用户名: 密码: 验证码:
沉默信息调节因子SIRT1对胰腺癌生物学行为的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     探讨SIRT1在胰腺癌组织中的表达及其与胰腺癌临床病例学特征之间的关系;以胰腺癌细胞系PANC-1为研究对象,构建针对人SIRT1基因的shRNA真核表达质粒,应用短发夹RNA (shRNA)技术抑制SIRT1基因表达,通过稳定转染获得靶向SIRT1基因沉默的胰腺癌细胞,研究SIRT1基因表达水平对人胰腺癌PANC-1细胞增殖能力,非锚定依赖性,成瘤性,化疗敏感性和侵袭能力等生物学行为特性的影响,并初步探讨机制。
     研究方法:
     用免疫组织化学染色法和实时荧光定量聚合酶链式反应(PCR)法检测49例胰腺癌组织和相应癌旁正常胰腺组织中SIRT1的表达,比较SIRT1表达与胰腺癌临床病理学特征之间的相关性;用实时荧光定量PCR和免疫印迹(western blot)法检测比较胰腺癌细胞系PANC-1, AsPC-1, BxPC-3中SIRT1的表达水平,选择SIRT1表达水平最高的细胞系作为RNA干扰研究对象。针对SIRT1基因的mRNA序列设计,分别构建3个shRNA真核表达质粒和阴性对照、阳性对照真核表达质粒,经大肠杆菌扩增,酶切、PCR、测序鉴定,转染胰腺癌PANC-1细胞,荧光显微镜观察转染效果,实时荧光定量PCR和western blot检测SIRT1 mRNA和蛋白的被抑制情况,通过优化转染条件实现最佳干扰效果,并选取干扰效果最佳的1个shRNA真核表达质粒和阴性对照质粒转染PANC-1细胞,并通过G418筛选稳定转染SIRT1-shRNA的细胞株,流式细胞术检测稳转细胞绿色荧光蛋白纯度。在建立稳定转染细胞PANC-1-Negative细胞和PANC-1-SIRT1-RNAi细胞基础上,MTT法绘制细胞生长曲线,流式细胞术检测细胞周期变化,软琼脂克隆形成实验检测细胞非锚定依赖性生长能力,TUNEL法检测细胞凋亡比例,实时荧光定量PCR和western blot检测凋亡相关基因p53、FOXO3a、Bax/Bcl-2的表达水平,BALB/c裸鼠成瘤实验鉴定各细胞的成瘤能力,活体荧光成像及移植瘤内SIRT1免疫组织化学染色检测SIRT1在体内移植水平,TUNEL法检测移植瘤内细胞凋亡比例,此外,运用MTT法检测PANC-1细胞,PANC-1-Negative细胞,PANC-1-SIRT1-RNAi细胞对化疗药物5-FU和吉西他滨敏感性的变化,并计算各组细胞的IC50;Transwell小室法检测各组细胞侵袭能力的改变,并通过实时荧光定量PCR和western blot检测各组细胞E-cadherin,MMP-2和MMP-9的表达变化。
     实验结果:
     SIRT1蛋白在胰腺癌组织和癌旁正常胰腺组织中的阳性表达率分别为75.51%和22.45%, SIRT1蛋白和mRNA表达水平基本一致,在胰腺癌组织中表达水平明显高于癌旁正常胰腺组织(P<0.01)。SIRT1表达水平与胰腺癌患者年龄、肿瘤大小、TNM分期、淋巴转移、肝转移相关(P<0.01),与患者性别、肿瘤组织分化程度、肿瘤部位、血管浸润、神经侵犯无关(P>0.05)。胰腺癌细胞系PANC-1的SIRT1表达水平在三株细胞系中最高,可作为RNA干扰试验对象。经测序证实,成功构建SIRT1-shRNA真核表达质粒,插入的DNA片段的序列与设计序列完全一致。重组质粒转染PANC-1细胞后,荧光显微镜下可观察到绿色荧光蛋白表达,实时荧光定量PCR和western blot检测显示SIRT1 mRNA和蛋白水平明显下调;其中以1号重组质粒干扰效应最强。经1号重组质粒和阴性对照质粒转染,G418筛选稳定的细胞株分别命名为PANC-1-SIRT1-RNAi细胞和PANC-1-Negative细胞。PANC-1-SIRT1-RNAi细胞中SIRT1 mRNA和蛋白水平的抑制率分别为95.8%和86.0%。PANC-1细胞、PANC-1-Negative细胞、PANC-1-SIRT1-RNAi细胞的倍增时间分别为(42.76±1.28)h,(44.21±1.95)h,(80.32±6.44)h;与PANC-1细胞和PANC-1-Negative细胞相比,PANC-1-SIRT1-RNAi细胞周期出现显著G0/G1期阻滞,细胞生长受到抑制,非锚定依赖性生长能力亦明显减弱,细胞凋亡比例增高,凋亡基因FOXO3a, Bax的表达明显升高,而p53的表达则无明显变化,抗凋亡基因Bcl-2的表达明显下调,各基因mRNA和蛋白水平表达基本一致,细胞成瘤能力显著下降,且移植瘤中SIRT1的表达持续抑制,细胞凋亡比例显著增高,差异具有统计学意义(P<0.01), PANC-1细胞、PANC-1-Negative细胞、PANC-1-SIRT1-RNAi细胞对5-FU的IC50分别为117.42±31.19μg/mL,104.54±29.22μg/mL和51.37±18.94μg/mL,对吉西他滨的IC50分别为78.32±15.49μg/mL,72.68±20.11μg/mL和21.47±7.53μg/mL, PANC-1-SIRT1-RNAi细胞的化疗敏感性显著提高(P<0.01)。Transwell小室法检测各组细胞侵袭能力发现,PANC-1细胞、PANC-1-Negative细胞、PANC-1-SIRT1-RNAi细胞的穿膜细胞数分别为(59±13)个,(61±10)个和(22±6)个,PANC-1-SIRT1-RNAi细胞侵袭能力显著下降(P<0.01),与PANC-1细胞和PANC-1-Negative细胞比较,PANC-1-SIRT1-RNAi细胞E-cadherin表达水平升高,MMP-2和MMP-9的表达水平则明显抑制(P<0.01),而PANC-1细胞和PANC-1-Negative细胞之间,各项生物学特性无显著性差异(P>0.05)。
     实验结论:
     1. SIRT1在胰腺癌组织中的表达水平显著升高,与患者年龄,肿瘤增殖水平密切相关,并参与胰腺癌的侵袭转移,检测SIRT1的表达有助于判断胰腺癌恶性程度及预后。
     2.成功构建携带以SIRT1为靶向的shRNA重组质粒;以SIRT1表达水平最高的胰腺癌PANC-1细胞作为RNA干扰研究对象,通过稳定转染SIRT1靶向RNA干扰的SIRT1-shRNA质粒和阴性对照control-shRNA质粒,获得PANC-1-SIRT1-RNAi细胞和PANC-1-Negative细胞;为进一步研究SIRT1的功能和肿瘤的基因治疗奠定了基础。
     3.通过SIRT1-shRNA稳定抑制SIRT1在胰腺癌PANC-1细胞中的表达,可显著抑制细胞增殖,减弱非锚定依赖性生长能力,增加细胞凋亡比例,降低细胞成瘤能力,其可能通过凋亡相关基因FOXO3a, Bcl-2/Bax的调节发挥作用。
     4. SIRT1表达水平的降低,使PANC-1-SIRT1-RNAi细胞对5-FU和吉西他滨的化疗敏感性显著增加,并可能通过下调MMP-2和MMP-9的表达水平及上调E-cadherin的表达水平,抑制胰腺癌细胞的体外侵袭能力。
Objective:To investigate the expression and significance of SIRT1 in human pancreatic carcinoma and their association with the clinical pathologic characters. To detect the expression of SIRT1 in three human pancreatic carcinoma cell lines for experimental foundation of SIRT1 RNA interference. Taking human pancreatic carcinoma PANC-1 cells as investigative object, to construct three short hairpin RNA (shRNA) interference expression plasmid vectors of human SIRT1 gene, to assay the expression of SIRT1 in PANC-1 cells after transfecting with recombinant plasmids, and to detect the RNAi effect of shRNA. To investigate the effects and mechanism of SIRT1 gene expression inhibited by shRNA in proliferation, anchorage-independence, tumorigenic ability, chemosensitivity and invasion of PANC-1 cells.
     Methods:Immunohistochemistry staining and real-time quantitative polymerase chain reaction (PCR) were used to detect the expression of SIRT1 in 49 pancreatic carcinoma tissues and homologous nontumorous normal pancreatic tissues. The correlations among the variety of expression of SIRT1 and pancreatic carcinoma clinical pathologic characters were statistically analyze. Real-time quantitative PCR and western blot were were used to compare the expression levels of human pancreatic carcinoma cell lines PANC-1, AsPC-1 and BxPC-3. The cell line with the highest SIRT1 expression was chosed for RNA interference. Three plasmid expression vectors coding for shRNA targeting SIRT1 gene sequence, a positive control vector and a negative control vector were constructed. The recombinant plasmids were amplified in Ecoli. DH5 and identified by restriction digestion, PCR and sequencing. The vectors were transfected into PANC-1 cells. The green fluorescent protein (GFP) was observed by fluorescence microscope. SIRT1 expression was assayed with real-time quantitative PCR and western blot. The vector with the best interference effect and the negative control-shRNA vector were stable transfected into PANC-1 cells by G418 screening. The stable transfection cells of PANC-1-Negative cells and PANC-1-SIRT1-RNAi cells had been obtained. The growth curves of PANC-1 cells, PANC-1-Negative cells and PANC-1-SIRT1-RNAi cells were drawed by MTT method. The cell cycles were detected by flow cytometry. Colony forming efficiency in soft agar was used for anchorage-independent growth. The ratios of cell apoptosis were detected by TUNEL (TdT-mediated dUTP nick end labeling) test. The expressions of p53, FOXO3a, Bax and Bcl-2 were assayed by real-time quantitative PCR and western blot. Xenografts in BALB/c nude mice were used for evaluating the tumorigenic ability. The expression of SIRT1 in xenografts was detected by flourescence image formation in vivo and immunohistochemistry staining and the ratios of cell apoptosis in xenografts were detected by TUNEL test. The chemosensitivities of PANC-1 cells, PANC-1-Negative cells and PANC-1-SIRT1-RNAi cells to 5-FU and gemcitabine hydrochloride were detected by MTT, and each ICsowas calculated. Invasive abilities of PANC-1 cells, PANC-1-Negative cells and PANC-1-SIRT1-RNAi cells were observed with Transwell cell culture chambers, and the expressions of E-cadherin, MMP-2 and MMP-9 were assayed by real-time quantitative PCR and western blot.
     Results:The SIRT1 protein expression rate of the tumor tissues was 75.51%, significantly higher than that of homologous nontumorous normal pancreatic tissues (22.45%), which was coincident with the SIRT1 mRNA expression. The SIRT1 expression was significantly associated with patients'age, tumor size, TNM stage, nodes invasion and hepatic metastasis (P<0.01), and there was no rela tionship between SIRT1 expression and patients'sex, histologic grading, location of the tumor and blood vessel or nerves invasion (P>0.05). The SIRT1 expression of cell line PANC-1 was the highest in three human pancreatic carcinoma cell lines. The successful construction of recombinant plasmids was confirmed by DNA sequencing of the inserted segments. Transfection of shRNA plasmids significantly down-regulated SIRT1 expression in PANC-1cells. Recombinant plasmid 1 had the strongest effect. The stable transfections of recombinant plasmid of No.l and recombinant plasmid of negative control-shRNA were named PANC-1-SIRT1-RNAi cells and PANC-1-Negative cells, respectively. PANC-1-SIRT1-RNAi cells had SIRT1 inhibition ratio of 95.8% at the mRNA level and 86.0% at the protein level. The doubling generation time of PANC-1, PANC-1-Negative and PANC-1-SIRT1-RNAi cells was (42.76±1.28) h, (44.21±1.95) h and (80.32±6.44) h, respectively. Compared with PANC-1 and PANC-1-Negative cells, the proliferation of PANC-1-SIRTl-RNAi cells was inhibited with G0/G1 stage blocking, the anchorage-independence was weaken obviously, the ratio of cell apoptosis were raised up. Proapoptotic factors such as FOXO3a and Bax were up-regulated in PANC-1-SIRT1-RNAi cells, but p53 was not affectted. In the other hand, antiapoptotic Bcl-2 was down-regulated reciprocally. The expression of these factors was coincident in mRNA and protein levels. The tumorigenic ability of PANC-1-SIRTl-RNAi cells was decreased significantly. The apoptosis cell ratios of PANC-1, PANC-1-Negative and PANC-1-SIRT1-RNAi xenografts were (4.16±2.44)%, (5.23±1.41)% and (58.84±10.86)%, respectively (P<0.01). The 5-FU IC50s of PANC-1, PANC-1-Negative and PANC-1-SIRT1-RNAi cells were 117.42±31.19μg/mL,104.54±29.22μg/mL and 51.37±18.94μg/mL, respectively, and the gemcitabine IC50S were 78.32±15.49μg/mL, 72.68±20.11μg/mL and 21.47±7.53μg/mL, respectively. PANC-1-SIRT1-RNAi cells were much more chemosensitive to 5-FU and gemcitabine hydrochloride than PANC-1 cells and PANC-1-Negative cells (P<0.01). The Transwell invasive chambers found that the numbers of PANC-1 cells, PANC-1-Negative cells and PANC-1-SIRT1-RNAi cells were (59±13), (61±10) and (22±6), respectively. The invasive ability of PANC-1-SIRTl-RNAi cells decreased dramatically (P<0.01) through promoting expression of E-cadherin and inhibiting expressions of MMP-2 and MMP-9 in mRNA and protein levels. There was no difference between PANC-1 cells and PANC-1-Negative cells in above-mentioned bionomics (P>0.05).
     Conclusion:
     1. The SIRT1 expression was raised up in pancreatic carcinoma tissues, significantly associated with the patients'age, tumor proliferation, and could participate in invasion and metastasis of pancreatic carcinoma. SIRT1 expression may be regarded as a parameter of determining the degree of malignancy and prognosis of pancreatic carcinoma.
     2. The pancreatic carcinoma cell line PANC-1 was chosed for experiments of RNA interference. Plasmid vector expressing shRNA against SIRT1 has been successfully constructed and it can down-regulate SIRT1 expression after stable transfected into PANC-1 cells, which could facilitate further studies of SIRT1 functions and its application in tumour gene therapy.
     3. It could inhibit proliferation, weaken anchorage-independence, induce apoptosis and depress tumorigenic ability in PANC-1 cells by inhibitting the expression of SIRT1 gene stably.
     4. PANC-1-SIRT1-RNAi cells which the expression of SIRT1 gene were significantly inhibited were enhanced chemosensitivity to 5-FU and gemcitabine hydrochloride. Furthermore, the invasion of PANC-1-SIRT1-RNAi cells were inhibited obviously in vitro.
引文
[1]Blander G, Guarente L. The Sir2 family of protein deacetylases [J]. Annu Rev Biochem.2004;73:417-35.
    [2]Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 aetivation by resveratrol [J]. Biol Chem,2005,280 (17):17187-17195.
    [3]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan [J]. Nature,2003,425 (6954):191-196.
    [4]Lavu S, Boss O, Elliott PJ, et al. Sirtuins—novel therapeutic targets to treat age-associated diseases [J]. Nat Rev Drug Discov.2008 Oct;7(10):841-53.
    [5]Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction [J]. Genes Dev.2006 Nov 1;20(21):2913-21.
    [6]Guarente L. Sir2 links chromatin silencing, metabolism, and aging [J]. Genes Dev. 2000 May 1;14(9):1021-6.
    [7]Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation [J]. PLOS Genet,2006,2 (3): e40.
    [8]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses [J]. Cell,2005,123 (3):437-448.
    [9]Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin.2008 Mar-Apr;58(2):71-96.
    [10]沈魁,钟守先,张圣道。胰腺外科学[M]。人民卫生出版社,2000:405-440。
    [11]Hawes RH, Xiong Q, Waxman I, et al. A multispecialty approach to the diagnosis and management of pancreatic cancer [J]. Am J Gastroenterol.2000 Jan;95(1):17-31.
    [12]Real FX, Cibrian-Uhalte E, Martinelli P. Pancreatic cancer development and progression:remodeling the model. Gastroenterology.2008 Sep;135(3):724-8.
    [13]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science,2004,305 (5682):390-392.
    [14]Nemoto S, Fergussen MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science,2004,306 (5704):2105-2108.
    [15]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2 alpha promotes cell survival under stress [J]. Cell,2001,107 (2):137-148.
    [16]Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence [J]. Embo J,2002,21 (10): 2383-2396.
    [17]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog(SIRTI)-deficient mice [J]. Proc Nail Acad Sci USA, 2003,100 (19):10794-10799.
    [18]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science,2004,305 (5682):390-392.
    [19]Nemoto S, Fergussen MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science,2004,306 (5704):2105-2108.
    [1]Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin.2008 Mar-Apr;58(2):71-96.
    [2]沈魁,钟守先,张圣道。胰腺外科学[M]。人民卫生出版社,2000:405-440。
    [3]Hawes RH, Xiong Q, Waxman I, et al. A multispecialty approach to the diagnosis and management of pancreatic cancer [J]. Am J Gastroenterol.2000 Jan; 95(1):17-31.
    [4]Blander G, Guarente L. The Sir2 family of protein deacetylases [J]. Annu Rev Biochem.2004;73:417-35.
    [5]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan [J]. Nature,2003,425 (6954):191-196.
    [6]Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1 [J]. J Biol Chem.2007 Mar 2;282(9):6823-32.
    [7]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [J]. Cell.2001 Oct 19; 107(2):137-48.
    [8]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J]. Science.2004 Mar 26;303 (5666):2011-5.
    [9]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science.2004 Jul 16;305 (5682):390-2.
    [10]Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1 [J]. Nature.2005 Mar 3;434(7029):113-8.
    [11]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging [J]. Oncogene.2007 Aug 13;26(37):5489-504.
    [12]Lavu S, Boss O, Elliott PJ, et al. Sirtuins—novel therapeutic targets to treat age-associated diseases [J]. Nat Rev Drug Discov.2008 Oct;7(10):841-53.
    [13]Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction [J]. Genes Dev.2006 Nov 1;20(21):2913-21.
    [14]Guarente L. Sir2 links chromatin silencing, metabolism, and aging [J]. Genes Dev. 2000 May 1; 14(9):1021-6.
    [15]Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer [J]. Cancer Res.2007;67:6612-6618.
    [16]Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors [J]. Leukemia.2005;19:1751-1759.
    [17]Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer [J]. Biotechnol J.2007;2:1360-1368.
    [18]Hida Y, Kubo Y, Murao K, et al. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease [J]. Arch Dermatol Res.2007;299:103-106.
    [19]Lim CS. SIRT1:Tumor promoter or tumor suppressor? [J] Med Hypotheses. 2006;67:341-344.
    [20]Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase [J]. Cell.2001;107:149-159.
    [21]Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator [J]. Cancer Cell.2008; 13:454-463.
    [22]Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science.2004 Dec 17;306(5704):2105-8.
    [23]Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells [J]. Oncogene.2006 Jan 12;25(2):176-85.
    [24]Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation [J]. PLoS Genet.2006;2:e40.
    [25]Jang KY, Hwang SH, Kwon KS, et al. SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma [J]. Am J Surg Pathol.2008 Oct;32(10):1523-31.
    [26]Tseng RC, Lee CC, Hsu HS, et al. Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients [J]. Neoplasia.2009 Aug;11(8):763-70.
    [27]Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer [J]. Cancer Res.2009 Mar 1;69(5):1702-5.
    [1]Anekonda TS, Reddy PH. Nuronal protection by sirtuins in Alzheimer's disease [J]. Neurochemistry,2006,96 (2):305-313.
    [2]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan [J]. Nature,2003,425 (6954):191-196.
    [3]Novina CD, Sharp PA. The RNAi revolution [J]. Nature,2004,430 (6996):161-164.
    [4]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001,411 (6836): 494-498.
    [5]Carmichael G. Medicine:silencing viruses with RNA [J]. Nature,2002,418 (6896): 379-380.
    [6]Hannon GJ. RNA interference [J]. Nature,2002,418 (6894):244-251.
    [7]Tuschl T. Expanding small RNA interference [J]. Nat Biotechnol,2002,20 (5): 446-468.
    [8]Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence specific silencing in mammalian cells [J]. Genes Dev,2002,16(8):948-958.
    [9]Miyagishi M, Sumimoto H, Miyoshi H, et al. Optimization of an siRNA-expression system with a mutated hairpin and its significant suppressive effects upon HIV vector-mediated transfer into mammalian cell [J]. J Gene Med,2004,6 (7):715-723.
    [10]张琴,巢时斌,付文金,等。体外构建的小片段发夹RNA对肿瘤细胞端粒酶基因表达的干扰[J]。中国普通外科杂志,2008,17(2):148-152。
    [11]Boshart M, Weber F, Jahn G, et al. A very strong enhancer is located upstream of an immediate early gene of human eytomegalovirus [J]. Cell,1985,41(2):521-530.
    [12]Chang K, Elledge SJ, Hannon GJ. Lessons from nature:microRNA-based shRNA libraries [J]. Nat Methods.2006; 3 (9):707-714.
    [13]Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells [J]. RNA.2003; 9(1):112-123.
    [14]Frye RA. Characterization of five human cDNAs with homology to the yeast Sir2 gene:SIR2-like proteins (sirtuins) metabolize NAD and may have ADP-ribosyltransferse activity [J]. Bochem Biophy Res Commun,1999,260 (1): 273-279.
    [15]Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism:understanding longevity [J]. Nat Rev Mol Cell Biol,2005,6(4):298-305.
    [16]Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors [J]. Cell,2004,116 (4):551-563.
    [17]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2 alpha promotes cell survival under stress [J]. Cell,2001,107 (2):137-148.
    [18]Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence [J]. Embo J,2002,21 (10): 2383-2396.
    [19]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog(SIRTI)-deficient mice [J]. Proc Nail Acad Sci USA, 2003,100 (19):10794-10799.
    [20]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science,2004,305 (5682): 390-392.
    [21]Nemoto S, Fergussen MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science,2004,306 (5704):2105-2108.
    [22]Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells [J]. Oncogene,2006,25 (2):176-185.
    [23]Ford J, Jiang M, Milner J. Cancer specific functions of SIRT1 enable human epithehal cancer cell growth and survival [J]. Cancer Res,2005,65 (22):10457-10463.
    [1]Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin.2008 Mar-Apr;58(2):71-96.
    [2]Mimeault M, Batra SK. Recent progress on normal and malignant pancreatic stem/progenitor cell research:therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer [J]. Gut.2008 Oct;57(10): 1456-68.
    [3]Azios NG, Krishnamoorthy L, Harris M, et al. Estrogen and resveratrol regulate Rac and Cdc42 signaling to the actin cytoskeleton of metastatic breast cancer cells [J]. Neoplasia.2007 Feb;9(2):147-58.
    [4]Wey JS, Gray MJ, Fan F, et al. Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells [J]. Br J Cancer. 2005 Jul 25;93(2):233-41.
    [5]Archer SL. Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD+ -dependent mechanism:recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling [J]. Cire Res, 2005,97:4-7.
    [6]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress [J]. Cell,2001,107 (2):137-148.
    [7]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science,2004,305 (5682): 390-392.
    [8]Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation [J]. PLOS Genet,2006,2 (3): e40.
    [9]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses [J]. Cell,2005,123 (3):437-448.
    [10]Jung-Hynes B, Ahmad N. Role of p53 in the anti-proliferative effects of Sirtl inhibition in prostate cancer cells [J]. Cell Cycle.2009 May 15;8(10):1478-83.
    [11]Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival [J]. Cancer Res.2005 Nov 15;65 (22):10457-63.
    [12]Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells [J]. Oncogene.2006 Jan 12;25(2):176-85.
    [13]Li YJ, Ji XR. Relationship between expression of E-cadherin-catenin complex and clinicopathologic characteristics of pancreatic cancer [J]. World J Gastroenterol.2003 Feb;9(2):368-72.
    [14]Piao M, Mori D, Satoh T, et al. Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis [J]. Endothelium.2006 Jul-Aug;13 (4):249-66.
    [15]Guarino M. Epithelial-mesenchymal transition and tumour invasion [J]. Int J Biochem Cell Biol.2007;39(12):2153-60.
    [16]von Burstin J, Eser S, Paul MC, et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex [J]. Gastroenterology.2009 Jul;137(1):361-71,371.e1-5.
    [17]Sarrio D, Palacios J, Hergueta-Redondo M, et al. Functional characterization of E-and P-cadherin in invasive breast cancer cells [J]. BMC Cancer.2009 Mar 3;9:74.
    [18]Tryndyak VP, Beland FA, Pogribny IP. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells [J]. Int J Cancer.2009 Oct 16.
    [19]Masaki T, Sugiyama M, Matsuoka H, et al. Matrix metalloproteinases may contribute compensationally to tumor invasion in T1 colorectal carcinomas [J]. Anticancer Res. 2003 Sep-Oct;23(5b):4169-73.
    [20]Nagakawa Y, Aoki T, Kasuya K, et al. Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer [J]. Pancreas.2002 Mar;24(2):169-78.
    [1]McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol.2003 Jan;23(1):38-54.
    [2]Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol.2005 Oct;9(5):431-40.
    [3]Wang C, Wang MW, Tashiro S, et al. Roles of SIRT1 and phosphoinositide 3-OH kinase/protein kinase C pathways in evodiamine-induced human melanoma A375-S2 cell death. J Pharmacol Sci.2005 Apr;97(4):494-500.
    [4]Hisahara S, Chiba S, Matsumoto H, et al. Transcriptional regulation of neuronal genes and its effect on neural functions:NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci.2005 Jul;98(3):200-4.
    [5]Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell.2005 Feb 25;120(4):473-82.
    [6]Kahyo T, Mostoslavsky R, Goto M, et al. Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett.2008 Jul 23;582(17):2479-83.
    [7]Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res.2007 Jul 15;67(14):6612-8.
    [8]Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia.2005 Oct; 19(10):1751-9.
    [9]Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J.2007 Nov;2(11):1360-8.
    [10]Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell.2001 Oct 19; 107(2):149-59.
    [11]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell.2001 Oct 19; 107(2):137-48.
    [12]Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell.2008 May;13(5):454-63.
    [13]Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell.2004 Feb 20;116(4):551-63.
    [14]Dai JM, Wang ZY, Sun DC, et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol.2007 Jan;210(1):161-6.
    [15]Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J.2007 Nov 1;407(3):451-60.
    [16]Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet.2006 Mar; 2(3):e40.
    [17]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science.2004 Jul 16;305 (5682):390-2.
    [18]Yuan Z, Zhang X, Sengupta N, et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell.2007 Jul 6;27(1):149-62.
    [19]Li K, Casta A, Wang R, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem.2008 Mar 21;283(12):7590-8.
    [20]Liang XJ, Finkel T, Shen DW, et al. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res.2008 Sep;6(9):1499-506.
    [21]Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res.2005 Nov 15;65(22):10457-63.
    [22]Kojima K, Ohhashi R, Fujita Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun.2008 Aug 29;373(3):423-8.
    [23]Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet.2003 Feb;33(2):197-202.
    [24]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell.2005 Nov 4;123(3):437-48.
    [25]Bourguignon LY, Xia W, Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem.2009 Jan 30;284(5):2657-71.
    [26]Heltweg B, Gatbonton T, Schuler AD, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res.2006 Apr 15;66(8):4368-77.
    [27]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science.2004 Mar 26;303(5666):2011-5.
    [28]Li Y, Yokota T, Gama V, et al. Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ.2007 Dec;14(12):2058-67.
    [29]Dey S, Bakthavatchalu V, Tseng MT, et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis.2008 Oct;29(10):1920-9.
    [30]Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature.2008 Jan 31;451 (7178):587-90.
    [31]Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature.2008 Jan 31;451(7178):583-6.
    [1]Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417-35.
    [2]Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun.1999 Jun 24;260(1):273-9.
    [3]Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell.2005 Oct;16(10):4623-35.
    [4]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell.2001 Oct 19; 107(2):137-48.
    [5]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science.2004 Mar 26; 303 (5666):2011-5.
    [6]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science.2004 Jul 16; 305(5682):390-2.
    [7]Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature.2005 Mar 3;434(7029):113-8.
    [8]Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem.2007 Mar 2;282(9):6823-32.
    [9]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging. Oncogene.2007 Aug 13;26(37):5489-504.
    [10]Lavu S, Boss O, Elliott PJ, et al. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov.2008 Oct;7(10):841-53.
    [11]Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev.2006 Nov 1;20(21):2913-21.
    [12]Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev.2000 May 1; 14(9):1021-6.
    [13]Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature.1997 Aug 28;388(6645):900-3.
    [14]Kamel C, Abrol M, Jardine K, et al. SirTl fails to affect p53-mediated biological functions. Aging Cell.2006 Feb;5(1):81-8.
    [15]Guarente L. Calorie restriction and SIR2 genes—towards a mechanism. Mech Ageing Dev.2005 Sep;126(9):923-8.
    [16]Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res.2007;67:6612-6618.
    [17]Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia.2005; 19:1751-1759.
    [18]Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J.2007;2:1360-1368.
    [19]Hida Y, Kubo Y, Murao K, et al. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res.2007;299:103-106.
    [20]Lim CS. SIRT1:Tumor promoter or tumor suppressor? Med Hypotheses. 2006;67:341-344.
    [21]Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell.2008; 14:312-323.
    [22]Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell.2001; 107:149-159.
    [23]Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell.2008; 13:454-463.
    [24]Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell.2004;116:551-563.
    [25]Dai JM, Wang ZY, Sun DC, et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol.2007;210:161-166.
    [26]Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J.2007;407:451-460.
    [27]Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet.2006;2:e40.
    [28]Yuan Z, Zhang X, Sengupta N, et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell.2007;27:149-162.
    [29]Li K, Casta A, Wang R, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283:7590-7598.
    [30]Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science.2004 Dec 17;306(5704):2105-8.
    [31]Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006 Jan 12;25(2):176-85.
    [32]Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res.2005 Nov 15;65 (22):10457-63.
    [33]Liang XJ, Finkel T, Shen DW, et al. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res.2008;6:1499-1506.
    [34]Kojima K, Ohhashi R, Fujita Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun.2008; 373:423-428.
    [35]Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hicl predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003;33:197-202.
    [36]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell.2005; 123:437-448.
    [37]Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature.2008;451:587-590.
    [38]Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451:583-586.
    [39]Deng CX, Brodie SG Knockout mouse models and mammary tumorigenesis. Semin Cancer Biol.2001;11:387-394.
    [40]Cardiff RD, Anver MR, Gusterson BA, et al. The mammary pathology of genetically engineered mice:the consensus report and recommendations from the Annapolis meeting. Oncogene.2000;19:968-988.
    [41]Deng CX. BRCA1:cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Res.2006;34:1416-1426.
    [42]McBurney MW, Yang X, Jardine K, et al. The absence of SIR2alpha protein has no effect on global gene silencing in mouse embryonic stem cells. Mol Cancer Res. 2003; 1:402-409.
    [43]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003; 100:10794-10799.
    [44]Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab.2008;8:333-341.
    [45]Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class Ⅲ deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res.2008;80:191-199.
    [46]Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirtl protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA.2008; 105:9793-9798.
    [47]Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE.2008;3:e2020.
    [48]Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.2004;23:2369-2380.
    [49]Wang RH, Zheng Y, Kim HS, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell.2008;32:11-20.
    [50]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature.2003;425:191-196.
    [51]Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell. 2008;135:907-918.
    [52]Benayoun BA, Batista F, Auer J, et al. Positive and negative feedback regulates the transcription factor FOXL2 in response to cell stress:evidence for a regulatory imbalance induced by disease-causing mutations. Hum Mol Genet.2009 Feb 15;18(4):632-44.
    [53]Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol.2006;8:1025-1031.
    [54]DePinho RA. The age of cancer. Nature.2000;408:248-254.
    [55]Pinkston JM, Garigan D, Hansen M, et al. Mutations that increase the life span of C. elegans inhibit tumor growth. Science.2006;313:971-975.
    [56]Boily G, Seifert EL, Bevilacqua L, et al. SirTl regulates energy metabolism and response to caloric restriction in mice. PloS ONE.2008;3:e1759.
    [57]Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metab.2008;8:347-358.
    [58]Spindler SR. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech Ageing Dev.2005; 126:960-966.
    [59]Barger JL, Kayo T, Vann JM, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE.2008;3:e2264.
    [60]Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature.2007;450:712-716.
    [61]Brunet J, Vazquez-Martin A, Colomer R, et al. BRCA1 and acetyl-CoA carboxylase: the metabolic syndrome of breast cancer. Mol Carcinog.2008;47:157-163.
    [62]Surmacz E. Obesity hormone leptin:a new target in breast cancer? Breast Cancer Res. 2007;9:301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700