用户名: 密码: 验证码:
高应力硬岩胞性板裂破坏和应变型岩爆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高应力地下洞室开挖后,在洞室周边的围岩中常常会出现与开挖面基本平行的板裂破坏面,当洞室埋深较大或地应力很高时,周边围岩甚至会出现岩爆等剧烈工程灾害现象。为此,本文作者在国家自然科学基金、国家留学基金委“建设高水平大学公派研究生”等项目的资助下,以“高应力硬岩脆性板裂破坏和应变型岩爆机理研究”为题,综合利用室内试验、理论分析、数值模拟和工程应用等手段,对硬岩在高应力条件下的板裂破坏及应变型岩爆问题进行了系统的研究。
     首先,设计了硬岩和软岩试样的单轴压缩试验和直接拉伸试验,开展了两种岩石在不同加载模式下的力学性质对比,分析了直接拉压条件下硬岩和软岩的强度、变形、弹性模量、泊松比、声发射等物理参数的变化规律,得到了两种岩石在拉压载荷作用下的应力应变规律和声发射特征,用三维形貌扫描仪从细观方面观察了直接拉伸试样破坏断口的三维形态。
     其次,选取挪威南部某采石场的Iddefjord花岗岩,设计了硬岩板裂破坏的室内试验,利用标准圆柱体试样的单轴压缩试验和巴西圆盘劈裂试验得到了硬岩的主要力学性质指标。在此基础上,开展了不同高宽比条件下方形花岗岩试样的单轴压缩试验,率先在实验室条件下再现了深部高应力硬岩的板裂破坏模式,找到了硬岩在单轴压缩下从剪切破坏到板裂破坏过渡的外部条件,发现硬岩的板裂破坏裂纹基本上是一些等间距分布且平行于加载方向的破坏面,其板裂破坏强度约为该岩石标准圆柱体试样单轴抗压强度的60%左右。在室内试验的基础上,对不同高宽比条件下硬岩的单轴压缩试验进行了数值模拟,研究了端部效应对试样内应力、应变分布的影响,利用摩尔-库仑应变软化准则模拟了三组试样的单轴压缩破坏过程。
     围绕高应力硬岩的板裂破坏,开展了硬岩板裂破坏的微观断裂力学分析。利用Iddefjord花岗岩显微镜下的微观照片,发现硬岩试样存在明显的微观缺陷和结构的非均质性。利用线弹性断裂力学方法,对单轴压缩下楔形滑移型裂纹的扩展规律进行了理论推导,得到了单裂纹条件下裂纹扩展的临界应力和裂纹初始长度、裂纹面倾角、摩擦角、岩石断裂韧度等之间的关系,并推导了压缩载荷和裂纹扩展长度之间的关系式,同时还分析了双轴压缩载荷作用下滑移型裂纹尖端翼裂纹扩展的应力强度因子和裂纹长度之间的关系。
     另外,对深部高应力条件下硬岩屈曲板裂失稳和动力扰动下矿柱的力学响应进行了宏观分析。一方面,对于深部高应力洞室围岩屈曲板裂问题,既考虑了轴心载荷作用,也考虑偏心载荷的作用,得到了偏心荷载作用下岩板最大水平位移、最大压拉应力和岩板的长厚比、载荷大小、载荷偏心距、岩板弹性模量等参数之间的关系,研究发现采场充填体等的围压效应对岩板屈曲板裂破坏有明显的抑制作用,并以贵州开阳磷矿下属的马路坪矿为例,进行了工程实例应用。另一方面,利用数值模拟的方法对高应力硬岩矿柱在动力扰动下的力学响应问题进行了论述,发现承受高应力的岩体,随着所受初始静载应力的增大,外界的动力扰动对其影响就越明显;承受高静载应力的矿柱,较小的动力扰动可能会使其发生塑性破坏而导致深部开采时的“多米诺骨牌”效应。
     最后,利用Iddefjord花岗岩加工了含预制孔洞的试样,模拟深埋高应力隧道开挖时应变型岩爆的发生机理。试验发现随着试样内应力的增大,在平行于孔洞竖直方向相继出现劈裂裂纹并逐渐贯通,在孔洞周边岩体中出现块体弹射、片帮等应变型岩爆的物理特征。同时,还对含孔洞花岗岩试样进行了数值模拟,研究发现模型在破坏初期均为拉破坏,即产生平行于孔洞竖向边界的张拉破坏面,这和工程现场的板裂或片帮破坏比较类似。
     在此基础上,利用FLAC3D对深埋高地应力圆形隧道进行了三维应力分析,发现隧道的最大主应力在掌子面附近发生应力偏转,利用最大切应力判据可以判别隧道开挖后围岩是否发生岩爆以及岩爆发生的强度等级。并以秦岭终南山深埋隧道为例,调查发现隧道的最大岩爆频率既不发生在爆破施工刚结束的时候,也不发生在隧道的掌子面上,应变型岩爆的滞后效应和隧道开挖后的最大主应力滞后效应存在一定关系。隧道应变型岩爆问题可以通过三维应力分析得到较为理想的结果。
Surface-parallel spalling is a failure mode often observed in highly stressed hard rocks in underground excavation. When the opening is at great depth or the in-situ stresses are very high, violent engineering disasters such as rock burst may occur in the surrounding rock masses. Based on this, the author has done the research titled with "The brittle spalling failure of hard rock and the mechanism of strainburst under high in-situ stress", sponsored by the National Natural Science Fund, the China Scholarship Council and so on. Integrated the use of laboratory testing, theoretical analysis, numerical simulation and engineering application, the studies on the spalling failure of hard rock under high in-situ stress and the mechanism of strainburst have been systematically carried out.
     First, uniaxial compression tests and direct tensile tests of hard and soft rock specimens have been designed. The mechanical properties of two rocks have been compared under different load conditions. The change of strength, deformation, elastic modulus, Poisson's ratio, acoustic emission and other physical parameters were carefully analyzed with applied load. The stress-strain curves and acoustic emission characteristics of the two rocks have been obtained under direct tension and compression. The tensile fractures of typical rock specimens were measured by a 3D surface measurement machine. The micro-structure and the roughness profile of the tensile fractures were obtained.
     Second, the Iddefjord granite from a quarry in the south Norway was selected to carry out the laboratory tests on spalling failure. The main mechanical properties of the granite were got from the uniaxial compression tests on the standard cylindrical specimens and the splitting tests on the Brazilian disc specimens. Then uniaxial compression tests on the plate specimens with different ratio of height to width were carried out. It is observed that the failure mode will be transformed from shear to slabbing when the height/width ratio is reduced to 0.5 in the plate specimens. Microσ1-parallel fractures initiate when the lateral strain departs from its linearity. Slabbing fractures are approximately parallel to the loading direction. The lab tests show that the slabbing strength (σsl) of hard rock is about 60% of its uniaxial compression strength (UCS). In the numerical modelling part, two kinds of constitutive models, elastic model and Mohr-Coulomb strain-softening model, are adopted to simulate the mechanical behavior of the plate specimens. The end effect and the mesh size were taken into consideration during the numerical simulation.
     The analysis on the micro fracture mechanics of hard rock was also carried out for studying the spalling failure of hard rock. It is found that there is obvious defects and micro-heterogeneity in the Iddefjord granite under the microscope photos. By using the linear elastic fracture mechanics method, the crack initiation and propagation along the wedge-shaped sliding fracture under uniaxial compression has been deducted. The relationship between the crack initiation stresses with the initial crack length, crack dip angle, friction angle and fracture toughness of rock has been obtained. The relationship between the compression load and the crack propagation length has also been calculated. The stress intensity factor of the crack tip has been analyzed when the wing crack was propagated under biaxial compression.
     In addition, buckling instability of hard rock slabs and the mechanical response of rock pillars under dynamic disturbance in high in-situ stresses at depth have been analyzed from the macro point of view. On the one hand, the buckling failure of highly-stressed rock slabs surrounding underground openings is analyzed by using Euler's formula. The eccentric loading is taking into consideration. It shows that the slenderness, the eccentricity, the elastic modulus of the slabs and the loading stress play important roles on the buckling failure of rock slabs. The confining pressure provided by fill can prove adequate to control buckling failure under certain loading conditions. According to the buckling theory, an example analysis was applied at the Maluping Mine in Guizhou province. On the other hand, the mechanical response of the highly static stressed rock pillars under dynamic disturbance has been discussed by using the numerical simulation method. It is found that the stability of highly stressed rock mass is more distinctly influenced by the outside dynamic disturbance with the original static stress increasing. When the pillar is endured very high static stress, even a small dynamic disturbance may lead to its plastic destroying and result in a domino effect in the deep mine.
     Finally, to simulate the mechanism of strainburst in the excavation of tunnels, the Iddefjord granite specimens with prefabricated holes have been used in the uniaxial compression tests. It is found that with the increasing of the stress in the specimen, splitting cracks occurred and gradually link up in the cross section perpendicular to the direction parallel to the hole. The rock block ejections, slabbing failure and some physical phenomena like strainburst occurred near the hole in the specimens. And then, numerical modeling has been constructed to simulate the failure process of the physical specimens. It is found that in the initial damage process the splitting failure surface usually can be observed near the hole. It is very similar to the site investigation like spalling failure or slabbing faiure at depth.
     The 3D stress analysis has been done in a deeply located circular tunnel by FLAC3D. The stress distribution and the failure zone of the tunnel versus the advance direction have been obtained. It is seen that the major principal stress contours are curved near the tunnel face. A case study of stress analysis in Qinling Zhongnanshan highway tunnel has been carried out by numerical modeling. The rockburst frequency has been reported not only related to the time interval of blasting rounds but also to the distances to the tunnel face. The delaying effect of strainburst exited in tunnel excavation like the delaying effect of maximum principal stress. From the 3D numerical stress analysis, the mechanism of strainburst can be better understood.
引文
[1]. 张有天,岩石水力学与工程[M].2005,北京:中国水利水电出版社.
    [2]. Jaeger, J.C. and N.G.W. Cook, Fundaments of Rock Mechanics [M].1971, Norwich, in Great Britain:Chapman and Hall Ltd.
    [3]. Ericsson, M., Trends in underground mining. Mining Methods in Underground Mining(3rd edition) [M].2008:Atlas Copco.
    [4]. Ortlepp, W.D., Observation of mining-induced faults in an intact rock mass at depth [J]. International Journal of Rock Mechanics and Mining Sciences, 2000.37(1-2):p.423-436.
    [5]. Ortlepp, W.D., The behaviour of tunnels at great depth under large static and dynamic pressures [J]. Tunnelling and Underground Space Technology,2001. 16(1):p.41-48.
    [6]. 郭立,深部硬岩岩爆倾向性动态预测模型及其应用[D].2004,中南大学.
    [7]. 古德生,李夕兵,金属矿山深部开采中的科学问题[C],in香山科学会议第175次学术讨论会.2001:北京.
    [8]. 李夕兵,古德生,深井坚硬矿岩开采中高应力的灾害控制与破碎诱变[C],in科学前沿与未来(第6集).2002,中国环境科学出版社:北京.p.101-108.
    [9]. 谢和平,深部高应力下的资源开采与地下工程一机遇与挑战[C],in香山科学会议第175次学术讨论会.2001:北京.
    [10]. Hamilton, D.F.L., F; Arnold, D A; Hagan, T O, Mining at depth-the major issues [C]:in 2nd Proc. Group Mining Symposium, Johannesburg, Sept.1985: 165-171. Johannesburg:Anglo American Corporation,1985.
    [11]. Wiles, T.D., Non-linear modelling of mining at great depth:a case history at Creighton mine [C]:in Proc International Symposium on Rock at Great Depth, Pau,28-31 August 1989V2, P621-628. Publ Rotterdam:A A Balkema,1989.
    [12]. Napier, J.A.L. and A.P. Peirce, The use of a multipole expansion technique to analyse large scale fracture processes and seismic recurrence effects in deep level mines [J]. International Journal of Rock Mechanics and Mining Sciences, 1997.34(3-4):p.216.el-216.el5.
    [13]. Lucier, A.M., et al., Constraining the far-field in situ stress state near a deep South African gold mine [J]. International Journal of Rock Mechanics and Mining Sciences,2009.46(3):p.555-567.
    [14].国家自然科学基金委员会.科学基金“深部岩体力学基础研究与应用”重大项目建立起深部岩体力学理论与技术框架.2009 [cited; Available from:http://www.nsfc.gov.cn/Portal0/InfoModule 410/28169.htm.
    [15].何满潮,深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005.24(16):p.2854-2858.
    [16].何满潮;谢和平;彭苏萍等,深部开采岩体力学研究[J].岩石力学与工程学报,2005.24(16):p.2803-2813.
    [17]. Martin, C.D. and R. Christiansson, Overcoring in highly stressed granite-the influence of microcracking [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991.28(1):p.53-70.
    [18]. Talebi, S. and R.P. Young, Microseismic monitoring in highly stressed granite: relation between shaft-wall cracking and in Situ stress [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992.29(1):p.25-34.
    [19]. Labrie, D., B. Conlon, and R. Boyle, In-Situ deformability of moderately to highly stressed mine structures in hard rock [J]. International Journal of Rock Mechanics and Mining Sciences,1998.35(4-5):p.614-615.
    [20]. Read, R.S., N.A. Chandler, and E.J. Dzik, In situ strength criteria for tunnel design in highly-stressed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences,1998.35(3):p.261-278.
    [21].徐林生;唐伯明;慕长春等,高地应力与岩爆有关问题的研究现状[J].公路交通技术,2002(4):p.48-51.
    [22].孙广忠,工程地质与地质工程[M].1993,北京:地震出版社.
    [23]. Backblom, G, et al., Aspo Hard Rock Laboratory-Research, development and demonstration for deep disposal of spent nuclear fuel [J]. Tunnelling and Underground Space Technology,1997.12(3):p.385-406.
    [24]. Backblom, G and C.D. Martin, Recent experiments in hard rocks to study the excavation response:Implications for the performance of a nuclear waste geological repository [J]. Tunnelling and Underground Space Technology, 1999.14(3):p.377-394.
    [25]. Martino, J.B. and N.A. Chandler, Excavation-induced damage studies at the Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004.41(8):p.1413-1426.
    [26]. Read, R.S.,20 years of excavation response studies at AECL's Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004.41(8):p.1251-1275.
    [27]. Dowding, C.H. and C.A. Andersson, Potential for rock bursting and slabbing in deep caverns [J]. Engineering Geology,1986.22(3):p.265-279.
    [28]. Ewy, R.T. and N.G.W. Cook, Deformation and fracture around cylindrical openings in rock-I. Observations and analysis of deformations [J]. International Journal of Rock Mechanics and Mining Sciences and,1990. 27(5):p.387-407.
    [29]. Martin, C.D., R.S. Read, and J.B. Martino, Observations of brittle failure around a circular test tunnel [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1997.34(7):p.1065-1073.
    [30]. Hajiabdolmajid, V. and P. Kaiser, Brittleness of rock and stability assessment in hard rock tunneling [J]. Tunnelling and Underground Space Technology, 2002.18(1):p.35-48.
    [31]. Fairhurst, C. and N.G.W. Cook, The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface [C], in Proc. First Congr. Internat. Soc. Rock Mech.1966:Lisbon, p.687-92.
    [32]. Ortlepp, W.D., Rock fracture and rockbursts:an illustrative study [M].1997, Johannesburg:South African Institute of Mining and Metallurgy, p.98.
    [33]. Ortlepp, W.D. and T.R. Stacey, Rockburst mechanisms in tunnels and shafts [J]. Tunnelling & Underground Space Technology,1994.9(1):p.59-65.
    [34]. Griggs D.T., H.J., Observations on fracture and a hypothesis of earthquakes [J]. Geol Soc Am Mem,1960.79:p.347-364.
    [35]. Paterson, M.S. and T.-f. Wong, Experimental Rock Deformation-The Brittle Field [M].2005, Heidelberg, The Netherlands:Springer.
    [36]. Cook, N.G.W., The failure of rock [J]. International Journal of Rock Mechanics and Mining Sciences,1965.2(4):p.389-403.
    [37]. Hoek, E. and Z.T. Bieniawski, Brittle fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics,1965.1(3):p. 137-155.
    [38]. Bieniawski, Z.T., Mechanism of brittle fracture of rock; part Ⅰ, Theory of the fracture process [J]. International Journal of Rock Mechanics and Mining Sciences,1967.4(4):p.395-406.
    [39]. Bieniawski, Z.T., Mechanism of brittle fracture of rock; part Ⅱ, Experimental studies [J]. International Journal of Rock Mechanics and Mining Sciences, 1967.4(4):p.407-423.
    [40]. Bieniawski, Z.T., Mechanism of brittle fracture of rock; part Ⅲ, Fracture in tension and under long-term loading [J]. International Journal of Rock Mechanics and Mining Sciences,1967.4(4):p.425-430.
    [41]. Wawersik, W.R. and C.E. Swenson. Implications of biaxial compression tests on granite and tuff [M].1972. USA.
    [42]. Herget, G, First experiences with the C.S.I.R. triaxial strain cell for stress determinations [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1973.10(6):p.509-22.
    [43]. Vogler, U.W., Suggested methods for determining the strength of rock materials in triaxial compression [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1978.15(2):p.47-51.
    [44]. Simpson, C., Deformation of granitic rocks across the brittle-ductile transition [J]. Journal of Structural Geology,1985.7(5):p.503-11.
    [45]. Nemat-Nasser, S. Compression-induced ductile flow of brittle materials and brittle fracturing of ductile materials [M].1989. Oxford, UK:Pergamon.
    [46]. Ross, J.V. and P.D. Lewis, Brittle-ductile transition:semi-brittle behaviour [J]. Tectonophysics,1989.167(1):p.75-9.
    [47]. Renshaw, C.E. and E.M. Schulson, Universal behaviour in compressive failure of brittle materials [J]. Nature,2001.412(6850):p.897-900.
    [48]. Raynaud, S., et al., Brittle-to-ductile transition in Beaucaire marl from triaxial tests under the CT-scanner [J]. International Journal of Rock Mechanics and Mining Sciences,2008.45(5):p.653-671.
    [49]. Eberhardt, E., et al., Identifying crack initiation and propagation thresholds in brittle rock [J]. Canadian Geotechnical Journal,1998.35(2):p.222-233.
    [50]. Eberhardt, E., D. Stead, and B. Stimpson, Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,1999.36(3):p.361-380.
    [51]. Mogi, K., Effect of the triaxial stress system on the failure of dolomite and limestone [J].1971.11(2):p.111-127.
    [52]. Mogi, K., Effect of the triaxial stress system on fracture and flow of rocks [J]. Physics of the Earth and Planetary Interiors,1972.5(4):p.318-24.
    [53]. Mogi, K., On the pressure dependence of strength of rocks and the Coulomb fracture criterion [J]. Tectonophysics,1974.21(3):p.273-85.
    [54]. Mogi., K., Experimental rock mechanics [M].2007, London, UK:Taylor & Francis Group.
    [55]. Li, X.B., et al., Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2000.37(7):p.1055-1060.
    [56]. Shan, R., Y. Jiang, and B. Li, Obtaining dynamic complete stress-strain curves for rock using the Split Hopkinson Pressure Bar technique [J]. International Journal of Rock Mechanics and Mining Sciences,2000.37(6):p.983-992.
    [57]. Zhao, H., Material behaviour characterisation using SHPB techniques, tests and simulations [J]. Computers & Structures,2003.81(12):p.1301-1310.
    [58]. Li, X.-b., et al., Constitutive model of rock under static-dynamic coupling loading and experimental investigation [J]. Transactions of Nonferrous Metals Society of China,2006.16(3):p.714-722.
    [59]. Li, X., et al., Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences,2008.45(5):p.739-748.
    [60]. Wang, Q.Z., W. Li, and H.P. Xie, Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup [J]. Mechanics of Materials,2009. 41(3):p.252-260.
    [61]. Lajtai, E.Z. and V.N. Lajtai, The evolution of brittle fracture in rocks [J]. Journal of the Geological Society of London,1974.130(1):p.1-18.
    [62]. Andreev, GE., Brittle Failure of Rock Materials:Test Results and Constitutive Models [M].1995, Rotterdam:A.A. Balkema.
    [63]. Brady, B.H.G and E.T. Brown, Rock Mechanics for underground mining [M]. 3rd edtion.2006, Dordrecht, The Netherlands:Springer.
    [64]. Hoek, E. and Brown E.T., Underground Excavation in Rock [M].1980, London:Institution of Mining and Metallurgy.
    [65]. Hoek, E. and E.T. Brown, Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences,1997.34(8):p. 1165-1186.
    [66]. Martin, C.D. and W.G. Maybee, The strength of hard-rock pillars [J]. International Journal of Rock Mechanics and Mining Sciences,2000.37(8):p. 1239-1246.
    [67]. Saroglou, H. and G. Tsiambaos, A modified Hoek-Brown failure criterion for anisotropic intact rock [J]. International Journal of Rock Mechanics and Mining Sciences,2008.45(2):p.223-234.
    [68]. Yu, M.-H., et al., A Unified Strength criterion for rock material [J]. International Journal of Rock Mechanics and Mining Sciences,2002.39(8):p. 975-989.
    [69]. Barton, N., The shear strength of rock and rock joints [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1976. 13(9):p.255-279.
    [70]. Yu, M.-h., Twin shear stress yield criterion [J]. International Journal of Mechanical Sciences,1983.25(1):p.71-74.
    [71]. Wastiels, J., Strength representation of concrete and other materials in the octahedral stress space [J]. Cement and Concrete Research,1982.12(5):p. 625-631.
    [72]. Griffith, A.A., The phenomena of rupture and flow in solids [J]. Philosophical Transactions of the Royal Society of London, Series A, Mathamatical and Physical Sciences,1921.221(587):p.163-198.
    [73]. Griffith, A.A., The theory of rupture [C], in Proc. 2s Int. Congre. Applied Mech.1924:Delft, p.55-63.
    [74].张永兴,岩石力学(第二版)[M].2008,北京:中国建筑工业出版社.
    [75]. Murrell, S.A.F., The theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress [J]. Br J Appl Phys, 1964(15):p.1195-1223.
    [76]. Murrell, S.A.F. and P.J. Digby, The theory of brittle fracture initiation under triaxial stress conditions. I and II [J]. Geophys J Roy Astr S,1970.19:p. 309-334; 499-512.
    [77]. Irwin, GR., Analysis of Stresses and Strains near the End of a Crack Travrsing a Plate [J]. Transaction of the ASME, Journal of Applied Mechanics,1957.24: p.361-364.
    [78]. Erdogan, F. and GC. Sih, On the Crack Extension in Plates under Plane Loading and Transverse Shear [J]. Transaction of the ASME, Journal of Basic Enginering,1963.85(4):p.519-527.
    [79]. Sih, G.C., Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems [J]. International Journal of Fracture,1974.10:p.305-321.
    [80]. Stacey, T.R., A simple extension strain criterion for fracture of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981.18(6):p.469-474.
    [81].谢兴华;速宝玉;詹美礼,基于应变的脆性岩石破坏强度研究[J].岩石力学与工程学报,2004.23(7):p.1087-1090.
    [82]. Wang, E.Z. and N.G. Shrive, Brittle fracture in compression:Mechanisms, models and criteria [J]. Engineering Fracture Mechanics,1995.52(6):p. 1107-1126.
    [83]. Costamagna, R., J. Renner, and O.T. Bruhns, Relationship between fracture and friction for brittle rocks [J]. Mechanics of Materials,2007.39(4):p. 291-301.
    [84]. Nishida, T., et al., A fundamental study on mechanical properties of rock under confining stress [R]. Reports of the Research Institute of Industrial Science, Kyushu University,1976(64):p.1-10.
    [85]. Huang, J., Z. Wang, and Y. Zhao, Development of rock fracture from microfracturing to main fracture formation [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1993.30(7):p. 925-928.
    [86]. Ramamurthy, T., Shear strength response of some geological materials in triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,2001.38(5):p.683-697.
    [87]. Inglis, C.E., Stresses in a plate due to the presence of cracks and sharp corners [J]. Transactions of the Institution of Naval Architects,1913.55:p.219-230.
    [88]. Barron, K., Criteria for brittle fracture initiation in and ultimate failure of rocks and their application to fracture zone prediction [J].1970.2:p.251-259.
    [89]. Hawkes, I. and M. Mellor, Uniaxial testing in rock mechanics laboratories [J]. Engineering Geology,1970.4(3):p.179-285.
    [90]. Wawersik, W.R. and C. Fairhurst, A study of brittle rock fracture in laboratory compression experiments [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1970.7(5):p.561-564, IN7-IN14,565-575.
    [91]. Barron, K., Brittle fracture initiation in and ultimate failure of rocks. I. Isotropic rock [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1971.8(6):p.541-51.
    [92]. Barron, K., Brittle fracture initiation in and ultimate failure of rocks:Part Ⅱ-Isotropic Rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1971.8(6):p.541-546, IN7-IN8, 547-551.
    [93]. Barron, K., Brittle fracture initiation in and ultimate failure of rocks:Part Ⅲ-Anisotropic rocks:Experimental results [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1971.8(6):p. 565-575.
    [94]. Nolen-Hoeksema, R.C. and R.B. Gordon, Optical detection of crack patterns in the opening-mode fracture of marble [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1987.24(2):p. 135-144.
    [95]. Rong, C., Acoustic emission of rocks under triaxial compression with various stress paths [J]. International Journal of Rock Mechanics and Mining Sciences and,1979.16(6):p.401-405.
    [96]. Ohnaka, M., Acoustic emission during creep of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences and,1983.20(3):p. 121-134.
    [97]. Fonseka, G.M., S.A.F. Murrell, and P. Barnes, Scanning electron microscope and acoustic emission studies of crack development in rocks [J]. International Journal of Rock Mechanics and Mining Sciences and,1985.22(5):p. 273-289.
    [98]. Labuz, J.F., S.P. Shah, and C.H. Dowding, The fracture process zone in granite:evidence and effect [J]. International Journal of Rock Mechanics and Mining Sciences and,1987.24(4):p.235-246.
    [99]. Lockner, D.A., et al., Quasi-static fault growth and shear fracture energy in granite [J]. Nature,1991.350(6313):p.39-42.
    [100]. Lockner, D., The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993.30(7):p.883-899.
    [101]. Hashida, T. and H. Takahashi, Significance of AE crack monitoring in fracture toughness evaluation and non-linear rock fracture mechanics [J]. International Journal of Rock Mechanics and Mining Sciences and,1993.30(1):p.47-60.
    [102]. Young, R.P. and C.D. Martin, Potential role of acoustic emission microseismicity investigations in the site characterization and performance monitoring of nuclear waste repositories [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993.30(7):p. 797-803.
    [103]. Dai, S.T. and J.F. Labuz, Damage and failure analysis of brittle materials by acoustic emission [J]. Journal of Materials in Civil Engineering,1997.9(4):p. 200-205.
    [104]. Tang, C.A., et al., Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I:Effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences,2000.37(4):p. 555-569.
    [105]. Tang, C.A., et al., Numerical investigation of the mechanical behavior of rock under confining pressure and pore pressure [J]. International Journal of Rock Mechanics and Mining Sciences,2004.41(SUPPL.1).
    [106]. Cai, M., et al., FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences,2007.44(4):p.550-564.
    [107]. Cai, M., et al., Back-analysis of rock mass strength parameters using AE monitoring data [J]. International Journal of Rock Mechanics and Mining Sciences,2007.44(4):p.538-549.
    [108]. Wong, T.F., Micromechanics of faulting in westerly granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982.19(2):p.49-64.
    [109]. Wong, T.F. and R.H.C. Wong, Micromechanics and rock failure process analysis [J]. Key Engineering Materials,2004.261-263(1):p.39-44.
    [110].Moore, D.E. and D.A. Lockner, The role of microcracking in shear-fracture propagation in granite [J]. Journal of Structural Geology,1995.17(1):p. 95-111.
    [111]. Li, C. and E. Nordlund, Assessment of damage in rock using the Kaiser effect of acoustic emission [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993.30(7):p.943-946.
    [112]. Li, C. and E. Nordlund, Deformation of brittle rocks under compression-with particular reference to microcracks [J]. Mechanics of Materials,1993.15(3):p. 223-39.
    [113]. Li, C., Deformation and Failure of Brittle Rocks under Compression [D]. 1993, Lulea University of Technology.
    [114]. Sahouryeh, E., A.V. Dyskin, and L.N. Germanovich, Crack growth under biaxial compression [J]. Engineering Fracture Mechanics,2002.69(18):p. 2187-2198.
    [115]. Dyskin, A.V., et al., Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression [J]. Engineering Fracture Mechanics, 2003.70(15):p.2115-2136.
    [116]. Wong, R.H.C., et al., Crack propagation from 3-D surface fractures in PMMA and marble specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,2004.41(Supplement 1):p.37-42.
    [117]. Heyder, M., K. Kolk, and G. Kuhn, Numerical and experimental investigations of the influence of corner singularities on 3D fatigue crack propagation [J]. Engineering Fracture Mechanics,2005.72(13):p.2095-2105.
    [118]. Heyder, M. and G Kuhn,3D fatigue crack propagation:Experimental studies [J]. International Journal of Fatigue,2006.28(5-6):p.627-634.
    [119].张平,裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究[D]2004,西安理工大学.
    [120].梁正召,三维条件下的岩石破裂过程分析及其数值试验方法研究.2005,东北大学.
    [121].李术才,李廷春,王刚,白世伟,单轴压缩载荷作用下内置裂隙扩展的CT扫描试验[J].岩石力学与工程学报,2007.26(3):p.484-492.
    [122].李廷春,三维裂隙扩展的CT试验及理论分析研究[D].2005,中国科学院
    武汉岩土力学研究所:武汉.
    [123].李晓静,深埋洞室劈裂破坏形成机理的试验和理论研究[D].2007,山东大学.
    [124].左宇军,动静组合加载下的岩石破坏特性研究[D].2005,中南大学.
    [125].周子龙,岩石动静组合加载实验与力学特性研究[D].2007,中南大学.
    [126].叶洲元,动力扰动下高应力岩石力学特性研究[D].2008,中南大学.
    [127].洪亮,冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].2008,中南大学.
    [128]. Broch, E. and S. S(?)rheim, Experiences from the Planning, Construction and Supporting of a Road Tunnel Subjected to Heavy Rockbursting [J]. Rock Mech. Rock Engng.,1984.17:p.15-35.
    [129].Myrvang, A.M. and E. Grimstad, COPING WITH THE PROBLEM OF ROCKBURSTS IN HARD ROCK TUNNELLING [J]. Tunnels and Tunnelling International,1984.16(7):p.13-15.
    [130]. Jager, A.J., P.S. Piper, and N.C. Gay, Rock mechanics aspects of backfill in deep South African gold mines [C]. Proc.6th congress International Society for Rock Mechanics, Montreal,1987. Vol.2,1987:p.991-998.
    [131]. Singh, S.P., The influence of rock properties on the occurrence and control of rockbursts [J]. Mining Science and Technology,1987.5(1):p.11-18.
    [132]. Singh, S.P., Burst energy release index [J]. Rock Mechanics and Rock Engineering,1988.21(2):p.149-155.
    [133]. Singh, S.P., Classification of mine workings according to their rockburst proneness [J]. Mining Science and Technology,1989.8(3):p.253-262.
    [134]. Chi, J., An interpretation of high frequency microseismic monitoring and the development of an advanced warning system of rockbursting for Canadian hard rock mines [D].1992, Queen's University at Kingston (Canada):Canada.
    [135].Hedley, D., Rockburst handbook for Ontario hardrock mines//Review [J]. Canadian Mining Journal,1993.114(1):p.21.
    [136]. Yi, X., Dynamic response and design of support elements in rockburst conditions [D].1993, Queen's University at Kingston (Canada):Canada.
    [137]. Weaving, G.L., A fibre reinforced plastic prototype slow yielding hydraulic prop as a base for rockburst mine props, for use in deep level South African gold mines [D].1995, University of the Witwatersrand, Johannesburg (South Africa):South Africa.
    [138]. Frid, V., Rockburst hazard forecast by electromagnetic radiation excited by rock fracture [J]. Rock Mechanics and Rock Engineering,1997.30(4):p. 229-236.
    [139]. Fujii, Y., Y. Ishijima, and G Deguchi, Prediction of coal face rockbursts and microseismicity in deep longwall coal mining [J]. International Journal of Rock Mechanics and Mining Sciences,1997.34(1):p.85-96.
    [140]. McGarr, A., A mechanism for high wall-rock velocities in rockbursts [J]. Pure and Applied Geophysics,1997.150(3-4):p.381-391.
    [141]. Durrheim, R.J., et al., Factors influencing the severity of rockburst damage in South African gold mines [J]. Journal of the South African Institute of Mining and Metallurgy,1998.98(2):p.53-57.
    [142]. Simon, R., Analysis of fault-slip mechanisms in hard rock mining [D].1999, McGill University (Canada):Canada.
    [143]. Tang, B., Rockburst control using destress blasting [D].2000, McGill University (Canada):Canada.
    [144].Hildyard, M.W. and A.M. Milev, Simulated rockburst experiment: Development of a numerical model for seismic wave propagation from the blast, and forward analysis [J]. Journal of the South African Institute of Mining and Metallurgy,2001.101(5):p.235-245.
    [145]. Saharan, M.R., Dynamic modelling of rock fracturing by destress blasting [D]. 2004, McGill University (Canada):Canada.
    [146]. Ge, M., Efficient mine microseismic monitoring [J]. International Journal of Coal Geology,2005.64(1-2):p.44-56.
    [147]. Hani, S.M., Assessment of horizontal pillar burst in deep hard rock mines [J]. International Journal of Risk Assessment and Management,2007.7(5):p. 695.
    [148]. Sharan, S.K., A finite element perturbation method for the prediction of rockburst [J]. Computers and Structures,2007.85(17-18):p.1304-1309.
    [149]. Wang, J.A. and H.D. Park, Comprehensive prediction of rockburst based on analysis of strain energy in rocks [J]. Tunnelling and Underground Space Technology,2001.16(1):p.49-57.
    [150].左宇军,李夕兵,张义平等,动-静组合加载诱发岩爆时岩块弹射速度的 计算[J].中南大学学报(自然科学版),2006.37(4):p.815-819.
    [151].祝启虎,卢文波,孙金山,基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007.40(2):p.84-87.
    [152].潘岳,张勇,于广明,圆形酮室岩爆机制及其突变理论分析[J].应用数学与力学,2006.27(6):p.741-749.
    [153].李夕兵,李地元,郭雷等,动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007.26(5):p.922-928.
    [154].徐林生,王.,二郎山公路隧道岩爆发生规律与岩爆预测研究[J].岩土工程学报,1999.21(5):p.569-572.
    [155].杨涛,李国维,基于先验知识的岩爆预测研究[J].岩石力学与工程学报,2000.19(4):p.429-431.
    [156].蔡嗣经,张禄华,周文略,深井硬岩矿山岩爆灾害预测研究[J].中国安全生产科学技术,2005.1(5):p.17-20.
    [157].宫凤强,李夕兵,岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报,2007.27(5):p.1012-1018.
    [158]. Li, T., M.F. Cai, and M. Cai, A review of mining-induced seismicity in China [J]. International Journal of Rock Mechanics and Mining Sciences,2007. 44(8):p.1149-1171.
    [159].郭雷,高地应力岩体动力响应与岩爆研究[D].2006,中南大学.
    [160].汪新红,王明洋,岩爆与峰后岩石力学特性[J].岩土力学,2006.27(6):p.913-919.
    [161].何满潮,苗金丽,李德建等,深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007.26(5):p.865-876.
    [162].左宇军,李夕兵,马春德等,动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005.24(5):p.741-746.
    [163].何满潮,杨国兴,苗金丽等,岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009.28(8):p.1521-1529.
    [164].苗金丽,何满潮,李德建等,花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学与工程学报,2009.28(8):p.1593-1603.
    [165]. Lockner, D.A., M.J.S. Johnston, and J.D. Byerlee, A mechanism to explain the generation of earthquake lights [J]. Nature,1983.302(5903):p.28-33.
    [166]. Brady B.H.G and E.T. Brown, Energy changes and stability in underground mining:design application of boundary elements methods[J]. Trans. Int. Min. Metall.,1981.90(4):p.61-68.
    [167].李庶林,深井硬岩岩爆倾向性与岩层控制技术研究[D].2000,东北大学.
    [168].李广平,岩爆的损伤断裂模型[J].岩土力学,1997.18(增):p.105-109.
    [169].徐曾和,李宏,徐曙明,矿井岩爆及其失稳理论[J].中国安全科学学报,1996.6(5):p.9-14.
    [170].谢和平,分形理论在采矿科学中的应用与展望[J].科学中国人,1996(12):p.4-8.
    [171].Kazakidis, V.N., Confinement effects and energy balance analyses for buckling failure under eccentric loading conditions [J]. Rock Mechanics and Rock Engineering,2002.35(2):p.115-126.
    [172].潘岳,张孝武,狭窄煤柱岩爆的突变理论分析[J].岩石力学与工程学报,2004.23(11):p.1797-1803.
    [173].ISRM. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978.15(3):p.99-103.
    [174]. ISRM. Suggested methods for determining the strength of rock materials in triaxial compression[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1978.15(2):p.47-51.
    [175].Fairhurst, C.E. and J.A. Hudson, Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,1999.36(3):p. 279-289.
    [176]. Li, C., R. Prikryl, and E. Nordlund, The stress-strain behaviour of rock material related to fracture under compression [J]. Engineering Geology,1998. 49(3-4):p.293-302.
    [177]. Wong, R.H.C., et al., Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression [J]. Engineering Fracture Mechanics,2002. 69(17):p.1853-1871.
    [178]. Jeong, H.-s., S.-s. Kang, and Y. Obara, Influence of surrounding environments and strain rates on the strength of rocks subjected to uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,2007.44(3):p. 321-331.
    [179].李夕兵,周子龙,叶洲元,等.岩石动静组合加载力学特性研究[J].岩石 力学与工程学报,2008.27(7):1387-1395.
    [180]. Okubo, S. and K. Fukui, Complete stress-strain curves for various rock types in uniaxial tension [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1996.33(6):p.549-556.
    [181].余贤斌,王青蓉,李心一,等.岩石直接拉伸与压缩变形的试验研究[J].岩土力学,2008.29(1):18-22.
    [182]. Sundaram, P.N. and J.M. Corrales, Brazilian tensile strength of rocks with different elastic properties in tension and compression [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980.17(2):p.131-133.
    [183].代高飞,夏才初,晏成.龙滩工程岩石试件在拉伸条件下的变形特性试验研究[J].岩石力学与工程学报,2005,24(3):384-388.
    [184].余贤斌,谢强,李心一,等.直接拉伸、劈裂及单轴压缩试验下岩石的声发射特征[J].岩石力学与工程学报,2007,26(1):137-142.
    [185].尤明庆,苏承东.平台圆盘巴西劈裂和岩石抗拉强度的试验研究[J].岩石力学与工程学报,2004,23(18):3106-3112.
    [186].孙广忠,黄运飞,高边墙地下洞室洞壁围岩板裂化实例及其力学分析.岩石力学与工程学报,1988.7(1):p.15-24.
    [187].戚承志,赵跃堂,钱七虎,强度的应变率效应对剥离破坏影响的数值分析.岩石力学与工程学报,2004.23(7):p.1091-1094.
    [188]. Exadaktylos, G.E. and C.E. Tsoutrelis, Pillar failure by axial splitting in brittle rocks [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1995.32(6):p.551-562.
    [189]. Cai, M., Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-Insight from numerical modeling [J]. International Journal of Rock Mechanics and Mining Sciences,2008.45(5):p. 763-772.
    [190]. Fang, Z. and J.P. Harrison, Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2002.39(4):p.443-457.
    [191]. Savage, J.C., D.A. Lockner, and J.D. Byerlee, Failure in laboratory fault models in triaxial tests [J]. Journal of Geophysical Research,1996.101(B10): p.22215-24.
    [192]. Brady, B.H.G. and E.T. Brown, Rock mechanics for underground mining [M]. 2004, Dordrecht:Kluwer. ⅩⅧ,628 s.
    [193].Holzhausen, GR. and A.M. Johnson, Analyses of longitudinal splitting of uniaxially compressed rock cylinders [J]. International Journal of Rock Mechanics and Mining Sciences and,1979.16(3):p.163-177.
    [194].Horii, H. and S. Nemat-Nasser, Brittle failure in compression:splitting, faulting and ductile-brittle transition [J]. Philosophical Transactions of the Royal Society of London, Series A,1986.319:p.337-374.
    [195]. Li Chunlin, Micromechanics modelling for stress-strain behaviour of brittle rocks [J]. International Journal for Numerical & Analytical Methods in Geomechanics,1995.19(5):p.331-344.
    [196]. Wong, R.H.C., P. Lin, and C.A. Tang, Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression [J]. Mechanics of Materials,2006.38(1-2):p.142-159.
    [197].Eberhardt, E., Brittle rock fracture and progressive damage in uniaxial compression[D], in Department of Geological Sciences.1998, University of Saskatchewan:Saskatoon, Canada. p.334.
    [198].Bazant, Z.P. and Y. Xiang. Compression failure in reinforced concrete columns and size effect [D]. in Structures Congress-Proceedings.1996.
    [199]. Bazant, Z.P. and Y. Xiang, Size effect in compression fracture:Splitting crack band propagation [J]. Journal of Engineering Mechanics,1997.123(2):p. 162-172.
    [200]. Bazant, Z.P., et al., Size effect on compression strength of fiber composites failing by kink band propagation [J]. International Journal of Fracture,1999. 95(1-4):p.103-141.
    [201]. Ewy, R.T. and N.G.W. Cook, Deformation and fracture around cylindrical openings in rock-II. Initiation, growth and interaction of fractures [J]. International Journal of Rock Mechanics and Mining Sciences and,1990. 27(5):p.409-427.
    [202].Martin, CD. and N.A. Chandler, Progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1994.31(6):p.643-659.
    [203]. Hajiabdolmajid, V., P.K. Kaiser, and C.D. Martin, Modelling brittle failure of rock [J]. International Journal of Rock Mechanics and Mining Sciences,2002. 39(6):p.731-741.
    [204]. Kaiser, P.K. and D.R. McCreath, Rock mechanics considerations for drilled or bored excavations in hard rock [J]. Tunnelling and Underground Space Technology incorporating Trenchless,1994.9(4):p.425-437.
    [205]. Germanovich, L.N. and A.V. Dyskin, Fracture mechanisms and instability of openings in compression [J]. International Journal of Rock Mechanics and Mining Sciences,2000.37(1-2):p.263-284.
    [206]. FLAC3D, Theory and Background [M], I. Itasca Consulting Group, Editor. 2005:Minneapolis, Minnesota, USA.
    [207]. Martin, C.D., Seventeenth Canadian geotechnical colloquium; the effect of cohesion loss and stress path on brittle rock strength [J]. Canadian Geotechnical Journal,1997.34(5):p.698-725.
    [208]. Diederichs, M.S., Instability of hard rockmasses:the role of tensile damage and relaxation [D].1999, University of Waterloo:Waterloo, Ontario, Canda.
    [209]. Seah, C.C., Penetration and Perforation of Granite Targets by Hard Projectiles [D].2006, The Norwegian University of Science and Technology:Trondheim, Norway.
    [210].蔡美峰,何满潮,刘东燕,岩石力学与工程[M].2002,北京:科学出版社.
    [211].尤明庆,邹友峰,关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000.19(3):p.391-395.
    [212].尤明庆,苏承东,岩石的非均质性与杨氏模量的确定方法[J].岩石力学与工程学报,2003.22(5):p.757-761.
    [213].Tang, C.A., et al., Modeling of compression-induced spilitting failure in heterogeneous brittle porous solids [J]. Engineering Fracture Mechanics,2005. 72:p.597-615.
    [214]. Tang, C.A., et al., A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension [J]. Mechanics of Materials,2007.39(4):p.326-339.
    [215].吕兆兴,冯增朝,赵阳升,岩石的非均质性对其材料强度尺寸效应的影响[J].煤炭学报,2007.32(917-920).
    [216]. Horii, H. and S. Nemat-Nasser, Compression induced microcrack growth in brittle solids:axial splitting and shear failure [J]. J. Geophys. Res.,1985.90:p. 3105-3125.
    [217]. Rao, Q., B. Stillborg, and Z. Sun. Mode II fracture toughness testing of rock [A]. in Int Congress on Rock Mechanics:Vol 2 [C].1999. Paris:A A Balkema.
    [218].Bobet, A. and H.H. Einstein, Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics and Mining Science,1998.35(7):p.863-889.
    [219].李贺,尹光志,许江,张文卫,岩石断裂力学[M].1988,重庆:重庆大学出版社.
    [220].李浩,陶振宇,岩石在压应力作用下的裂纹扩展模型[J].武汉水利电力大学学报,1999.32(6):p.10-13.
    [221].李海波,赵坚,李俊如,高建光,刘金勇,花岗岩动三轴抗压强度的裂纹模型研究(Ⅰ):理论基础[J].岩土力学,2002.23(1):p.75-80.
    [222].李海波,赵坚,李廷芥,滑移型裂纹模型在研究岩石动态单轴抗压强度中的应用[J].岩石力学与工程学报,2001.20(3):p.315-319.
    [223].刘宁,朱维申,于广明,李晓静,高地应力条件下围岩劈裂破坏的判据及薄板力学模型研究[J].岩石力学与工程学报,2008.27(增1):p.3173-3179.
    [224]. Lajtai, E.Z., B.J. Carter, and M.L. Ayari, Criteria for brittle fracture in compression [J]. Engineering Fracture Mechanics,1990.37(1):p.59-74.
    [225]. Lee, S. and G. Ravichandran, Crack initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics,2003.70:p.1645-1658.
    [226]. Cai, M., et al., Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Science,2004.41:p.833-847.
    [227]. Lu, M., et al., Design of rock caverns in high in-situ stress rock mass, in Rock Mechanics in Underground Construction [C]:ISRM International Symposium 2006:4th Asian Rock Mechanics Symposium, Y.Z. C. F. Leung, Editor.2006, World Scientific:Singapore, p.488.
    [228].刘宝琛,张寄生,杜奇中,岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998.17(6):p.611-614.
    [229]. Obert, L., S.L. Windes, and W.I. Duvall, Standardized test for determining the physical properties of mine rock [M].1946, Invest:U.S. Bur. Mines Rept.
    [230].尤明庆,苏承东,大理岩试样的长度对单轴压缩试验的影响[J].岩石力学与工程学报,2004.23(22):p.3754-3760.
    [231].杨圣奇,苏承东,徐卫亚,岩石材料尺寸效应的试验和理论研究[J].工程力学,2005.22(4):p.112-118.
    [232]. Diederichs, M.S., Stress induced damage accumulation and implications for hard rock engineering, in Mining and Tunnelling Innovation and Opportunity [C], Proc.5th North Am. Rock Mech. Symp. & 17th Tunn. Assn Can. Conf., Toronto 1:3-12., Hammah R., et al., Editors.2002, Univ. Toronto Press: Toronto.
    [233]. Lardner, T.J. and R.R. Archer, Mechanics of solids:an introduction [M].1994, New York:McGraw-Hill. ⅩⅦ,802 s.
    [234].孙广忠,岩体结构力学[M].1988,北京:科学出版社.
    [235].Hu, Y., The buckling failure analysis of a cavern in jointed rock [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1997.34(3-4):p.704.
    [236]. Hu, Y. and H.G Kempfert. The buckling failure of tunnels induced by high horizontal stress in jointed rocks [C]. in Numerical models in geomechanics. Proceedings of the 7th international symposium, Graz, September 1999.1999.
    [237].张晓春,缪协兴,杨挺青,冲击矿压的层裂板模型机实验研究[J].岩石力学与工程学报,1999.18(5):p.497-502.
    [238].冯涛,潘长良,洞室岩爆机理的层裂屈曲模型[J].中国有色金属学报,2000.10(2):p.287-290.
    [239].杨治林,板裂介质围岩的流变屈曲研究[J].西安科技大学学报,2004.24(3):p.342-345.
    [240].左宇军,李夕兵,赵国彦,洞室层裂屈曲岩爆的突变模型[J].中南大学学报(自然科学版),2005.26(2):p.311-316.
    [241].李江腾,曹平,硬岩矿柱纵向劈裂失稳突变理论分析[J].中南大学学报(自然科学版),2006.37(2):p.371-375.
    [242].陈陆望,白世伟,殷晓曦,等,坚硬掩体中马蹄形洞室岩爆破坏平面应变模型试验[J].岩土工程学报,2008.30(10):p.1520-1526.
    [243].古德生,李夕兵,现代金属矿床开采科学技术[M].2006,北京:冶金工业出版社.
    [244].王文星,岩体力学[M].2004,长沙:中南大学出版社.
    [245].左宇军,李夕兵,赵国彦,受静载作用的岩石动态断裂的突变模型[J].煤炭学报,2004.29(6):p.654-658. [246].左宇军,李夕兵,马春德,等,动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005.24(5):p.741-746.[247].杨桂通,熊祝华,塑性动力学[M].1984,北京:清华大学出版社.[248].王礼立,应力波基础[M].2005,北京:国防工业出版社.[249].朱维申,李晓静,郭彦双,等,地下大型洞室群稳定性的系统性研究[J].岩石力学与工程学报,2004.23(10):p.1689-1693.[250].闫长斌,徐国元,李夕兵.,爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005.24(16):p.2894-2899.[251]. FLAC3D, User's guide(version 3.0) [M], I. Itasca Consulting Group, Editor. 2005:Minneapolis, Minnesota, USA.[252].龙源,冯长根,徐全军,等.,爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破,2006.6(3):p.1-7.[253]. Cai, M., J. Wang, and S. Wang, Prediction of rock burst with deep mining excavation in linglong gold mine [J]. Journal of University of Science and Technology Beijing:Mineral Metallurgy Materials (Eng Ed),2001.8(4):p. 241-243. [254].Muller, W., Numerical simulation of rock bursts [J]. Mining Science & Technology,1991.12(1):p.27-42. [255]. Tang, C.A., et al., A new approach to numerical method of modelling geological processes and rock engineering problems-continuum to discontinuum and linearity to nonlinearity [J]. Engineering Geology,1998. 49(3-4):p.207-214.[256].郭志强,秦岭终南山特长公路隧道岩爆特征与施工对策[J].现代隧道技术,2003.40(6):p.58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700