用户名: 密码: 验证码:
碳纤维约束空心薄壁墩抗震性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了最大限度的提高结构强度和刚度的利用率、降低因质量分配引起的柱的抗震响应,采用空心截面形式的桥墩是合理的,我国现有桥梁特别是高、大跨径桥梁普遍采用此类桥墩,其中中、高墩居多。桥墩作为桥梁延性抗震设计中最关键的部位之一,必须高度重视其延性抗震性能。现行的《公路桥梁抗震设计细则》仅适用于60m以下的一般桥墩,且空心薄壁墩的震害资料匮乏,抗震设计经验不足,因此,空心薄壁墩及碳纤维约束空心薄壁组合桥墩的延性抗震性能研究非常有必要,具有重要的工程参考价值。
     针对目前公路桥梁中普遍采用的空心薄壁墩的典型情况,按相似原理和墩的受力特性,综合考虑试验条件,设计了4个空心薄壁裸墩和5个碳纤维约束空心薄壁墩塑性铰区域模型,通过拟静力试验及理论分析,系统的研究了裸墩与碳纤维约束墩顺桥向的延性抗震性能,主要成果如下:
     1.设计了以弯曲破坏为主的矩形截面空心薄壁墩,试验表明,单桥墩塑性铰区域为墩高的1/5,且位于墩身底部,荷载下降到极限荷载75%时,所有纵筋、箍筋均未断裂,少量纵筋屈服,箍筋未见屈服,加载面塑性铰区域均不同程度的出现保护层混凝土剥落,侧面未见大面积混凝土剥落;高轴压比为0.3的试件延性抗震性能最差。
     碳纤维约束墩改变了裸墩的破坏模式,裸墩的破坏模式是在墩下部形成塑性铰,塑性铰区域核心混凝土压碎、纵筋压曲导致破坏。而约束墩的破坏主要集中在非约束区裂缝的出现,塑性铰区域碳纤维布受拉力作用后粘接剂表面变成白色,此处碳纤维布沿径向水平张裂,未断裂,试验结束时,外包碳纤维没有显著的材料破坏。随着碳纤维层数的增加,未约束区裂缝的条数与出现的高度增大。
     2.轴力对试件滞回曲线的形状影响很大,轴压比为0.3的裸墩模型滞回环较丰满,峰值荷载过后,滞回曲线稳定;轴压比为0.2的裸墩滞回环相对狭小,峰值荷载过后,滞回曲线的稳定性较差,承载力衰减较快。在轴压比和配筋率相同的情况下,配箍率为1.22%的裸墩滞回曲线丰满,峰值荷载过后的荷载的下降段较平缓,极限变形能力强。
     3.相同纵筋率和配箍率的试件,同等侧移率情况下作用的轴向力越大,耗能能力越大,侧向刚度随之降低,但侧向承载力不会改变;轴压比为0.3的裸墩刚度退化较其它两种轴压比试件缓慢,轴压比为0.15的裸墩塑性铰区域侧移较大。相同外力作用下,配箍率为1.22%的裸墩强度退化和刚度退化小于配箍率为0.85%的裸墩,随着配箍率的增加,承载能力稳定性越好,墩身塑性铰区域侧移越大,耗能能力越强,刚度略有提高;塑性铰区域配箍率越高,其转动能力越强。
     4.碳纤维约束墩的地震耗能能力远高于裸墩,不改变裸墩的侧向刚度,而侧向承载力有一定程度的提高,延性得到很大程度的改善,采用碳纤维约束塑性铰区域在基本不改变整体结构动力特性的基础上,极大的提高结构柱的抗震性能;约束墩的强度退化和刚度退化显著小于裸墩;碳纤维包裹裸墩提高了其在侧移率较大情况下的承载能力稳定性;约束墩塑性铰转动能力优于裸墩,具有很好的延性。
     5.采用截面曲率-延性分析专用程序求出了曲率延性系数,根据位移延性系数与曲率延性系数之间的转换关系,求得位移延性系数的理论解,并与试验值相比较,理论计算结果处于试验值底限,便于安全;并推导出屈服曲率与极限曲率的解析解计算公式,进而求得位移延性系数,与试验值相吻合。
     6.骨架曲线特征值分析结果表明,轴压比分别为0.15、0.2、0.3时,极限荷载波动较大,整体变化幅度大;位移延性随轴压比的增大而变小,介于4.40-5.56;轴压比为0.2时极限荷载对应的侧向位移即变形幅度最大。提高配箍率降低了试件的极限承载力,但位移延性系数提高幅度高达20%;碳纤维布约束空心薄壁墩摸极限承载力、位移延性系数均得到提高,碳纤维约束低配筋率的试件提高幅度大,特别是位移延性系数提高幅度高达56.2%。
     7.基于试验数据初步探讨了空心薄壁裸墩滞回曲线及碳纤维约束墩滞回环模型,对比分析模型值与试验测量值,吻合较好。
In order to maximize the improvement of the utilization of structural strength and stiffness, and reduce distribution of quality caused by column due to seismic response of bridge pier, hollow cross-section form is reasonable.It can be widely used by bridges in china,especially high and long-span bridge piers,which are all middle or high piers. Because it is one of the most critical parts in seismic design of bridges,ductility seismic performance of hollow thin-walled piers must be attached. Guidlelines for seismic design of highway bridge applies only to the following piers whose highth is not more than 60m. Because of lack of information on earthquake damage and experience for seismic design, experimental research on seismic behavior of hollow rectangular thin-walled piers and piers confined with CFRP is necessary, which has important reference value for engineering.
     According to similar principles and force characteristics of piers, nine models, which are four bare piers and five hollow thin-walled pier confined carbon-fiber plastic, are designed. Through pseudo-static test and theoretical analysis, ductility seismic performance of piers was analyzed and discussed systematically. The main results are as follows:
     1. Failure modes of hollow rectangular thin-walled piers are all bending failure. Highth of pier plastic hinge regions for single-column pier,which located at the bottom of piers, is one fifth of piers. When load dropped 25% of ultimate load, all of longitudinal bars and stirrups were not broken, but a bit of longitudinal reinforcement yielded. Concrete of hinge region on the loading side stripped. Ductile seismic performance of specimen, high axial compression ratio of which is 0.3, is the worst.
     Piers confined with CFRP changed the failure mode of the bare piers. Failure mode of bare pier is the formation of plastic hinge in the low part of pier, core concret in the plastic hinge region crushing. The damage of piers confined with CFRP concentrated in the appearance of cracks in a non-binding area. CFRP became white but is not broken. At the end of test, all of material was not damage. As the lays of CFRP increases, height and number of cracks are more.
     2. Axial force has a great impact on shape of specimen hysteresis curve, Model hysteresis loop is fullness under axial compression ratio of 0.3, and seismic behaviors is stability. But the loop is small under axial compression ratio of 0.2., and the pier had the opposite properties. Similarly, hysteresis curve of pier with hoop rate of 1.22% is full,and capacity decay slowly in addition to be deformed easily.
     3.The greater the rate of axial compression,the greater the energy dissipation capacity of specimen, and the smaller the stiffness,but the capacity was not changed. Compared with two other bare piers, rigidity degradation of pier under axial compression ratio of 0.3 is slowest, and displacement of pier under axial compression ratio of 0.15 is larger in the plastic hinge region. Strength and stiffness degradation of one pier with the stirrup rate of 1.22% less than the other with stirrup rate of 0.85%. With the increase of hoop rate, the better the stability of load capacity, the greater energy capacity of plastic hinge region and higher stiffness increased slightly.The higher hoop rate of plastic hinge region, the stronger ability of its rotation.
     4. Seismic energy dissipation of pier confined with CFRP is much higher than the bare pier, does not change the lateral stiffness, while the lateral bearing capacity was increased and ductility was significantly improved. Strength and stiffness degradation were significantly smaller and rotation capacity of plastic hinge was better than the bare pier. And the lateral bearing capacity stability was increased in the larger context.
     5. The curvature ductility factor are obtained by sectional curvature-ductility analysis of specific procedures, and the displacement ductility coefficient theoretical solution are obtained according to the conversion relationship between displacement ductility coefficient and the curvature ductility factor, and compared with the experimental data, the program calculated is smaller, so it is safe. The analytical solution formula of yield curvature and limit curvature is derived, and then obtained the displacement ductility factor, consistent with the experimental value.
     6. Skeleton curves eigenvalue analysis results show that the axial compression ratio is 0.15 and 0.2 and 0.3 respectively, the ultimate load fluctuations and the total change in amplitude is larger. The axial compression ratio is larger, the displacement ductility is smaller, ranging from 4.40-5.56; when the axial load ratio is 0.2, the limit load corresponding to the lateral displacement of the deformation of the sharpest. Increasing the rate of stirrup ultimate reduced bearing capacity of the specimen, but the displacement ductility factor increased by as much as 20%; Carbon fiber cloth binding touch ultimate bearing capacity of hollow thin-wall pier and displacement ductility factor is enhanced, and the large margin of increase of carbon fiber reinforcement ratio lower bound of the test pieces, in particular, the displacement ductility factor increased by as much as 56.2%.
     7. Based on experimental data, restoring force model of hollow thin-walled pier and pier confined with carbon fiber plastic was discussed. And model values was compared with the experimental values.
引文
[1]周勇军,贺拴海,张岗等.桥墩截面形式对弯连续刚构桥地震响应的影响[J].公路交通科技,2009,26(2):68-72
    [2]王钧利,贺拴海.钢筋混凝土高墩非线性稳定分析和模型试验[J].长安大学学报(自然科学版),2005,25(4):31-34
    [3]贺拴海,任伟.纤维增强塑料加固混凝土结构研究[J].建筑科学与工程学报,2005,22(3):20-24
    [4]贺拴海,赵小星,宋一凡,等.具有初荷载的钢筋混凝土梁桥粘贴碳纤维布加固试验研究[J].土木工程学报,2005,38(3):70-76
    [5]贺拴海,任伟,赵小星.碳纤维布对具有初应力的钢筋混凝土梁抗剪加固试验[J].长安大学学报(自然科学版),2004,24(1):34-39
    [6]任伟,贺拴海,宋一凡.碳纤维布加固具有初应力的钢筋混凝土梁抗剪极限承载力[J].长安大学学报(自然科学版),2004,24(4):40-45
    [7]任伟,贺拴海,袁旭斌.粘贴纤维布、钢板加固钢筋混凝土T梁试验研究[J].西安建筑科技大学学报(自然科学版),2008,40(3):323-330
    [8]袁旭斌,贺拴海,宋一凡.粘贴纤维布加固RC梁的受弯裂缝计算方法[J].中国公路学报,2006,19(3):54-58
    [9]袁旭斌,赵小星,宋一凡等.卸载与不卸载的RC梁桥粘贴碳纤维布加固计算[J].中国公路学报,2005,18(1):69-72
    [10]叶爱君.桥梁抗震[M].北京:人民交通出版社,2002年:1-50
    [11]JARADAT O. A., MELEAN D. I., MARSH M. L. PERFORMANCE OF EXISTING BRIDGE COLUMN, UNDER CYCLIC LOADING-PART L:EXPERIMENTAL RESULTS AND OBSERVED BEHAVIOR [J].,1998,95(6):695-704
    [12]JARADAT O. A., MELEAN D. I., MARSH M. L. PERFORMANCE OF EXISTING BRIDGE COLUMN, UNDER CYCLIC LOADING-PART 2:ANALYSIS AND COMPARISONS WITH THEORY [J]. ACI STRUCTURAL JOURNAL. L999.96(L):57-67
    [13]邓宗才,李朋远.锈蚀钢筋混凝土柱抗震性能的研究进展[J].2007,39(5):5-10
    [14]潘毅,陈朝晖.钢筋混凝土基本构件腐蚀后性能的试验研究[J].四川建筑科学研究,2004,30(3):71-74
    [15]史庆轩,李小健,牛荻涛.钢筋锈蚀前后混凝土偏心受压构件承载力试验研究[J].西安建筑科技大学学报,1999,31(3):218-221
    [16]史庆轩,牛荻涛,颜桂云.反复荷载作用下锈蚀钢筋混凝土压弯构件恢复力性能的试验研究[J].地震工程与工程振动,2000,20(4):44-50
    [17]牛荻涛,陈新孝,王学民.锈蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构,2004,34(10):36-38
    [18]贡金鑫,仲伟秋,赵国藩.受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J].建筑结构学报,2004,25(5):92-97
    [19]PRIESTLEY M.J.N, BENZONIG. SEISMIC PERFORMANCE OF CIRCULAR COLUMNS WITH LOW LONGITUDINAL REINFORCEMENT RATIOS [J].ACI STRUCTURAL JOURNAL,1996, 93(4):474-485
    [20]PANDEY G. R, MUTSUYOSHI H. SEISMIC PERFORMANCE OF REINFORCED CONCRETE PIERS WITH BOND-CONTROLLED REINFORCEMENTS [J].ACI STRUCTURAL JOURNAL, 2005,102(2):295-304
    [21]ZATAR W. A, MUTSUYOSHI H. RESIDUAL DISPLACEMENTS OF CONCRETE BRIDGE PIERS SUBJECTED TO NEAR FIELD EARTHQUAKES [J]. ACI STRUCTURAL JOURNAL, 2002,99(6):740-749
    [22]WEHBE N. I., SAUDI M. S., SANDERS D.H. SEISMIC PERFORMANCE OF RECTANGULAR BRIDGE COLUMNS WITH MODERATE CONFINEMENT [J].ACI STRUCTURAL JOURNAL, 1999,96(2):248-258
    [23]SEZEN H, MOEHLE J.P., SEISMIC TESTS OF CONCRETE COLUMNS WITH LIGHT TRANSVERSE REINFORCEMENT [J]. ACI STRUCTURAL JOURNAL,2006,103(6):842-849
    [24]梁书亭,丁大钧,赵建军.钢筋混凝土复合箍筋柱在低周反复荷载下的强度和延性[J].南京建筑工程学院学报,1994,31(4):P22-29
    [25]艾庆华,王东升,李宏男等.钢筋混凝土桥墩地震破坏震动台试验研究[J].大连理工大学学报,2008,48(5):733-788
    [26]艾庆华,李宏男,王东升等.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(Ⅱ):振动台试验[J].地震工程与工程振动,2008,28(3):39-46
    [27]司炳君,李宏男,王东升.基于位移设计钢筋混凝土桥墩抗震性能试验研究(Ⅰ):拟静力试验[J].地震工程与工程振动,2008,28(1):123-129.
    [28]艾庆华,王东升,李宏男.低周反复荷载下钢筋本构关系边界面模型的初步研究[C].山东,烟台:第14届全国结构工程学术会议(第一册).北京:《工程力学》杂志社,2005:201-205.
    [29]艾庆华,王东升,李宏男等.钢筋混凝土桥墩地震破坏振动台试验研究[J]..2008:48(5):733-739
    [30]叶献国,王海波,孙利民等.钢筋混凝土桥墩抗震耗能能力的实验研究[J].合肥工业大学学报(自然科学版),2005,28(.9):1171-1176
    [31]汪日光,叶献国,左晓明.钢筋混凝土桥墩抗剪性能的试验研究[J].工程建设与档案,2005,19(2):127-129
    [32]王清湘,赵国藩,林立岩.高强混凝土柱廷性的试验研究[J].建筑结构学报,1995,16(4):22-31
    [33]鞠彦忠,阎贵平,刘林.低配筋大比例尺圆端型桥墩抗震性能的试验研究[J].土木工程学报,2003,36(11):65-69
    [34]鞠彦忠,阎贵平,张杰等.少筋钢筋混凝土桥墩M-Φ曲线的计算[J].中国安全科学学报,2003, 13(10):63-65
    [35]张利,李子青.数值法求解圆柱形钢筋混凝土桥墩的M-Φ曲线[J].西安公路交通大学学报,2003(7):45-48
    [36]牛松山,郑罡,唐光武,等.反复循环载荷作用下钢筋混凝土矩形桥墩塑性铰区弯矩曲率关系试验研究[J].公路交通技术,2005,10(5):91-95
    [37]贾金青,关萍,王建胜.低周反复荷载作用下SRHC短柱延性的试验研究[J]工业建筑,2002,32(9):18-26
    [38]贾金青.高强混凝土框架短柱力学性能的试验研究[J]..建筑结构学报,2001(3):50-55
    [39]贾金青.高强混凝土短柱抗震性能的试验研究.大连理工大学学报[J].,2000(1):73-79
    [40]贾金青.钢骨高强混凝土短柱力学性能的研究[M]..大连:大连理工大学出版社,2001:1-50
    [41]李凤兰,黄承逵,温世臣等.低周反复荷载下钢纤维高强混凝土柱延性试验研究[J].工程力学,2005,22(6):159-164
    [42]杨晓明,丰定国,杨睿.不同加载制度下钢筋混凝土柱抗震性能的试验研究[J].工业建筑,2005,35(9): 42-45
    [43]孙卓,李建中,阎贵平等.钢筋混凝土单柱式桥墩抗震性能试验研究[J].同济大学学报(自然科学版),2006,34(2):160-164
    [44]孙卓,闫贵平,钟铁毅等.钢筋混凝土桥墩抗震性能的实验研究之一——试验概况及试验结果[J].中国安全科学学报.2003,13(1):59-62
    [45]孙卓,闫贵平,钟铁毅等.钢筋混凝土桥墩抗震性能的实验研究之一——试验结果分析与结论[J].中国安全科学学报,2003,13(1):46-49
    [46]KWAN W.P, BILLINGTON S. L. UNBONDED POSTTENSIONED CONCRETE BRIDGE PIERS Ⅰ: MONOTONIC AND CYCLIC ANALYSIS [J].JOURNAL OF BRIDGE ENGINEERING, ASCE, 2003,8(2):92-101
    [47]KWAN W. P, BILLINGTON S.L. UNBONDED POSTTENSIONED CONCRETE BRIDGE PIERS Ⅱ:SEISMIC ANALYSIS [J]. JOURNAL OF BRIDGE ENGINEERING, ASCE,2003,8(2):102-111
    [48]艾庆华,王东升,李宏男等.基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学,2009,26(4): 158-166
    [49]冯清海,袁万成.BP神经网络和RBF神经网络在桥墩抗震性能评估中的比较研究[J].结构工程师,2007,23(5):41-47
    [50]刘洪兵,王君杰,孙利民等.钢筋混凝土桥墩截面能力的概率分析[J].工程力学,2005,22(6):104-111
    [51]刘庆华,范立础.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249
    [52]童岳生,钱国芳,史庆轩等.钢筋混凝土短柱受剪承载力分析及箍筋拉条的作用[J]建筑结构学报
    [53]岳清瑞,杨勇新.复合材料在建筑加固、修复中的应用[M].北京:化学工业出版社
    [54]任伟,贺拴海,栾好发.片材-混凝土界面粘贴性能试验[J].长安大学学报(自然科学版)2009,29(2):60-64
    [55]任伟,贺拴海,赵小星等.黏贴钢板加固持荷钢筋混凝土T型梁模型试验[J].中国公路学报2008,21(3):64-68
    [56]贺栓海.RC梁桥粘结钢板(筋)加固计算方法[J].西安公路交通大学学报,1997,17(1):25-30
    [57]MATASUDA R. F., SATO H., FUJIWARA H., ET AL. EFFECT OF CARBON FIBER REINFORCEMENT AS A STRENGTHENING MEASURE FOR REINFORCED CONCRETE BRIDGE PIERS. PROCEEDINGS OF THE FIRST US-JAPAN WORKSHOP ON SEISMIC RETROFIT OF BRIDGE, JAPAN:TSUKUBA SCIENCE CITY,1990,17-18
    [58]SAADATMANESH H., EHSANI M. R., JIN L., SEISMIC STRENGTHENING OF CIRCULAR BRIDGE PIER MODELS WITH FIBER COMPOSITE STRAPS. ACI STRUCTURAL JOURNAL, 1996,93(6):639-647
    [59]PRIESTLEY M. J. N., SEIBLE F., SEISMIC ASSESSMENT AND RETROFIT OF BRIDGES. STRUCTURAL SYSTEMS RESEARCH PROJECT, SAN DIEGO:DEPARTMENT OF APPLIED MECHANICS AND ENGINEERING SCIENCES OF UNIVERSITY OF CALIFORNIA,1991, 91(03):13-18
    [60]SEIBLE F, PRIESTLEY M. J. N., RETROFIT OF RECTANGULAR FLEXURAL COLUMNS WITH COMPOSITE FIBER JACKETS. PROCEEDINGS OF THE SECOND ANNUAL SEISMIC RESEARCH WORKSHOP, SACRAMENTO:CALIFORNIA DEPARTMENT OF TRANSPOTATION,1992,16-18
    [61]MASUKAWA J., AKIYAMA H., SAITO H., RETROFIT OF EXISTING REINFORCED CONCRETE PIERS BY USING CARBON FIBER SHEET AND ARAMID FIBER SHEET. PROCEEDING OF THE THIRD INTERNATIONAL SYMPOSIUM ON NON-METALLIC FRP FOR CONCRETE STRUCTURE, JAPAN:SAPPORO,1997,411-418
    [62]吴刚,吕志涛,张继文.CFRP加固钢筋混凝土柱抗震性能断面试验.第二届全国土木工程用纤维增强塑料复合材料(FRP)应用技术学术交流会论文集,北京:清华大学出版社,2002,137-143
    [63]吴刚,魏洋,吴智深等.玄武岩纤维与碳纤维加固混凝土矩形柱抗震性能比较研究[J].工业建筑,2007,37(6):14-18
    [64]SAUDI M S, SANDERS D H, GORDANINEJAD F, ET AL., SEISMIC RETROFIT OF NON-PRISMATIC RC BRIDGE COLUMNS WITH FIBROUS COMPOSITE[A]. PROCEEDINGS OF THE 12TH WCEE[C], NEW ZEALAND:AUCKLAND,2000,143-151
    [65]赵彤,刘明国,谢剑等.碳纤维布改善高强混凝土柱延性的试验研究[J].地震工程与工程振动,2001,21(4):46-52.
    [66]赵彤,刘明国,谢剑.碳纤维布抗震加固斜向受力钢筋混凝土柱的非线性分析[J].世界地震工程,2001,17(4):53-59.
    [67]赵彤,刘明国,谢剑等.碳纤维布用于改善斜向受力高强混凝土柱抗震性能的研究[J].土木工程学报,2002,35(3):13-19.
    [68]赵彤,戴自强,张景明等.碳纤维布增强钢筋混凝土柱抗震能力的试验研究[J].建筑结 构,2000,30(7):31-34.
    [69]赵彤,刘明国,谢剑.碳纤维布增强钢筋混凝土柱延性性能的评估与分析[J].地震工程与工程振动,2003,23(4):117-123
    [70]赵彤,谢剑,戴自强.碳纤维布约束混凝土应力-应变全曲线的试验研究[J].建筑结构,2000,7:40-43.
    [7l]赵彤,刘明国,谢剑等.应用碳纤维布增强钢筋混凝土柱抗震能力的研究[J].地震工程与工程振动,2000,20(4):66-72
    [72]王吉忠,王苏岩,黄承逵.CFRP加固高强混凝土柱抗震性能和延性研[J].大连理工大学学报,2008,48(5):708-714
    [73]崔海琴.FRP约束混凝土柱的增强增韧性能研究[D].重庆:重庆交通大学硕士学位论文,2007
    [74]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术.天津[M].天津:天津大学出版社,2001,85-104
    [75]张柯,岳清瑞,赵树红等.碳纤维布加固混凝土改善延性的试验研究[J].工业建筑,2000,30(2):237-241
    [76]张柯,岳清瑞,叶列平.碳纤维布加固钢筋混凝土柱抗震性能分析及目标延性系数确定[A].首届全国土木工程用纤维增强塑料复合材料(FRP)应用技术学术交流会论文集[C].北京:密云,2000,227-232
    [77]张柯,岳清瑞,叶列平.碳纤维布加固钢筋混凝土柱滞回耗能分析及目标延性系数确定[J].工业建筑,2001,6:5-8.
    [78]张轲,岳瑞清,叶列平等.碳纤维布加固钢筋混凝土柱改善延性的试验研究[J].工业建筑,2000,30(2):16-19.
    [79]张轲,叶列平,岳瑞清等.混凝土柱破坏后碳纤维布加固试验研究[J].工业建筑,2001,31(12):76-78.
    [80]张轲,岳瑞清,付常武等.碳纤维布加固钢筋混凝土柱后弯矩-曲率关系分析[J].工业建筑,2001,31(6):20-23.
    [8l]范立础,卓卫东,薛元德.FRP套筒箍RC墩柱抗震性能的初步研究[A].首届全国土木工程用纤维增强塑料复合材料(FRP)应用技术学术交流会论文集[C].北京:密云,2000,113-117
    [82]NANNI A., NORRIS M. S., FRP JACKETED CONCRETE UNDER FLEXURE AND COMBINED FLEXURE-COMPRESSION[J]. CONSTRUCTION AND BUILDING MATERIALS,1995, 9(5):273-281
    [83]肖岩.套管混凝土柱结构的发展和展望[J].土木工程学报,2004,37(4):8-12
    [84]XIAO Y.APPLICATIONS OF FRP COMPOSITES IN CONCRETE COLUMNS[J]. ADVANCES IN STRUCTURAL ENGINEERING,2004,7(4):135-143
    [85]XIAO Y., WU H., MA R., PREFABRICATED GLASS FIBER COMPOSITE JACKETS FOR RETROFITTING REINFORCED CONCRETE COLUMNS[J]. PROCEEDINGS OF THE SIXTH ASCCS INTERNATIONAL CONFERENCE ON STEEL-CONCRETE COMPOSITE STRUCTURES, COMPOSED AND HYBRID STRUCTURES, USA:LOS ANGELES,2000,952-958
    [86]刘涛,冯伟,张智梅.组合FRP技术加固混凝土矩形柱的抗震性能试验研究[J].工程力学,2007,24(6):128-133
    [87]SAIIDI M.S., CHENG Z.Y., EFFECTIVENESS OF COMPOSITES IN EARTHQUAKE DAMAGE REPAIR OF REINFORCED CONCRETE FLARED COLUMNS [J].JOURNAL OF STRUCTURAL ENGINEERING, ASCE,2004,8(4):306-314
    [88]LEHMAN D.E., GOOKINSE, NACAMULI A.M., ET AL. REAIR OF EARTHQUAKE-DAMAGED BRIDGE COLUMNS[J]. ACI STRUCTURAL JOURNAL,2001,98(2):233-242
    [89]YOUM K.S., LEE H.E., CHOI S. SEISMIC PERFORMANCE OF REPAIRED RC COLUMNS [J]. MAGAZINE OF CONCRETE RESEARCH,2006,58(5):267-276
    [90]CHANG S.Y., LI Y. F., LOH C.H., EXPERIMENTAL STUDY OF SEISMIC BEHAVIOUR OF AS-BUILT AND CARBON FIBER REINFORCED PLASTICS REPAIRED REINFORCED CONCRETE BRIDGE COLUMNS [J]. JOURNAL OF BRIDGE ENGINEERING, ASCE,2004, 9(4):391-402
    [91]BILLINGTON S.L, YOON J. K. CYCLIC RESPONSE OF UNBONDED POSTTENSIONED PRECAST COLUMNS WITH DUCTILE FIBER-REINFORCED CONCRETE [J].JOURNAL OF BRIDGE ENGINEERING, ASCE,2004,9(4):353-363
    [92]CHENG C.T., MO Y. L., YEH Y.K., EVALUATION OF AS-BUILT, RETROFITTED, AND REPAIRED SHEAR-CRITICAL HOLLOW BRIDGE COLUMNS UNDER EARTHQUAKE-TYPE LOADING [J]. JOURNAL OF BRIDGE ENGINEERING, ASCE,2005,10(5):520-529
    [93]CHENG C.T., YEH Y.K., MO Y.L., FLEXURAL REPAIR OF HOLLOW RECTANGULAR BRIDGE COLUMNS FAILED DUE TO EARTHQUAKE-TYPE LOADING[J].MATERIALS AND STRUCTURES,2004,37(10):717-723
    [94]徐毅,陶忠.新型FRP-混凝土-钢管组合柱抗震性能研究[J].福州大学学报(自然科学版),2005,33(增刊10):309-315
    [95]卢亦焱,童光兵,赵国藩等.外包角钢与碳纤维布复合加固钢筋混凝土偏压柱承载力计算分析[J].土木工程学报,2006,39(8):19-25
    [96]卢亦焱,陈少雄,赵国藩.外包钢与碳纤维布复合加固钢筋混凝土柱抗震性能试验研究[J].土木工程学报,2005,38(8):10-17
    [97]陈少雄.外包钢与碳纤维布复合加固钢筋混凝土柱抗震性能研究[M].武汉:武汉大学,2004
    [98]于清.轴心受压FRP约束混凝土的应力-应变关系研究[J].工业建筑,2001,31(4):5-8
    [99]吴波,王维俊,王帆.碳纤维布加固钢筋混凝土柱的剪力-位移关系及其破坏位移增大系数分析[J].地震工程与工程振动,2004,24(5):141-148
    [100]吴波,王维俊,王帆.碳纤维布加固钢筋混凝土柱的破坏曲率增大系数分析[J].工程力学,2006,23(1):130-138
    [101]吴波,王维俊,王帆.碳纤维布加固钢筋混凝土柱的弯矩-曲率关系分析[J].华南理工大学学报(自然科学版),2005,33(1):10-15
    [102]倪永军,朱,魏庆朝等.纤维增强聚合物抗震加固混凝土柱研究综述[J].北方交通大学学报,2003,27(4):21-27
    [103]于清,陶忠.纤维塑料约束混凝土柱抗震性能研究综述[J].地震工程与工程振动,2002,22(2):66-72
    [104]王苏岩,韩克双.纤维增强复合材料(FRP)加固混凝土柱的性能研究进展[J].地震工程与工程振动,2004,24(1):97-104
    [105]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [106]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004
    [107]易伟建,蒋蝶.一种基于滞回耗能的改进PUSHOVER分析方法[J].自然灾害学报,2007,16(3):104-108
    [108]龚胡广,沈蒲生.基于位移的改进静力弹塑性分析方法[J].地震工程与工程振动,2005,25(3):18-23
    [109]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用[J].地震工程与工程振动,2004,24(1):30-38
    [110]毛建猛,谢礼立,翟长海.模态PUSHOVER分析方法的研究和改进[J].地震工程与工程振动,2006,26(6):50-55
    [111]叶列平,经杰.论抗震设计方法-现代地震工程进展[D].北京:地震出版社,2000
    [112]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000
    [113]J.P.MOEHLE. DISPLACEMENT BASED DESIGN OF RC STRUCTURES PROCEEDINGS OF THE TENTH WORLD CONFERENCE ON EARTHQUAKE ENGINEERING,1992:4297-4302.
    [114]J.P. MOEHLE. DISPLACEMENT BASED DESIGN OF RC STRUCTURES SUBJECTED TO EARTHQUAKES. EARTHQUAKE SPECTRA 8,1992:403-428.
    [115]M. J. KOWALSKY. DISPLACEMENT BASED DESIGN-A METHODOLOGY FOR SEISMIC DESIGN APPLIED TO RC COLUMNS. MASTER' S THESIS. UNIVERSITY OF CALIFORNIA, CA:1994.
    [116]MERVYN J. KOWALSKY, M.J. NIGEL PRIESTLY, GREGOGY A. MACRAE. DISPLACEMENT-BASED DESIGN OF RC BRIDGE COLUMNS IN SEISMIC REGIONS. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1995,24:1623-1643.
    [117]G. M. CALVI, G. R. KINGSLEY. DISPLACEMENT-BASED SEISMIC DESIGN OF ULTI-DEGREE-OF-FREEDOM BRIDGE STRUCTURES. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1995,24:1247-1266.
    [118]E. ANDERSON, S.A. MAHIN. DISPLACEMENT-BASED DESIGN OF SEISMICALLY ISOLATED BRIDGES.6TH U.S. NATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING.1998.
    [119]MUTO K. ET AL. NON-LINEAR RESPONSE ANALYZERS AND APPLICATION TO EARTHQUAKE RESISTANT DESIGN. PROCEEDINGS OF THE SECOND WORLD CONFERENCE ON EARTHQUAKE ENGINEERING. JAPAN,2:649-668.
    [120]SHIMAZAKI K., M.A. SOZEN. SEISMIC DRIFT OF REINFORCED CONCRETE STRUCTURES. SPECIAL RESEARCH PAPER. TOKYO:1985.
    [121]QI X., J.P. MOEHLE. DISPLACEMENT DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES SUBJECTED EARTHQUAKES. REPORT NO. UCB/EERC-91/02, EERC, UC BERKELEY, CA:186.
    [122]SOZEN M.A. REVIEW OF EARTHQUAKE RESPONSE OF R.C. BUILDINGS WITH A VIEW TO DRIFT CONTROL. STATE-OF-THE-ART IN EARTHQUAKE ENGINEERING, ANKARA, 1981:383-418.
    [123]J.P. MOEHLE. STRONG MOTION DRIFT ESTIMATIONS FOR R/C STRUCTURES. JOURNAL OF STRUCTURAL ENGINEERING,1984,110(9):1988-2001.
    [124]SAUDI M. SOZEN, M. A. SIMPLE AND COMPLEX METHODS FOR NONLINEAR SEISMIC RESPONSE OF REINFORCED CONCRETE STRUCTURES, SRS, NO.465, UNIVERSITY OF ILLINOIS, URBANA:1979.
    [125]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003,335-353
    [126]吕西林,卢文生.R.C.框架结构的振动台试验和面向设计的时程分析方法[J].地震工程与工程振动,1998,(12):319-330
    [127]马克俭.多层混凝土结构层间恢复力模型的系统识别[J].合肥工业大学学报,1999,22(4):69-74
    [128]钱稼茹,方鄂华,马镇炎.剪切刚度层恢复骨架曲线的简化计算法[J].工业建筑,1996,26(1):56-60
    [129]汪梦甫.钢筋混凝土高层结构抗震分析与设计[M].长沙:湖南大学出版社,1999:1-100
    [130]郑正昌,森高英夫,下田郁夫.鹿儿岛机场候机楼抗震补强一增设粘滞阻尼墙的结构三维弹塑性分析[J].建筑结构,2000,30(6):19-22
    [131]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,(2):53-64
    [132]朱伯龙,张砚联.矩形及环形截面压弯构件恢复力特性研究[J].同济大学学报,1981,(2):50-200
    [133]JTG/TB02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008
    [134]YEH Y K, MO Y L, YANG C Y. SEISMIC PERFORMANCE OF RECTANGULAR HOLLOW BRIDGE COLUMNS[J].JOURNAL OF STRUCTURAL ENGINEERING,2002,128(1):69-68
    [135]梁智垚,李建中.桥梁高墩合理计算模型探讨[J].地震工程与工程振动,2008,27(2):91-98
    [136]李睿,叶燎原,周亦唐.山区空心薄壁高墩的构造与力学分析[J].公路,2007(11):46-50
    [137]王震宇,芦学磊,李伟等.塑性铰区碳纤维约束高强混凝土圆柱抗震性能的试验研究[J].2009,39(2):21-24
    [138]李睿,俞进,杨忠恒等.山区梁桥高墩的抗震概念设计[J].公路,2007(4):100-103
    [139]邓宗才,李建辉,张小冬.混杂FRP加固腐蚀混凝土柱抗震性能试验[J].北京工业大学学报,2009,35(10):1356-1363
    [140]李趁趁,高丹盈,赵军.干湿环境下FRP全裹与条带间隔加固混凝土圆柱耐久性试验研究[J].土木工程学报.2009,42(11):8-14
    [141]于敬海,赵彤,罗振彪等.用碳纤维布改善混凝土小型空心砌块墙体抗震性能的试验研究 [J].地震工程与工程振动,2003,23(01):103-109
    [142]Gian P L, Andrea P, Gaetano M, et al. Unified theory for confinement of RC solid and hollow circular columns[J]. Composites Part B:Engineering,2008,39(7-8):1151-1160
    [143]Turmo J, Ramos G, Aparicio A C. Shear truss analogy for concrete members of solid and hollow circular cross section[J].Engineering Structures,2009,31(2):455-465
    [144]GBT_228-2002金属材料-室温拉伸试验方法[S].北京:中国标准出版社,2002
    [145]JTG E30-2005公路工程水泥及水泥混凝土试验规程[S].北京:人民交通出版社,2005
    [146]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96).北京:中国建筑工业出版社,1997,9-23
    [147]张培新.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003
    [148]单波.FRP加固钢筋混凝土柱考虑地震及使用损伤的长期性能和修复[D]长沙:湖南大学,2006
    [149]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [150]范立础.桥梁抗震[M].上海:同济大学出版社,1996
    [151]贺再兴.混凝土连续梁桥拓宽后抗震性能评价[D].西安:长安大学,2009
    [152]徐欣国,唐光武,郑罡.PUSH-OVER分析方法在双柱桥墩抗震性能评价上的应用[J].公路交通技术,2005(3):88-93
    [153]牛松山,郑罡,唐光武等.反复循环载荷作用下钢筋混凝土矩形桥墩塑性铰区弯矩曲率关系试验研究[J].2005(5):91-95
    [154]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑,2006,36(9):1-5
    [155]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,2L(4):73-76
    [156]刘义,赵鸿铁,薛建阳等.型钢混凝土异形柱恢复力特性的试验研究[J].地震工程与工程振动,2009,29(2):86-91
    [157]吕西林,蒋欢军.结构地震作用和抗震概念设计[M].武汉:武汉理工大学出版社,2004
    [158]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004
    [159]周敉.高桩承台桥梁抗震性能试验和理论研究[D].上海:同济大学博士学位论文,2008
    [160]张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究[J].建筑结构学报,2006,27(1):80-98
    [161]郭子雄,张志伟,黄群贤等.型钢混凝土柱恢复力模型试验研究[J].地震工程与工程振动,2009,29(5):79-85
    [162]陈惠发,段炼.桥梁工程抗震设计[M].北京:机械工业出版社,2008:400-410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700