological examination. Hum Exp Toxicol,1996.15(3):p.231-6.
    201. Fredriksson, A., M. Fredriksson, and P. Eriksson, Neonatal exposure to paraquat or MPTP induces permanent changes in striatum dopamine and behavior in adult mice. Toxicol Appl Pharmacol,1993.122(2):p.258-64.
    202. Shimizu, K., K. Ohtaki, K. Matsubara, et al., Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res,2001.906(1-2):p.135-42.
    203. Shimizu, K., K. Matsubara, K. Ohtaki, et al., Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res, 2003.976(2):p.243-52.
    204. Tawara, T., T. Fukushima, N. Hojo, et al., Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol,1996.70(9):p. 585-9.
    205. Manning-Bog, A.B., A.L. McCormack, J. Li, et al., The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice:paraquat and alpha-synuclein. J Biol Chem,2002.277(3):p.1641-4.
    206. Woolley, D.E., D.W. Gietzen, S J. Gee, et al., Does paraquat (PQ) mimic MPP+ toxicity? Proc West Pharmacol Soc,1989.32:p.191-3.
    207. McGrew, D.M., I. Irwin, and J.W. Langston, Ethylenebisdithiocarbamate enhances MPTP-induced striatal dopamine depletion in mice. Neurotoxicology,2000.21(3):p. 309-12.
    208. Morato, G.S., T. Lemos, and R.N. Takahashi, Acute exposure to maneb alters some behavioral functions in the mouse. Neurotoxicol Teratol,1989.11(5):p.421-5.
    209. Takahashi, R.N., R. Rogerio, and M. Zanin, Maneb enhances MPTP neurotoxicity in mice. Res Commun Chem Pathol Pharmacol,1989.66(1):p.167-70.
    210. Soleo, L., G. Defazio, R. Scarselli, et al., Toxicity of fungicides containing ethylene-bis-dithiocarbamate in serumless dissociated mesencephalic-striatal primary coculture. Arch Toxicol,1996.70(10):p.678-82.
    211. Zhang, J., V.A. Fitsanakis, G. Gu, et al., Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat:a link through mitochondrial dysfunction. J Neurochem,2003.84(2):p.336-46.
    212. Sanchez-Ramos, J., A. Facca, A. Basit, et al., Toxicity of dieldrin for dopaminergic neurons in mesencephalic cultures. Exp Neurol,1998.150(2):p.263-71.
    213. Kitazawa, M., V. Anantharam, and A.G. Kanthasamy, Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med,2001.31(11):p.1473-85.
    214. Stedeford, T., F. Cardozo-Pelaez, N. Nemeth, et al., Comparison of base-excision repair capacity in proliferating and differentiated PC 12 cells following acute challenge with dieldrin. Free Radic Biol Med,2001.31(10):p.1272-8.
    215. Kirby, M.L., R.L. Barlow, and J.R. Bloomquist, Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathways. Toxicol Sci,2001.61(1): p.100-6.
    216. Miller, G.W., M.L. Kirby, A.I. Levey, et al., Heptachlor alters expression and function of dopamine transporters. Neurotoxicology,1999.20(4):p.631-7.
    217. Mena, I., O. Marin, S. Fuenzalida, et al., Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology,1967.17(2):p.128-36.
    218. Gorell, J.M., C.C. Johnson, B.A. Rybicki, et al., Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease. Neurotoxicology, 1999.20(2-3):p.239-47.
    219. Coon, S., A. Stark, E. Peterson, et al., Whole-body lifetime occupational lead exposure and risk of Parkinson's disease. Environ Health Perspect,2006.114(12):p.1872-6.
    220. Dexter, D.T., F.R. Wells, A.J. Lees, et al., Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem,1989.52(6):p. 1830-6.
    221. Dexter, D.T., A. Carayon, F. Javoy-Agid, et al., Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain,1991.114 (Pt 4):p.1953-75.
    222. Hirsch, E.C., J.P. Brandel, P. Galle, et al., Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease:an X-ray microanalysis. J Neurochem,1991. 56(2):p.446-51.
    223. Thiruchelvam, M., E.K. Richfield, R.B. Baggs, et al., The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci,2000.20(24):p.9207-14.
    224. Thiruchelvam, M., B.J. Brockel, E.K. Richfield, et al., Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems:environmental risk factors for Parkinson's disease? Brain Res,2000.873(2):p.225-34.
    225. Thiruchelvam, M., E.K. Richfield, B.M. Goodman, et al., Developmental exposure to the pesticides paraquat and maneb and the Parkinson's disease phenotype. Neurotoxicology, 2002.23(4-5):p.621-33.
    226. Sherer, T.B., R. Betarbet, and J.T. Greenamyre, Environment, mitochondria, and Parkinson's disease. Neuroscientist,2002.8(3):p.192-7.
    227. Duvoisin, R.C., R. Eldridge, A. Williams, et al., Twin study of Parkinson disease. Neurology,1981.31(1):p.77-80.
    228. Ward, C.D., R.C. Duvoisin, S.E. Ince, et al., Parkinson's disease in 65 pairs of twins and in a set of quadruplets. Neurology,1983.33(7):p.815-24.
    229. Eldridge, R. and S.E. Ince, The low concordance rate for Parkinson's disease in twins:a possible explanation. Neurology,1984.34(10):p.1354-6.
    230. Ward, C.D., R.C. Duvoisin, S.E. Ince, et al., Parkinson's disease in twins. Adv Neurol, 1984.40:p.341-4.
    231. Kosel, S., E.M. Grasbon-Frodl, J.M. Hagenah, et al., Parkinson disease:analysis of mitochondrial DNA in monozygotic twins. Neurogenetics,2000.2(4):p.227-30.
    232. Piccini, P., D.J. Burn, R. Ceravolo, et al., The role of inheritance in sporadic Parkinson's disease:evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol,1999.45(5):p.577-82.
    233. Someya, S., T. Yamasoba, G.C. Kujoth, et al., The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma. Neurobiol Aging,2008.29(7):p.1080-92.
    234.'Kraytsberg, Y., E. Kudryavtseva, A.C. McKee, et al., Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet,2006.38(5):p.518-20.
    235. Bender, A., K.J. Krishnan, C.M. Morris, et al., High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet,2006. 38(5):p.515-7.
    236. Schapira, A.H., J.M. Cooper, D. Dexter, et al., Mitochondrial complex I deficiency in Parkinson's disease. Lancet,1989.1(8649):p.1269.
    237. Bindoff, L.A., M. Birch-Machin, N.E. Cartlidge, et al., Mitochondrial function in Parkinson's disease. Lancet,1989.2(8653):p.49.
    238. Parker, W.D., Jr., S.J. Boyson, and J.K. Parks, Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol,1989.26(6):p.719-23.
    239. Mizuno, S., T. Fujinaga, M. Tajima, et al., Role of lymphocytes in dogs experimentally re-challenged with canine transmissible sarcoma. Nippon Juigaku Zasshi,1989.51(1):p. 86-95.
    240. Farrer, M., P. Chan, R. Chen, et al., Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol,2001.50(3):p.293-300.
    241. Lucking, C.B., A. Durr, V. Bonifati, et al., Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med,20.00.342(21):p.1560-7.
    242. Muftuoglu, M., B. Elibol, O. Dalmizrak, et al., Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord,2004.19(5):p.544-8.
    243. Kuroda, Y., T. Mitsui, M. Kunishige, et al., Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet,2006.15(6):p.883-95.
    244. Poole, A.C., R.E. Thomas, L.A. Andrews, et al., The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A,2008.105(5):p.1638-43.
    245. Palacino, J.J., D. Sagi, M.S. Goldberg, et al., Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem,2004.279(18):p.18614-22.
    246. Silvestri, L., V. Caputo, E. Bellacchio, et al., Mitochondrial import and enzymatic activity of PINKl mutants associated to recessive parkinsonism. Hum Mol Genet,2005.14(22):p. 3477-92.
    247. Hoepken, H.H., S. Gispert, B. Morales, et al., Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis,2007.25(2):p. 401-11.
    248. Abou-Sleiman, P.M., M.M. Muqit, N.Q. McDonald, et al., A heterozygous effect for PINK1 mutations in Parkinson's disease? Ann Neurol,2006.60(4):p.414-9.
    249. Yang, Y., Y. Ouyang, L. Yang, et al., Pinkl regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A,2008.105(19):p. 7070-5.
    250. Pridgeon, J.W., J.A. Olzmann, L.S. Chin, et al., PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol,2007.5(7):p. e172.
    251. Petit, A., T. Kawarai, E. Paitel, et al., Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem,2005.280(40):p.34025-32.
    252. Wood-Kaczmar, A., S. Gandhi, Z. Yao, et al., PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE,2008.3(6):p. e2455.
    253. Yokota, T., K. Sugawara, K. Ito, et al., Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun, 2003.312(4):p.1342-8.
    254. Meulener, M., A.J. Whitworth, C.E. Armstrong-Gold, et al., Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol,2005.15(17):p.1572-7.
    255. Goldberg, M.S., A. Pisani, M. Haburcak, et al., Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron,2005.45(4):p.489-96.
    256. Yang, Y., S. Gehrke, M.E. Haque, et al., Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A,2005.102(38):p.13670-5.
    257. Zhang, L., M. Shimoji, B. Thomas, et al., Mitochondrial localization of the Parkinson's disease related protein DJ-1:implications for pathogenesis. Hum Mol Genet,2005. 14(14):p.2063-73.
    258. Canet-Aviles, R.M., M.A. Wilson, D.W. Miller, et al., The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A,2004.101(24):p.9103-8.
    259. Martins, L.M., A. Morrison, K. Klupsch, et al., Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol,2004. 24(22):p.9848-62.
    260. Plun-Favreau, H., K. Klupsch, N. Moisoi, et al., The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol,2007.9(11):p. 1243-52.
    261. Arnason, T. and M.J. Ellison, Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol,1994. 14(12):p.7876-83.
    262. Fisk, H.A. and M.P. Yaffe, A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol,1999.145(6):p.1199-208.
    263. Hicke, L., H.L. Schubert, and C.P. Hill, Ubiquitin-binding domains. Nat Rev Mol Cell Biol,2005.6(8):p.610-21.
    264. McNaught, K.S., R. Belizaire, O. Isacson, et al., Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol,2003.179(1):p.38-46.
    265. Tofaris, G.K., A. Razzaq, B. Ghetti, et al., Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem,2003.278(45):p.44405-11.
    266. Wang, X.F., S. Li, A.P. Chou, et al., Inhibitory effects of pesticides on proteasome activity:implication in Parkinson's disease. Neurobiol Dis,2006.23(1):p.198-205.
    267. Betarbet, R., R.M. Canet-Aviles, T.B. Sherer, et al., Intersecting pathways to neurodegeneration in Parkinson's disease:effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis,2006.22(2):p. 404-20.
    268. Wang, C., H.S. Ko, B. Thomas, et al., Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet,2005.14(24):p.3885-97.
    269. Fornai, F., O.M. Schluter, P. Lenzi, et al., Parkinson-like syndrome induced by continuous MPTP infusion:convergent roles of the ubiquitin-proteasome system and
    alpha-synuclein. Proc Natl Acad Sci U S A,2005.102(9):p.3413-8.
    270. Maroteaux, L., J.T. Campanelli, and R.H. Scheller, Synuclein:a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci,1988.8(8):p. 2804-15.
    271. Weinreb, P.H., W. Zhen, A.W. Poon, et al., NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry,1996.35(43):p.13709-15.
    272. El-Agnaf, O.M., R. Jakes, M.D. Curran, et al., Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson's disease. FEBS Lett,1998.440(1-2):p.67-70.
    273. Volles, M.J. and P.T. Lansbury, Jr., Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry,2002.41(14):p.4595-602.
    274. Webb, J.L., B. Ravikumar, J. Atkins, et al., Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem,2003.278(27):p.25009-13.
    275. Chartier-Harlin, M.C., J. Kachergus, C. Roumier, et al., Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet,2004.364(9440):p.1167-9.
    276. Mizuta, I., W. Satake, Y. Nakabayashi, et al., Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson's disease. Hum Mol Genet, 2006.15(7):p.1151-8.
    277. Imai, Y., M. Soda, and R. Takahashi, Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem,2000.275(46):p. 35661-4.
    278. Shimura, H., N. Hattori, S. Kubo, et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet,2000.25(3):p.302-5.
    279. Zhang, Y., J. Gao, K.K. Chung, et al., Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A,2000.97(24):p.13354-9.
    280. Imai, Y., M. Soda, H. Inoue, et al., An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell,2001. 105(7):p.891-902.
    281. Chung, K.K., Y. Zhang, K.L. Lim, et al., Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1:implications for Lewy-body formation in Parkinson disease. Nat Med,2001.7(10):p.1144-50.
    282. Corti, O., C. Hampe, H. Koutnikova, et al., The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate:linking protein biosynthesis and neurodegeneration. Hum Mol Genet,2003.12(12):p.1427-37.
    283. Ren, Y., J. Zhao, and J. Feng, Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci,2003.23(8):p.3316-24.
    284. Staropoli, J.F., C. McDermott, C. Martinat, et al., Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron,2003.37(5):p.735-49.
    285. Choi, P., H. Snyder, L. Petrucelli, et al., SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res,2003.117(2):p.179-89.
    286. West, A.B., D. Maraganore, J. Crook, et al., Functional association of the parkin gene promoter with idiopathic Parkinson's disease. Hum Mol Genet,2002.11(22):p.2787-92.
    287. Tan, E.K., K.Y. Puong, D.K. Chan, et al., Impaired transcriptional upregulation of Parkin promoter variant under oxidative stress and proteasomal inhibition:clinical association. Hum Genet,2005.118(3-4):p.484-8.
    288. Saigoh, K., Y.L. Wang, J.G. Suh, et al., Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet,1999.23(1):p.47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700