用户名: 密码: 验证码:
放射线对小鼠组织线粒体基因和鼻咽癌细胞生物学行为影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:放射线与缬沙坦联合对鼻咽癌细胞生物学效应的影响
     目的:研究血管紧张素Ⅱ(AngⅡ)及其受体(AT1R)阻滞剂缬沙坦(valsartan)和gamma射线联合对人鼻咽癌细胞系(CNE-2)的VEGF基因表达,细胞增生与侵袭,放射敏感性的影响。
     方法:用RT-PCR和ELISA分别检测在干预前后CNE-2细胞血管内皮生长因子(VEGF)的基因和蛋白水平表达变化。用MTT检测AngⅡ对CNE-2细胞增殖的作用。用体外侵袭实验测定AngⅡ及缬沙坦对鼻咽癌细胞CNE-2侵袭力的影响。用成克隆分析法观察缬沙坦与放射联合对CNE-2细胞体外存活效应的影响,用流式细胞术和体外侵袭实验(小室法)检测对细胞凋亡和侵袭能力的影响。
     结果:AngⅡ可以诱导CNE-2表达VEGF上调,对照组与10-9,10-8,10-7mol/L AngⅡ组VEGF分泌分别为246和350,521.5,595.5 pg/105 cell。AngⅡ还能诱导CNE-2增殖和侵袭,经10-9,10-8,10-7mol/L AngⅡ处理后,侵袭细胞数分别为103,111,124,较对照组均有所增高。缬沙坦可以抑制AngⅡ的这些作用(p<0.05)。在与gamma射线联合的实验中,CNE-2细胞经10-9、10-8、10-7mol/L缬沙坦与放射联合作用后,放射增敏比(SER)分别为1.10、1.20、1.36。细胞侵袭能力在6Gy gammma射线和缬沙坦作用下,抑制率分别为8.11%、16.77%、16.49%。经10-7mol/L缬沙坦和8Gy gamma放射线处理并孵育24h后,CNE-2细胞凋亡率为6.17%±0.22%,与单纯放射组2.44%±0.72%相比有所提高(P<0.05)。
     结论:AngⅡ可以诱导鼻咽癌细胞CNE-2增殖和侵袭,AT1R阻滞剂缬沙坦能抑制这种作用,其机制可能涉及对VEGF的表达调控。不仅如此,AT1R阻滞剂还能在体外对细胞有放射增敏作用,与放射联合能抑制细胞侵袭能力和在一定程度诱导细胞凋亡,这些可为缬沙坦体内实验的放射增敏效应提供基础。
     第二部分:放射线诱导下线粒体基因在小鼠组织中的变化
     目的:研究小鼠在放射线下线粒体基因拷贝数的改变。
     方法:所有石蜡组织来源于全身接受gamma和中子线照射的小鼠,相似的总剂量(550cGy)和三种不同水平的剂量率以及照射分次为我们选择的实验分组。来源于5Gy gamma射线照射后的新鲜小鼠组织在24小时后被取出同样应用于该实验。实时定量PCR中绝对定量的方法被选择检测线粒体编码的线粒体基因COX1, ND1, MTATP6和ATPCYB,同时与之相对应的细胞核编码的线粒体基因COX6B, NDUFV1, ATP5A1和CYB5B作为参照基因也会被检测。它们的配对比值最终参与统计计算。
     结果:石蜡组织中,小鼠不同组织对放射线有不同的反应。中子射线在相同总剂量条件下较gamma射线对组织线粒体基因组有更大的损伤作用,并且它会诱导下调线粒体基因的拷贝数,这与gamma射线的上调作用是完全相反的。在单个组织分析中,脾脏组织,心脏组织和肾脏单次照射和较高剂量率的gamma射线实验组才能使线粒体基因的拷贝显著性升高。类似的结果在新鲜小鼠实验中也同样被观察到。除了放射线,在三种被检测的组织中,多种疾病和小鼠死亡年龄都能显著性改变线粒体基因拷贝数。
     结论:小鼠线粒体基因拷贝数会因放射线的作用,所患多种疾病和死亡年龄的改变而发生改变。仅急性gamma放射线才会产生显著影响,所涉及的机制可能与线粒体基因组的复制和修复机制有关。
Part one:Valsartan inhibiting NPC cell line CNE-2 proliferation and invasion and promoting its sensitivity to radiation
     Objectives:To investigate the effects of Angiotensin II and valsartan, an AngiotensinⅡtype 1 receptor (AT1R) blocker, combined with y-radiation on VEGF expression, radiosensitivity, invasive potential, and proliferation activity of nasopharyngeal carcinoma (CNE-2) in vitro.
     Methods:RT-PCR and ELISA assayed VEGF expression and secretion in CNE-2 in vitro. Radiosensitization of valsartan on CNE-2 cell in vitro was investigated by a colony forming assay. Effect of AT1R blocker combined with radiation on invasive potential of CNE-2 cell was evaluated using 24 well Matrigel invasion chambers (Transwell). Apoptosis-inducing effect of valsartan combined with irradiation on apoptosis of CNE-2 was identified by flowcytometry (FCM)
     Results:AT1R was expressed in nasopharyngeal carcinoma cell lines CNE-1 and CNE-2. The expression and secretion of VEGF in CNE-2 could be induced either by Angiotensin II or y-radiation. Furthermore, the suppression of AT1R activation reduced cellular proliferation, invasive potential and resistance to y-radiation in nasopharyngeal carcinoma cells.
     Conclusion:AT1R plays a significant role not only in proliferation and invasion, but also in radiation resistance in nasopharyngeal carcinoma cells, the mechanism of which may be involved in the regulation of VEGF expression and secretion.
     Part two:Radiation-Induced Mitochondrial Genes Changes in Mice
     Objectives:To investigate the effects of radiation on the mice mitochondrial genome in vivo.
     Methods:Paraffin tissues were selected from mice that whole body exposed to gamma or neutron radiation, similar total dose (550 cGy) and 3 levels of dose rates and fractions were set up. Fresh mice tissues were got from normal mice at 24 hours after 5Gy gamma radiation. Absolute quantification of Realtime-PCR was used to assay the mitochondrial-encoded mitochondrial genes COX1, ND1, MTATP6 and ATPCYB while corresponding nucleus-encoded mitochondrial genes COX6B, NDUFV1, ATP5A1 and CYB5B also were tested. The ratios of each pairgenes were calculated finally.
     Results:Different tissues have different response to radiation in paraffin tissues from mice. Neutron radiation can bring worse effect than gamma radiation and mtDNA gene copy number decreased other than increased that showed in gamma radiation group. Just one fraction gamma radiation can significantly increase the mtDNA gene copy number in spleen, heart and kidney. Similar results were observed in fresh mice experiment. Besides radiation, kinds of disease and age of death of mice can also influence the mtDNA gene copy number in all tested tissues.
     Conclusion:mitochondrial DNA gene copy number was varied under radiation, different age of death and disease with tissue specificity. Just acute gamma radiation showed significant effects which may be involved in the mtDNA genome replication and repair mechanism.
引文
1. Friedland W, Dingfelder M, Jacob P, et al. Calculated DNA double-strand break and fragmentation. Radiat Phys Chem.2005; 72:279-286
    2. Ballarini F, Ottolenghi A. A model of chromosome aberration induction and CML incidence at low doses. Radiat Environ Biophys.2004; 43:165-171
    3. Feinendegen L, Hahnfeldt P, Schadt EE, et al. Systems biology and its potential role in radiobiology.Radiat Environ Biophys.2008; 47(1):5-23
    4. Zimmer KG The target theory. In:Cairns J, Stent GS, Watson JD (Eds) Phage and the origins of molecular biology. Expanded edn. Cold Spring Harbor Laboratory, NY.1992
    5. National Cancer Institute/NIH. Available from:http://www.cancer.gov/.
    6. Kamrava M, Bernstein MB, Camphausen K, et al. Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer:the Three Musketeers or just another quixotic combination? MolBiosyst.2009; 5(11):1262-70.
    7. Radiation Therapy Oncology Group (RTOG). Phase III double-blind placebo-controlled trial of conventional concurrent chemoradiation and adjuvant temozolomide plus bevacizumab versus conventional concurrent chemoradiation and adjuvant temozolomide in patients with newly diagnosed glioblastoma. Availablefrom:http: //www.rtog.org/members/protocols/0825/0825.pdf.
    1. Meng Y. Jin, Y. Status and Advances of Genetherapy Combined with Radiotherapy in Malignant Tumor. J. Oncol.2002; 8 (2):63-65.
    2. Chua DT, Ma J, Sham JS, et al. Improvement of survival after addition of induction chemotherapy to radiotherapy in patients with early-stage nasopharyngeal carcinoma: Subgroup analysis of two Phase III trials. Int J Radiat Oncol Biol Phys.2006; 65(5):1300-1306.
    3. Xia J, Xia K, Feng Y, et al. The combination of suicide gene therapy and radiation enhances the killing of nasopharyngeal carcinoma xenographs. J Radiat Res.2007; 45(2):281-289.
    4.杨海峰,唐慰萍.低氧诱导鼻咽癌细胞表达血管内皮生长因子.癌症.2003;22(2):160-163.
    5.赵素萍,王承龙.血管内皮生长因子在鼻咽癌中的表达及其临床意义.湖南医科大学学报.2003;28(2):114-116.
    6. Krishna SM, James S, Balaram P. Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its relation to EBV status. Virus Res.2006; 115(1):85-90.
    7.郭翔,曹素梅,洪明晃,等.VEGF蛋白检测对预测鼻咽癌远处转移风险的价值.癌症.2004;23(10):1171-1175.
    8. Wang Y, Kong W, Yue J, et al. Vascular endothelial growth factor165-regulated nasopharyngeal carcinoma cell lines invasion and migration involve expression and activation of matrix metalloproteinase-2. J Huazhong Univ Sci Technolog Med Sci. 2006; 26(5):621-624.
    9.沙丹,何友兼.VEGF及其受体Flt-1、KDR在鼻咽癌组织中的表达及意义.癌症.2006;25(2):229-234.
    10.姜武忠,廖遇平,赵素萍,等.鼻咽癌组织中转移抑制基因和血管内皮生长因子蛋白表达及其临床意义.中华耳鼻咽喉头颈外科杂志.2006;41(3):200-204.
    11.叶伟军,闵华庆,曹新平,等.P53蛋白、血管内皮生长因子等生物分子指标与鼻咽癌放射敏感性的关系.癌症.2006;25(9):1168-1172.
    12. Touyz RM, Deng LY, He G, et al. Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries:role of extracellular signal-regulated kinases. J Hypertens.2001; 17(7):907-916.
    13. Fujimoto Y, Sasaki T, Tsuchida A, et al. Angiotensin II typel receptor expression in human pancreatic cancer and growth inhibition by Angiotensin II type 1 receptor antagonist. FEBS Lett.2001; 495(3):197-200.
    14. Muscella A, Greco S, Elia MG, et al. Angiotensin II stimulation of Na+/K+ ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J Endocrinol.2002; 173(2):315-323.
    15. Nadal JA, Scicli, GM, Carbini LA, et al. Angiotensin II stimulates migration of retinal microvascular pericytes:involvement of TGF-h and PDGF-BB. Am J Physiol Heart Circ Physiol.2002; 282(2):H739-748.
    16. Williams B, Baker AQ, Gallacher B, et al. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension.1999; 25(5):913-917.
    17. Chua CC, Hamdy RC, Chua, B.H. Up regulation of vascular endothelial growth factor by Angiotensin II in rat heart endothelial cells. Biochim Biophys Acta.1998; 1401 (2):187-194.
    18. Pupilli C, Lasagni L, Romagnani P, et al. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J Am Soc Nephrol.1999; 10(2):245-255.
    19. Helin K, Stoll M, Meffert S, et al. The role of Angiotensin receptors in cardiovascular diseases. Ann Med.1997; 29(1):23-29.
    20. Kikkawa F, Mizuno M, Shibata K, et al. Activation of invasiveness of cervical carcinoma cells by Angiotensin II. Am. J. Obstet. Gynecol.2004; 190(5):1258-1263.
    21. Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C, et al. Renin and Angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer.2004; 90(5):1059-1068.
    22. Koh WP, Yuan JM, Van Den Berg D, et al. Polymorphisms in Angiotensin II type 1receptor and Angiotensin I-converting enzyme genes and breast cancer risk among Chinese women in Singapore. Carcinogenesis.2005; 26(2):459-464.
    23. Arrieta O, Guevara P, Escobar E, et al. Blockage of angiotensin II type 1 receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br. J. Cancer.2005; 92(7):1247-1252.
    24. Egami K, Murohara T, Shimada T, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest.2003; 112(1):67-75.
    25. Suganuma T, Ino K, Shibata K, et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res.2005;11(7):2686-2694.
    26. Uemura H, Ishiguro H, Nakaigawa N, et al. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells:a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther.2003; 2(11):1139-1147.
    27. Wakisaka N, Wen QH, Yoshizaki T, et al. Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma. Laryngoscope.1999; 109(5):810-814.
    28. Guang WH, Sunagawa M, Jie EL, et al. The relationship between microvessel density, the expression of vascular endothelial growth factor (VEGF), and the extension of nasopharyngeal carcinoma. Laryngoscope.2000; 110(12):2066-2069.
    29. Kamath L, Meydani A, Foss F, et al. Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res.2001; 61(15):5933-5940.
    30. Rousseau S, Houle F, Landry J, et al. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene.1997; 15(18):2169-2177.
    31. Hashimoto G, Inoki I, Fujii Y, et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem.2002; 277(39):36288-36295.
    32.傅深,孙宜,章青,等.阻断PI3K/AKT通路对乳腺癌细胞放射敏感性影响的研究.中华放射肿瘤学杂志.2006;15:467-470.
    1. Qiong Wang, Tatjana Paunesku, Gayle, Woloschak. Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades. Radiat Environ Biophys.2010 Mar 23. [Epub ahead of print]
    2. Tomita M, Morohoshi F, Matsumoto Y, et al. Role of DNA double-strand break repair genes in cell proliferation under low dose-rate irradiation conditions. J Radiat Res. 2008; 49:557-64.
    3. Okudaira N, Uehara Y, Fujikawa K, et al. Radiation dose-rate effect on mutation induction in spleen and liver of gpt delta mice. Radiat Res.2010; 173(2):138-47.
    4. Taki K, Wang B, Nakajima T, et al. Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res.2009; 50:241-52.
    5. Nakajima T, Taki K, Wang B, et al. Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res.2008; 49:661-6.
    6. Waldren CA. Classical radiation biology dogma, bystander effects and paradigm shifts. Hum Exp Toxicol.2004; 23:95-100.
    7. Elmore E, Lao XY, Kapadia R, et al. Low doses of very low-dose-rate low-LET radiation suppress radiation-induced neoplastic transformation in vitro and induce an adaptive response. Radiat Res 2008; 169:311-8.
    8. Carnes BA, Wright BJ, Fox C, et al. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory,1970-1992: The JANUS Program Survival and Pathology Data.1995
    9. Corominas M, Sloan SR, Leon J, et al. ras activation in human tumors and in animal model systems. Environ Health Perspect.1991; 93:19-25.
    10. Kim GJ, Chandrasekaran K, Morgan WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability:a review. Mutagenesis.2006; 21:361-7.
    11.Veatch JR, McMurray MA, Nelson ZW, et al. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell.2009; 137:1247-58.
    12. Malakhova L, Bezlepkin VG, Ancancerva V, et al. The increase in mitochondrial DNA copy number in the tissues of gamma-irradiated mice. Cell Mol Biol Lett.2005; 10:721-32.
    13. Zhang H, Maguire D, Swarts S, et al. Replication of murine mitochondrial DNA following irradiation. Adv Exp Med Biol.2009; 645:43-8.
    14. Manoli I, Alesci S, Blackman MR, et al. Mitochondria as key components of the stress response. Trends Endocrinol Metab.2007; 18:190-8.
    15. Shi SR, Cote RJ, Wu L, et al. DNA excancertion from archival formalin-fixed, paraffin-embedded tissue sections based on the antigen retrieval principle:heating under the influence of pH. J Histochem Cytochem.2002; 50:1005-11.
    16. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature.2002; 420:520-62.
    17. Zhang Y, Woloschak GE. Detection of codon 12 point mutations of the K-ras gene from mouse lung adenocarcinoma by 'enriched'PCR. Int J Radiat Biol.1998; 74(1):43-51.
    18. Zhang Y, Woloschak GE. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice. Radiat Res.1997; 148(1):81-9.
    19. He Y, Wu J, Dressman DC, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumor cells. Nature.2010; 464(7288):610-4.
    20. Taylor RW, McDonnell MT, Blakely EL, et al. Genotypes from patients indicate no paternal mitochondrial DNA contribution. Ann Neurol.2003; 54(4):521-4.
    21. Coller HA, Khrapko K, Herrero-Jimenez P, et al. clustering of mutant mitochondrial DNA copies suggests stem cells are common in human bronchial epithelium. Mutat Res. 2005; 578(1-2):256-71
    22. Melov S, Hinerfeld D, Esposito L, et al. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res.1997; 25(5):974-82.
    23. Polyak K, Li Y, Zhu H, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet.1998; 20(3):291-3.
    24. Jones JB, Song JJ, Hempen PM, et al. Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res.2001; 61(4):1299-304.
    25. Carew JS, Nawrocki ST, Xu RH, et al. Increased mitochondrial biogenesis in primary leukemia cells:the role of endogenous nitric oxide and impact on sensitivity to fludarabine. Leukemia.2004; 18(12):1934-40.
    26. Wang S, Wang Z, Dent P, et al. Induction of tumor necrosis factor by bryostatin 1 is involved in synergistic interactions with paclitaxel in human myeloid leukemia cells. Blood.2003; 101(9):3648-57.
    27. Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol Rev.1997; 77(2):425-64.
    28. Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay:lack of change of copy number with age. Nucleic Acids Res.2003; 31(11):e61.
    29. Grahn D, Lombard LS, Carnes BA. The comparative tumorigenic effects of fission neutrons and cobalt-60 gamma rays in the B6CF1 mouse. Radiat Res.1992; 129(1):19-36.
    1. Attardi G, Schatz G Biogenesis of mitochondria. Annu Rev Cell Biol.1988; 4:289-333.
    2. Wiesner RJ, Ruegg JC, Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues. Biochim Biophys Acta. 1992; 183:553-559.
    3. Murphy JE, Nugent S, Seymour C, et al. Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat Res. 2005;585(1-2):127-36.
    4. Copeland, WC, Wachsman, JT, Johnson, FM, et al. Mitochondrial DNA alterations in cancer. Cancer Invest.2002; 20,557-569.
    5. Weissman L, De Souza-Pinto N C., Stevnsner T, et al.DNA repair, mitochondria, and neurodegeneration. Neuroscience.2007; 145(4):1318-1329.
    6. Zhang H, Maguire D, Swarts S, et al. Replication of murine mitochondrial DNA following irradiation. Adv Exp Med Biol.2009; 645:43-8.
    7. Antipova VN, Malakhova LV, Ushakova TE, et al. Increase of mitochondrial DNA copies with low level of DNA repair in tissue cells of gamma-irradiated mice.Radiats Biol Radioecol.2005; 45(4):389-96.
    8. Dianov GL, Souza-Pinto NS, Nyaga G, et al. Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid Res. Mol. Biol.2001; 68:285-297.
    9. Kubota N, Hayashi JI, Inada T,et al. Induction of particular deletion in mtDNA by X rays depends on the inherent radiosensitivity of the cells. Radiat Res.1997; 148:395-398.
    10. Taki K, Wang B, Nakajima T, et al. Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res.2009; 50(3):241-52.
    11. Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem. 2000; 275(5):3343-7.
    12. Yoon YS, Lee JH, Hwang SC, et al. TGF betal induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene.2005; 24:1895-1903.
    13. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem.1997; 66:409-435.
    14. Peterson. Identification of respiratory complexes I and III as mitochondrial sites of damage following exposure to ionizing radiation and nitric oxide. Nitric Oxide.2001; 5:128-136.
    15. Gong B, Chen Q, Almasan A. Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res.1998; 150(5):505-12.
    16. Limoli CL, Giedzinski E, Morgan WF, et al. Persistent oxidative stress in chromosomally unstable cells. Cancer Res.2003; 63:3107-3111.
    17. Kowald. The mitochondrial theory of aging:do damaged mitochondria accumulate by delayed degradation? Exp. Gerontol.1999; 34:605-612.
    18. Rossignol R, Faustin B, Rocher C, et al. Mitochondrial threshold effects. Biochem J.2003; 370(Pt 3):751-62.
    1. Gospodarowicz D, Abraham J A, and Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc.Natl. Acad. Sci. USA 1989; 86:7311-7315
    2. Leung DW, Cachianes G, Kuang W-J, et al.Vascular endothelial growth factor is a secreted angiogenic mitogen. Science.1989; 246:1306-1309
    3. AsanoM, YukitaA, SuzukiH. Wide spectrum ofantitumor activity of neutralizing monoclonal antibody to human vascular endothelial growthfactor. Jpn J Cancer Res. 1999;90 (1):93-100
    4. CshikaY, NakamuraM, TokunagaT, et al. Ribozyme approachto down—regulate vascular endothelial growth factor (VEGF) 189 expression in nonsmall cell lung cancer (NSCLC). Eur J Cancer.2000;36(18):2390-2393
    5. Drake CJ, LaRueA, FerraraN, et al. VEGF regulates cell behavior during vasculogenesis. Dev Biol.2000;224 (2):178-188
    6. Hotz HG, Gill Ps, Masood T, et al. Specific targeting of tumor vascularture by diphtheria toxin vascular endothelial growth factor fusion protein reduces angiogenesis and growth of pancreatic cancer. J Gastrointest surg.2002; 6(2):159
    7. Wang Q, Zhao W, Wu G Valsartan inhibits NPC cell line CNE-2 proliferation and invasion and promotes its sensitivity to radiation. Eur J Cancer Prev.2009 Aug 14
    8. Hanahan D. Signaling vascular morphogenesis and maintenance. Science.1997; 277:48-50
    9. Risau W. Mechanisms of angiogenesis. Nature.1997; 386:671-674
    10. Klasa RJ, List AF, Cheson BD. Rational approaches to design of therapeutics targeting molecular markers.. Hematology Am Soc Hematol Educ Program.2001:443-62
    11. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev.2004; 56:549-80
    12. Brogi E, Wu T, Namiki A, et al. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation.1994; 90:649-652
    13. Namiki A, Brogi E, Kearney M, et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem.1995; 270:31189-31195
    14. Waltenberger J, Mayr U, Pentz S, et al. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation.1996; 94:1647-1654
    15. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors:a novel class of potent and effective antitumor agents. Cancer Res.1999; 59:2615-2622
    16. Waltenberger J, Claesson-Welsh L, Siegbahn A, et al. Different signal transduction properties of KDR and Fltl, two receptors for vascular endothelial growth factor. J Biol Chem.1994; 269:26988-95
    17. Senger DR, Connolly DT, Van de Water L, et al. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 1990; 50:1774-8
    18. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev.2004; 56:549-80
    19. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature.1996; 380:439-42
    20. Aase K, von Euler G, Li X, et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation.2001; 104:358-64
    21.Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development.1996; 122:3829-37
    22. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol.2004; 5:74-80
    23. Baldwin ME, Halford MM, Roufail S, et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol.2005; 25:2441-9
    24. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med.2001; 7:575-83
    25. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature.1995; 376:62-66
    26. Hiratsuka S, Minowa O, Kuno J, et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad.1998; 95:9349-9354
    27. Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad.1998; 95:11709-11714
    28. Kerbel RS. Tumor angiogenesis:past, present and the near future. Carcinogenesis. 2000; 21(3):505-15
    29. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fins family. Oncogene.1990; 5:519-24
    30. MatthewsW, Jordan CT, Gavin M, at al. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad.1991; 88:9026-30
    31.Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999; 18(14):3964-72
    32. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist.2004; 9 Suppl 1:2-10
    33. Harmey JH, Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells:implications for anti-angiogenic therapy. Bioessays.2002; 24(3):280-3
    34. Tran J, Master Z, Yu JL, et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad.2002; 99(7):4349-54
    35. Saito H, Tsujitani S, Ikeguchi M,at al. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br J Cancer.1998 Dec; 78(12):1573-7
    36. Hovinga KE, Stalpers LJ, van Bree C, et al. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastomas multiforme cell lines-a clue to radioresistance? J Neurooncol.2005; 7499-103
    37. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promotes radioresistance by preferential activation of the DNA damage response. Nature.2006; 444:756-60
    38. Sonveaux P, Brouet A, Havaux X, et al. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway:implications for tumor radiotherapy. Cancer Res.2003; 63:1012-9
    39. Burdak-Rothkamm S, Short SC, Folkard M, et al. ATR-dependent radiationinduced gamma H2AX foci in bystander primary human astrocytes and glioma cells. Oncogene. 2007; 26:993-1002
    40. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation:role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell.2004; 6:553-63
    41. Yuan F, Chen Y, Dellian M, et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad.1996; 93:14765-70
    42. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995; 1:27-31
    43. Hess C, Vuong V, Hegyi I, et al. Effect of VEGF receptor inhibitor PTK787/ZK222584 correction of ZK222548 combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer.2001; 85:2010-6
    44. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994; 54:2582-90
    45. Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys.1997; 37:1107-13
    46. Rofstad EK, Henriksen K, Galappathi K, et al. Antiangiogenic treatment with thrombospondin-1 enhances primary tumor radiation response and prevents growth of dormant pulmonary micrometastases after curative radiation therapy in human melanoma xenografts. Cancer Res.2003; 63:4055-61
    47. Kozin SV, Boucher Y, Hicklin DJ, et al. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts Cancer Res.2001;6:39-44
    48. Zips D, Hessel F, Krause M, et al. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice. Int J Radiat Oncol Biol Phys.2005; 61:908-14
    49. Gupta VK, Jaskowiak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J.2002; 8:47-54
    50. Kumar P, Benedict R, Urzua F, et al. Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest.2005; 85:756-67
    51. McDonnell CO, Holden G, Sheridan ME, et al. Improvement in efficacy of chemoradiotherapy by addition of an antiangiogenic agent in a murine tumor model. J Surg Res.2004; 116:19-23
    52. Huber PE, Bischof M, Jenne J, et al. Trimodal cancer treatment:beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res.2005; 65:3643-55
    53. Andratschke N, Nieder C, Price RE, et al. Potential role of growth factors in diminishing radiation therapy neural tissue injury. Semin Oncol.2005; 32(Suppl. 3):S67-70
    54. Kozin SV, Boucher Y, di Tomaso E, et al. Glomerulopathy in mice treated with whole-body irradiation and VEGFR2-blocking antibody. In:49th annual meeting of the Radiation Research Society, Reno, Nevada; 2002; 8-65
    55. Crane CH, Varadhachary G, Pisters P, et al. Novel chemoradiation in localized pancreatic cancer:clinical studies. In:Brown JM, Mehta MP, Nieder C, editors. Multimodal concepts for integration of cytotoxic drugs and radiation therapy, Heidelberg.2006; 215-29
    1. Kellerer AM. Risk estimates for radiation-induced cancer--the epidemiological evidence. Radiat Environ Biophys.2000;39:17-24
    2. Little MP. Cancer and non-cancer effects in Japanese atomic bomb survivors. J Radiol Prot.2009;29:A43-59
    3. Williams JR, Zhang Y, Zhou H, et al. Overview of radiosensitivity of human tumor cells to low-dose-rate irradiation. Int J Radiat Oncol Biol Phys.2008;72:909-917
    4. Seed TM, Tolle DV, Fritz TE, et al. Irradiation-induced erythroleukemia and myelogenous leukemia in the beagle dog:hematology and ultrastructure. Blood. 1977;50:1061-1079
    5. Carnes BA, Fritz TE. Responses of the beagle to protracted irradiation. I. Effect of total dose and dose rate. Radiat Res.1991; 128:125-132
    6. Carnes BA, Fritz TE. Continuous irradiation of beagles with gamma rays. Radiat Res. 1993;136:103-110
    7. Seed T, Carnes B, Tolle D, et al. Blood responses under chronic low daily dose gamma irradiation:Ⅱ. Differential preclinical responses of irradiated female dogs in progression to either aplastic anemia or myeloproliferative disease. Leuk Res.1993; 17:411-420
    8. Seed TM, Carnes BA, Tolle DV, et al. Blood responses under chronic low daily dose gamma irradiation:Ⅰ. Differential preclinical responses of irradiated male dogs in progression to either aplastic anemia or myeloproliferative disease. Leuk Res. 1989;13:1069-1084
    9. Carnes BA, Grahn D, Thomson JF. Dose-response modeling of life shortening in a retrospective analysis of the combined data from the JANUS program at Argonne National Laboratory. Radiat Res.1989; 119:39-56
    10. Taylor GN, Shabestari L, Williams J, et al. Mammary neoplasia in a closed beagle colony. Cancer Res.1976;36:2740-2743
    11. Grahn D, Wright BJ, Carnes BA, et al. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992:The JANUS Program Survival and Pathology Data.1995
    12. Carnes BA, Grahn D. Issues about neutron effects:the JANUS program. Radiat Res. 1991;128:S141-146
    13. Grahn D, Lombard LS, Carnes BA. The comparative tumorigenic effects of fission neutrons and cobalt-60 gamma rays in the B6CF1 mouse. Radiat Res 1992;129:19-36
    14. Carnes BA, Gavrilova N, Grahn D. Pathology effects at radiation doses below those causing increased mortality. Radiat Res.2002;158:187-194
    15. Heidenreich WF, Carnes BA, Paretzke HG Lung cancer risk in mice:analysis of fractionation effects and neutron RBE with a biologically motivated model. Radiat Res. 2006; 166:794-801
    16. Paunesku D, Paunesku T, Wahl A, et al. Incidence of tissue toxicities in gamma ray and fission neutron-exposed mice treated with Amifostine. Int J Radiat Biol. 2008;84:623-634
    17. Grdina DJ, Wright BJ, Carnes BA. Protection by WR-151327 against late-effect damage from fission-spectrum neutrons. Radiat Res.1991;128:S124-127
    18. Carnes BA, Grdina DJ. In vivo protection by the aminothiol WR-2721 against neutron-induced carcinogenesis. Int J Radiat Biol.1992;61:567-576
    19. Churchill ME, Gemmell MA, Woloschak GE. Detection of retinoblastoma gene deletions in spontaneous and radiation-induced mouse lung adenocarcinomas by polymerase chain reaction. Radiat Res.1994; 137:310-316
    20. Zhang Y, Woloschak GE. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice. Radiat Res.1997; 148:81-89
    21. Zhang Y, Woloschak GE. Detection of codon 12 point mutations of the K-ras gene from mouse lung adenocarcinoma by'enriched' PCR. Int J Radiat Biol.1998;74:43-51
    22. Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem.2000;275:3343-3347
    23. Shokolenko N, Venediktova N, Bochkareva A, et al. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res.2009; 37(8):2539-2548.
    24. Manoli I, Alesci S, Blackman MR, et al. Mitochondria as key components of the stress response. Trends Endocrinol Metab.2007;18:190-198
    25. Higuchi M. Regulation of mitochondrial DNA content and cancer. Mitochondrion. 2007;7:53-57
    26. Veatch JR, McMurray MA, Nelson ZW, et al. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell.2009;137:1247-1258
    27. Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res.2009;19:802-815
    28. Chen S, Zhao Y, Zhao G, et al. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects. Mutat Res. 2009;666:68-73
    29. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem.1985;54:1015-1069
    30. Ali ST, Duncan AM, Schappert K, et al. Chromosomal localization of the human gene encoding the 51-kDa subunit of mitochondrial complex I (NDUFV1) to 11q13. Genomics.1993; 18:435-439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700