用户名: 密码: 验证码:
基于等价输入干扰补偿的建筑结构抗震主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是一种危害性很大的自然灾害,它会引起建筑结构的振动,从而导致建筑结构的损坏。近年来,在强震作用下建筑结构的毁坏导致了数以万计的人员伤亡与数以亿计的财产损失,给人类带来了巨大的灾难。因此建筑结构的抗震问题是结构设计中需要考虑的重要问题之一。结构振动控制能有效减小地震对建筑结构造成的损害,对结构实行隔振、控振是抗震设计的重要手段,而不仅限于增强自身结构来满足结构强度和刚度的要求。采用被动、半主动、主动或混合控制来达到建筑结构减振的目的都受到人们的极大关注,近些年来,采用主动控制方法抑制地震激励作用下的建筑结构振动受到了广泛关注。许多控制算法已被应用于土木工程系统中,然而,寻求控制规则比较简单、在实际工程中容易实施、能进一步降低建筑结构振动的控制方法仍然是人们需要进行研究的课题。
     本文致力于研究基于等价输入干扰补偿的结构主动控制方法,以提高建筑结构的抗震能力,主要研究工作和创新点如下:
     (1)分析了基于等价输入干扰补偿的控制方式的特点。基于等价输入干扰补偿的控制器推测一个加于控制输入渠道的等价扰动信号,并直接将其与控制输入进行叠加,保证了能够有效抑制各种干扰信号对受控系统产生的影响。从控制系统的观点来看,因为需要通过控制系统的输入来提高干扰抑制性能,因此推测控制器输入渠道的干扰信号比直接推测干扰信号本身更具有控制意义。该控制系统虽然不包含干扰的内部模型,但是对瞬时的以及稳态的未知干扰都能很好地抑制,这种方法不需要测量输出的微分值,也不需要干扰信号的先验信息,无需受控系统的逆动力学模型,从而能够避免不稳定零极点对消。该方法仅需受控系统的输入和输出就能得出等价输入干扰,无需受控系统的状态,从而扩大了它的应用范围。
     (2)基于等价输入干扰补偿方法进行建筑结构抗震主动控制器设计,提出了基于等价输入干扰补偿的结构主动控制系统的设计方法。将等价输入干扰补偿控制方法推广至多输入多输出的建筑结构系统的抗震控制,抑制了建筑结构在地震激励下的结构振动反应,实现了对建筑结构的振动控制。在该控制器中,采用分离定理把控制器中的状态反馈设计与观测器和低通滤波器的设计分离开来,运用完全调节方法提出了一种观测器的设计方法。
     (3)对基于等价输入干扰补偿的结构主动控制系统的干扰抑制机制进行了分析。通过对其系统结构的分析表明,该控制系统具有二个自由度,其中的反馈控制器是由系统中的状态反馈部分构成,前馈控制器是由状态观测器和低通滤波器部分构成。通过在伺服控制系统中加入等价输入干扰推测器,使得传递函数在前馈路径中增加了一个积分项,从而改善了干扰抑制性能。通过仿真实验分析滤波器特征与干扰抑制性能之间的关系,结果表明低通滤波器的特性对干扰抑制性能的影响非常明显,且选择一阶低通滤波器是最合适的,选择高阶低通滤波器反而会降低干扰抑制性能,低通滤波器的截止角频率应该选取为需要被抑制的干扰信号频率成分中的最高角频率的5倍以上。
     (4)通过计算机仿真研究等价输入干扰补偿结构主动控制器对建筑结构减震控制的效果。仿真模拟了分别受El-Centro、Kobe、Mexico和Northridge地震波激励下结构地震响应控制的效果。算例分析结果显示,在不同地震波激励下,所提控制方法都能使结构各层层间位移的最大值和加速度响应的最大值得到显著的减小,并且各层层间位移均方根值也得到了明显的减小。仿真结果显示该控制方式的地震控制效果明显,减振性能优于LQR、模糊监控和特征结构配置等控制策略,等价输入干扰补偿结构主动控制有效地降低了地震对建筑结构的破坏。
     (5)为了防止控制过程中作动器出现饱和现象,本文提出了一种考虑作动器容量有限的基于等价输入干扰补偿的结构主动控制策略。以地震激励作用下的3层建筑为例验证了本文方法抑制结构振动的可行性,数值仿真结果显示该方案控制效果较好,即使当作动器容量较小时,对结构振动也有一定的改善效果,而且随着作动器容量的增大,对建筑结构的振动控制效果就变得更明显。
An earthquake is a harmful natural disaster. It causes the vibration of building structures and may damage them. In recent years, collapses of building structures due to large seismic waves have resulted in high mortality and a huge loss of property. Human being suffers a great loss from this kind of disasters. So, antiseismic building structures are one of the most important aspect need to be considered in the structural design. Structural vibration control is widely recognized as an effective way of mitigating catastrophic damage of structures induced by earthquakes. In addition to reinforcing the stiffness and intension of structures, isolation and control of vibration are important measures of antiseismic design. Passive, semiactive, active and/or hybrid vibration control for antiseismatic structures has been attracting considerable attention. In particular, active control for reducing the effects of earthquakes on building and other civil engineering structures has been receiving increasing attention. A lot of control algorithms have been applied in designing a structural vibration control system in civil engineering. However, it is still an unfinished subject to devise a control method that is simple, easy to implement, and can further suppress the structural vibration.
     This dissertation investigates a structural active control method by employing the method of equivalent input disturbance (EID). The presented method has ability of suppressing earthquake-induced vibrations of buildings effectively. The main achievements and contributions of this dissertation are as follows:
     (1) We analyze the control system configuration, which is based on the compensation of EID. It reveals that the vibration control performance is guaranteed by the control structure, in which an equivalent vibration signal on the control input channel is estimated and directly incorporated into the control input. From the standpoint of control, it is more reasonable to estimate a disturbance on the control input channel than to estimate the disturbance itself because we have to use the control input to improve the disturbance rejection performance. Even though the control system does not contain an internal model of a disturbance, the influence of an unknown disturbance is almost completely rejected in both the transient and steady-state responses. This method does not require the differentiation of measured outputs, or prior information on a disturbance; and it does not use the inverse dynamics of the plant, thereby avoiding the cancellation of unstable poles/zeros. The method only needs the input and output of the plant to produce an equivalent input disturbance, and does not require the state of the plant. This enlarges its range of application.
     (2) We study the design method of the EID-based structural active controller, and present a design method of the structural active control system. In order to suppress earthquake-induced vibrations of a building, we extend the control method based on the compensation of the EID to a multi-input multi-output structural control system for aseismatic design of structures. The control system configuration can be separated into two parts by using the separation theorem. Both of these two parts can be designed independently. We present a design method for the part of state observer and low-pass filter by employing the concept of perfect regulation.
     (3) We analyze the mechanism of disturbance rejection in the EID-based structural active control system. Analysis of the control system configuration shows that the control system has two degrees of freedom. The feedback controller consists of the state feedback; and the feedforward controller consists of the state observer and the low-pass filter. The addition of an EID estimator to a servo system improves the disturbance rejection performance through an integration in the feedforward path. The explanation makes it clear that the characteristics of the filter in the system strongly affect the disturbance rejection performance. Guidelines for the selection of the low-pass filter are given, based on an examination of simulation results. Regarding the choice of low-pass filter, we can conclude that:a first-order low-pass filter is the best. The cut-off angular frequency of the low-pass filter should be chosen to be five times higher than the highest angular frequency of the disturbance to be rejected.
     (4) We carry out the control system design through numerical examples and simulations to prove the validity of the proposed control method for reducing the seismic responses of the building structure. In the numerical simulations, historically recorded ground accelerations, i.e. the El-Centro, Kobe, Mexico and Northridge earthquakes are employed as external disturbances. The simulation results verify that the vibration control of this method is effective in reducing the seismic responses of structure. The maximum inter-story drift and maximum acceleration response of each floor can be considerably reduced when the proposed method is used. The root mean square of the inter-story drift of each floor also shows a similar tendency. As a result, the presented control method improves the seismic performance of a structural control system. The simulation results are also compared to those of the LQR, fuzzy supervisory control, and eigenstructure assignment control methods. The analysis of the simulation results show that the presented active strategy has better performance in reducing the seismic response of building and minimize the damages in the building structures caused by earthquake over those methods.
     (5) In order to prevent saturation phenomenon occurred in the structural control, we present the method of EID-based structural active control under actuator saturation. A three-story building structure under seismic loads is used to illustrate the feasibility of the presented method in reducing the structural vibration. The simulation results revealed that this method is effective to suppress the structural vibration. When the actuator capacity is small, the effect of structural control is also small. However, when the actuator capacity is increased, the relative benefits become more apparent.
引文
[1]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [2]周云,邹征敏,张超,等.汶川地震砌体结构的震害与改进砌体结构抗震性能的途径和方法[J].防灾减灾工程学报,2009,29(1):109-113.
    [3]宋刚.受随机激励工程结构振动控制方法研究:[博士学位论文].大连:大连理工大学,2008.
    [4]李雪峰.大跨度斜拉桥结构地震响应主动控制研究:[博士学位论文].合肥:合肥工业大学,2008.
    [5]Koshika N, Sakamoto M, Fukushima I, et. al. Analytical study on active and non-linear control for large earthquakes [C]//Proc.35th IEEE Conf. Decision and Control,1996:670-675.
    [6]Doyle J C, Glover K, Francis B A. State-space solution to standard H2 and H∞ control problem [J]. Transaction on automatic contorl,1988,34(8):831-847.
    [7]颜桂云.地震、风激励作用下高层建筑振动控制的研究:[博士学位论文].杭州:浙江大学,2005.
    [8]中华人民共和国国家质量技术监督局.GB17740-1999.地震震级的规定[S].北京:中国标准出版社,1999-11-01.
    [9]中国地震局.地震及前兆数字观测技术规范[M].北京:地震出版社,2001.
    [10]中华人民共和国国家质量技术监督局.GB/T 17742-1999.中国地震烈度表[S].北京:中国标准出版社,1999-11-01.
    [11]Yao J T P. Concept of structural Control [J]. Journal of Structural Division. ASCE,1972,98:1567-1574.
    [12]Housner G W, Bergman L A, Caughey T K, et. al. Structural control:past and present [J]. Journal of Engineering Mechanics, ASCE,1997,123(9):897-971.
    [13]Spencer Jr.B F, Dyke S J, Deoskar H S. Benchmark problems in structural control:part Ⅰ-active mass driver system [J]. Earthquake engineering and structural dynamics,1998,27(11):1127-1139.
    [14]王春林,吕志涛,涂永明.半柔性悬挂结构体系的风振响应参数优化及阻尼控制[J].土木工程学报,2009,42(3):1-7.
    [15]Brownjohn J M W. Lateral loading and response for a tall building in the non-seismic doldrums [J]. Engineering Structures,2005,27(12):1801-1812.
    [16]李创第,丁晓华,陈俊忠,等.基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J].振动与冲击,2006,25(5):173-176.
    [17]蓝宗建,杨东升,房良,等.巨型框架多功能减振结构体系的减振效果分析[J].东南大学学报(自然科学版),2003,33(5):1-5.
    [18]叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振技术及其应用[J].东南大学学报(自然科学版),2002,32(3):1-8.
    [19]程树良,王焕定,孙作玉.隔震换能系统换能效果试验研究[J].工程力学,2006,23(11):38-44.
    [20]李创第,葛新广,朱倍权.带五种被动减振器的高层建筑基于Davenport谱随机风振响应的解析解法[J].工程力学,2009,26(4):144-152.
    [21]元兴军,李小军,刘萍.土木工程结构减震控制方法综述[J].工业建筑,2006,36(8):59-63.
    [22]Naeim F, Kelly J M. Design of seismic isolated structures-from theory to practice [M]. John Wiley & Sons Inc,1999.
    [23]黄海生,王柏生.基础隔震建筑非线性动力响应的时程计算方法[J].振动与冲击,2005,24(3):50-52.
    [24]Alhan C, Gavin H. A parametric study of linear and non-linear passively damped seismic isolation systems for buildings [J]. Engineering Structures, 2004,26:485-497.
    [25]Baratta A, Corbi I. Optimal Design of base-isolators in multi-storey buildings [J]. Computers and Structures,2004,82:2199-2209.
    [26]黄东梅,李创第,陈俊忠,等.基础隔震结构基于新抗震规范地震动随机模型的地震作用取值[J].振动与冲击,2006,25(5):142-147.
    [27]黄文,杨佑发.层间隔震底层框架砌体房动力计算方法[J].重庆大学学报(自然科学版),2006,29(7):146-148.
    [28]谷伟,夏禹,刘斌.石墨滑移隔震砌体房屋错动位移研究[J].武汉理工大学学报,2003,25(2):27-30.
    [29]宁贞网,王修信.橡胶垫基础隔震建筑的地震作用简化计算[J].东南大
    学学报(自然科学版),2002,32(6):1-5.
    [30]王焕定,付伟庆,张永山,等.磁流变智能基础隔震系统的试验研究[J].同济大学学报(自然科学版),2006,34(7):880-885.
    [31]Trombetti T L, Conte J P. New insight into and simplified approach to seismic analysis of torsionally coupled one-story, elastic systems [J]. Journal of Sound and Vibration,2005,286:265-312.
    [32]樊水荣,苏经宇,曾德民,等.建筑基础摩擦滑移隔震技术及其应用[J].工程抗震,1997,3(1):39-43.
    [33]张文芳,程文瀼,李爱群,等.九层房屋基础滑移隔震的试验、分析及应用研究[J].建筑结构学报,2000,6(3):60-68.
    [34]李忠献,刘颖,王健.滑移隔震结构考虑土-结构动力相互作用的动力分析[J].工程抗震,2004,8(4):1-6.
    [35]李黎,樊爱武,孙红虎.滑移隔震结构滑移位移的数值研究[J].工程抗震与加固改造,2004,26(6):32-36.
    [36]唐家样,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [37]武田寿一.建筑物隔震、防振与控振(纪晓惠等译)[M].北京:中国建筑工业出版杜,1997.
    [38]钱国桢,许刚,宋新初.一种新型的沥青阻尼隔震垫(BS垫)及其应用[J].浙江建筑,2001,18(1):28-30.
    [39]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [40]杨飚,李友明,沈世钊,等.单层网壳结构的阻尼减振控制分析[J].世界地震工程,2009,25(1):143-147.
    [41]吴波,李艺华.安装速度相关型消能器结构直接基于位移可靠度的抗震设计方法[J].世界地震工程,2003,19(4):7-11.
    [42]Hwang J S, Kim J, Kim Y M. Rotational inertia dampers with toggle bracing for vibration control of a building structure [J]. Engineering Structures,2007, 29(6):1201-1208.
    [43]Tao J, Mak C M. Effect of viscous damping on power transmissibility for the vibration isolation of building services equipment [J]. Applied Acoustics,2006, 67:733-742.
    [44]Jimenez R, Alvarez L. Real Time identification of structures with magnetorheological dampers [C]//Proceedings of the 41st IEEE Conference on Decision and Control,2002:1017-1022.
    [45]Lin C C, Wang J F, Ueng J M. Vibration control identification of seismically excited MDOF structure-PTMD systems [J].Journal of Sound and Vibration, 2001,240(1):87-115.
    [46]Pansare A P, Jangid R S. Tuned mass dampers for torsionally coupled systems [J]. Wind and Structures,2003,6:23-40.
    [47]滕军,鲁志雄,肖仪清,等.高耸结构TMD接触非线性阻尼振动控制研究[J].振动与冲击,2009,28(3):90-97.
    [48]阎石,李宏男,林皋.可调频调谐液体柱型阻尼器控制参数研究[J].地震工程与工程振动,1998,18(4):96-101.
    [49]阎石,林蓓,白克伟.高层建筑利用特殊水箱的减振性能[J].沈阳建筑工程学院学报,1999,15(3):2-6.
    [50]Xu K, Igusa T. Dynamic characteristics of multiple substructures with closely spaced frequencies [J]. Earthquake Engineering and Structural Dynamics, 1992,21:1059-1070.
    [51]Yamaguchi H, Harnpornchai N. Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations [J]. Earthquake Engineering and Structural Dynamics,1993,22:51-62.
    [52]Jangid R S. Dynamic characteristics of structures with multiple tuned mass dampers [J]. Structural Engineering and Mechanics,1995,3:497-509.
    [53]Li C. Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF [J]. Earthquake Engineering and Structural Dynamics,2002,31:897-919.
    [54]Wang J F, Lin C C. Seismic performance of multiple tuned mass dampers for soil-irregular building interaction systems [J]. International Journal of Solids and Structures,2005,42:5536-5554.
    [55]Shankar K, Balendra T. Application of the energy flow method to vibration control of buildings with multiple tuned liquid dampers [J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1893-1906.
    [56]池毓蔚,钱国桢,王柏生,等.加层结构被动控制最优侧向刚度的试验研究[J].振动与冲击,1999,18(2):32-35.
    [57]潘颖,王超,蔡国平.地震作用下主动减震结构的时滞离散最优控制[J].工程力学,2004,2 1(2):88-94.
    [58]毕光辉,邹立华,柴旺.基于地震波灰色预测的结构振动最优控制研究[J].兰州交通大学学报(自然科学版),2006,25(1):12-16.
    [59]Liu D K, Yang Y L, Li Q S. Optimum positioning of actuators in tall buildings using genetic algorithm [J]. Computers and Structures,2003,81:2823-2827.
    [60]盛严.基于补偿器结构的LTR结构振动控制方法[J].工程力学,2009,26(1):193-197.
    [61]李宏男,董松员,李宏宇.基于遗传算法优化阻尼器空间位置的结构振动控制[J].振动与冲击,2006,26(2):1-4.
    [62]Du H, Lam J, Sze K Y. Non-fragile H∞ vibration control for uncertain structural systems [J]. Journal of Sound and Vibration,2004,273:1031-1045.
    [63]Du H, Boffa J, Zhang N. Active seismic response control of tall buildings based on reduced order model [C]//Proceedings of the 2006 American Control Conference,2006:1132-1137.
    [64]Nishimura H, Kojima A. Seismic isolation control for a buildinglike structure [J]. IEEE Control System Magazine,1999,19(6):38-44.
    [65]Liu D D, Mao J Q, Zhang J. Structural control with stiffness uncertainty in earthquake zone [C]//Proceedings of the 1998 IEEE International Conference on Control Applications,1998:393-397.
    [66]张浩,卞永明,Good M C.基于H∞-μ鲁棒控制原理和使用ATMD的高楼主动振动控制策略研究[J].控制理论与应用,1999,16(3):90-97.
    [67]沙成满,王恩德,杨冬梅,等.建筑结构振动主动控制的H2/H∞混合凸优化方案[J].东北大学学报(自然科学版),2002,23(12):1189-1192.
    [68]沙成满,王恩德,杨冬梅,等.考虑土-结构相互作用的结构控制H2/H∞混合凸优化方案[J].岩土力学,2002,23(5):541-545.
    [69]Guclu R. Sliding mode and PID control of a structural system against earthquake [J]. Mathematical and Computer Modelling,2006,44:210-217.
    [70]Wang A P, Lin Y H. Vibration control of a tall building subjected to earthquake excitation [J]. Journal of Sound and Vibration,2007,299:757-773.
    [71]李芦钰,欧进萍.结构非线性振动的自适应模糊滑模控制[J].振动工程学报,2006,19(3):319-325.
    [72]张微敬,欧进萍.基于单片机模糊控制器的AMD主动控制试验研究[J].建筑结构学报,2006,27(1):37-41.
    [73]张微敬,欧进萍,基于粗糙集理论的结构振动模糊控制[J].振动工程学报,2005,18(4):406-411.
    [74]李淑玉,刘栋栋.基于TS模型的结构振动模糊控制方法[J].世界地震工程,2005,21(1):61-65.
    [75]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取[J].地震工程与工程振动,2001,21(2):130-135.
    [76]杨润林,闫维明,周锡元,等.基于离复位控制策略的结构振动控制研究[J].工程力学,2006,23(5):1-8.
    [77]徐家云,陈波,彭文韬.两种结构预测控制律的研究[J].工程力学,2003,20(2):87-90.
    [78]张永兵,张永申,李双蓓,等.3层基准建筑非线性地震反应的智能控制[J].土木建筑与环境工程,2009,31(1):49-54.
    [79]Madan A. Vibration control of building structures using self-organizing and self-learning neural networks [J].Journal of Sound and Vibration,2005,287: 759-784.
    [80]李宏男,李宏宇,董松员.基于模糊神经网络系统的结构主动控制[J].沈阳建筑大学学报(自然科学版),2005,21(2):99-102.
    [81]欧进萍,张利芬.模糊神经网络控制系统优化的实整数混合编码遗传算法[J].地震工程与工程振动,2003,23(1):11-17.
    [82]黄永安,邓子辰.基于瞬时最优控制神经网络的建筑结构主动控制研究[J].振动与冲击,2005,24(2):5-8.
    [83]何敏,王建国.自适应神经网络模糊推理系统在结构振动主动控制中的研究[J].安徽建筑工业学院学报(自然科学版),2006,14(4):11-13.
    [84]Kim J H, Jabbari F, Yang J N. Actuator saturation and control design for buildings under seismic excitation [C]//Proceedings of the American Control Conference,2000:29-33.
    [85]Nguyen T, Jabbari F, de Miguel S. Application of active control to buildings under seismic excitation:Actuator saturation [C]//Proceedings of the 1998 IEEE International Conference on Control Applications,1998:1051-1055.
    [86]Du H, Lam J. Energy-to-peak performance controller design for building via static output feedback under consideration of actuator saturation [J]. Computers and Structures,2006,84(31-32):2277-2290.
    [87]Yang J N, Lin S, Jabbari F. Performance-based controller for civil engineering structures [C]//Proceedings of the American Control Conference,2001: 1083-1088.
    [88]刘志军,周星德.一种基于能量的振动主动控制新方法[J].地震工程与工程振动,2007,27(1):125-129.
    [89]Fang J Q, Li Q S, Jeary A P. Modified independent modal space control of m.d.o.f. systems [J]. Journal of Sound and Vibration,2003,261:421-441.
    [90]Hino M, Iwai Z, Mizumoto I, et al. Active vibration control of a multi-degree-of-freedom structure by the use of robust decentralized simple adaptive control [C]//Proceedings of the 1996 IEEE International Conference on Control Applications,1996:922-927.
    [91]Peng F J, Gu M, Niemann H J. Sinusoidal reference strategy for adaptive feedforward vibration control:numerical simulation and experimental study [J]. Journal of Sound and Vibration,2003,265:1047-1061.
    [92]张建华,刘建军,张庆国,等.基于平衡降阶法的结构振动模态预测控制[J].工程力学,2006,23(5):20-23.
    [93]Marzbanrad J, Ahmadi G, Jha R. Optimal preview active control of structures during earthquakes [J]. Engineering Structures,2004,26:1463-1471.
    [94]Housner G W, Masri S F. Developments in the field of structural control and monitoring of civil infrastructure systems [C]//Earthquake Engineering,12th World Conference New Zealand,2000:2217-2223.
    [95]刘保东,朱晞.桥梁抗震主动控制的稳定性研究[J].中国安全科学学报,2002,12(3):67-70.
    [96]赵大海,李宏男.采用模糊逻辑的半主动摩擦阻尼器对偏心结构的振动控制[J].振动工程学报,2007,20(2):112-117.
    [97]张延年,董锦坤,朱朝艳,等.考虑竖向地震作用的振动控制及其优化研究[J].力学与实践,2006,28(3):24-29.
    [98]Symans M D, Constantinau M C. Semi-active control systems for seismic protection of structures:a state of the art review [J]. Engineering Structures, 1999,21(6):469-487.
    [99]涂文戈,邹银生.基于能量方程的建筑结构半主动控制[J].地震工程与工程振动,2005,25(3):145-151.
    [100]周星德,明宝华.采用半主动TMD的建筑结构振动控制研究[J].振动、测试与诊断,2006,26(2):116-118.
    [101]胡家亮,周丽,严刚.基于磁流变阻尼器的结构模糊半主动控制实验研究[J].振动与冲击,2009,28(3):131-135.
    [102]Ramallo J C, Johnson E A, Spencer Jr B F, et al. Semiactive building base isolation [C]//Proceedings of the American Control Conference,1999: 515-519.
    [103]He W L, Agrawal A K, Yang J N. Novel semiactive friction controller for linear structures against earthquakes [J]. Journal of Structural Engineering, 2003,129(7):941-950.
    [104]Chen C Q, Chen G D. Shake table tests of a quarterscale three-story building model with piezoelectric friction dampers [J]. Structural Control and Health Monitoring,2004,11(4):239-257.
    [105]Lu L Y. Semi-active modal control for seismic structures with variable friction dampers [J]. Engineering Structures,2004,26(4):437-454.
    [106]瞿伟廉,陈静,徐幼麟,等.带裙房高层建筑地震反应控制振动台试验研究[J].地震工程与工程振动,2004,24(3):64-72.
    [107]徐晓龙,孙炳楠,唐锦春.基于模糊神经网络的建筑结构半主动控制研究[J].浙江建筑,2006,23(2):13-16.
    [108]颜桂云,吴国荣,陈福全.高层建筑非线性地震反应的半主动H∞控制[J].振动与冲击,2007,26(2):93-97.
    [109]颜桂云,孙炳楠,杨骊先.高层建筑非线性地震反应的半主动模型预测控制[J].浙江大学学报(工学版),2004,11:1460-1465.
    [110]Schurter K C, Roschke P N. Neuro-fuzzy control of structures using magnetorheological dampers [C]//Proceedings of the American Control Conference,2001:1097-1102.
    [111]Gavin H P. Control of seismically excited vibration using electrorheological mterials and lyapunov methods [J]. IEEE Transactions on Control Systems Technology,2001,9(1):27-36.
    [112]Wang J Y, Ni Y Q, Ko J M, et al. Magneto-rheological tuned liquid column
    dampers (MR-TLCDs) for vibration mitigation of tall buildings:modelling and analysis of open-loop control [J]. Computers and Structures,2005,83: 2023-2034.
    [113]Jimenez R, Alvarez-Icaza L. A state observer for a building with a magneto-rheological damper and parameter uncertainty [C]//Proceedings of the 2006 American Control Conference,2006:2880-2885.
    [114]Leavitt J, Jabbari F, Boborw J E. Optimal control and performance of variable stiffness devices for structural control [C]//2005 American Control Conference,2005:2499-2504.
    [115]周云,邓雪松,吴志远.磁流变阻尼器对高层建筑风振舒适度的半主动控制分析[J].地震工程与工程振动,2002,22(6):135-141.
    [116]瞿伟廉,朱晓辉.两种半主动MR阻尼器对电视塔的风振控制[J].武汉理工大学学报,2005,27(1):44-46.
    [117]麦庆元,韦树英.巨型钢框架MR智能减震结构的地震反应分析[J].广西科学,2007,14(1):70-73.
    [118]刘鸣,结构振动控制的应用及若干问题[J].长安大学学报(建筑与环境科学版),2003,20(4):5-7.
    [119]黄军辉,薛素铎,周乾.形状记忆合金在结构振动控制中的应用[J].世界地震工程,2002,18(3):123-129.
    [120]李忠献,刘建涛,陈海泉.形状记忆合金复合梁的主动振动控制研究[C]//第六届全国地震工程学会会议,2002:642-647.
    [121]韩玉林,李爱群,林萍华,等.基于形状记忆合金超弹性阻尼器的结构振动控制研究[C]//第六届全国地震工程学会会议,2002:656660.
    [122]贝伟明,李宏男.采用磁流变阻尼器的地震结构模糊控制[J].自然灾害学报,2006,15(4):172-176.
    [123]李宏男,杨浩,李秀领.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624.
    [124]李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制[J].振动工程学报,2004,17(3):344-349.
    [125]Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers [J]. Journal of Engineering Mechanics,1997, 123(3):230-238.
    [126]欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998,18(3):1-7.
    [127]范健,孙清,王学明,等.磁流变阻尼器抗震应用的试验研究[J].长安大学学报(建筑与环境科学版),2003,20(3):9-11.
    [128]沈少波,吴文剑.建筑结构地震反应智能基础隔震的半主动控制[J].武汉科技大学学报(自然科学版),2004,27(4):384-386.
    [129]Dyke S J, Spencer B F, Sain M K, et al. Modelling and control of magnetorheological dampers for seismic response reduction [J]. Smart Materials and Structures,1996,5:565-575.
    [130]Ribakov Y, Gluck J. Active control of MDOF structures with supplemental electrorheological damper [J]. Earthquake Engineering and Structural Dynamics,1999,28:143-156.
    [131]瞿伟廉,王军武,徐幼麟,等.ER/MR智能阻尼器耦联的带裙房高层建筑结构地震反应的半主动控制[J].地震工程与工程振动,2000,20(4):87-95.
    [132]瞿伟廉,陈波.智能基础隔震结构的剪扭耦联地震反应分析[J].武汉理工大学学报,2003,25(8):39-42.
    [133]Xu Z D, Shen Y P. A new intelligent control strategy for the structure with magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures,2003,14(1):35-42.
    [134]徐赵东,郭迎庆.利用模糊控制器确定磁流变半主动控制结构的参数[J].东南大学学报(自然科学版),2004,34(2):244-248.
    [135]张延年,李艺,董锦坤,等.智能振动控制装置布局优化设计[J].沈阳建筑大学学报(自然科学版),2006,22(2):217-220.
    [136]李宏男,常治国,赵柏东.微种群遗传算法优化结构振动控制[J].地震工程与工程振动,2002,22(5):92-96.
    [137]李宏男,阎石,林皋.建筑结构利用TLCD减振的神经网络智能控制[J].地震工程与工程振动,2000,20(3):137-142.
    [138]Kobori T, Takahashi M, Nasu T, et al. Seismic response controlled structure with active variable stiffness system [J]. Earthquake Engineering and Structural Dynamics,1993,22:925-941.
    [139]蔡婧.大跨斜拉桥地震反应的主动控制研究:[博士学位论文].成都:西南交通大学,2001.
    [140]彭亚萍,刘增夕.AVS/D半主动振动控制结构的抗震设计方法探讨[J].地震工程与工程振动,2005,25(6):159-164.
    [141]何亚东,何玉敖,黄金枝.建筑结构半主动控制振动台试验研究[J].建筑结构学报,2002,23(4):10-15.
    [142]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究[J].广州大学学报(自然科学版),2002,1(1):69-74.
    [143]周福霖.主动变刚度/阻尼系统的变结构控制[J].工程力学,1998,(增刊):61-66.
    [144]阎维明,谭平,周福霖.两个控制装置的模拟地震振动台试验研究[J].地震工程与工程振动,2000,20(4):112-117.
    [145]李敏霞,大型渡槽隔震耗能混合减振技术的研究和尺度刚度结构振动控制技术的研究:[博士后研究论文].北京:中国水利水电科学研究院,2000.
    [146]刘季,周云.结构抗震控制的研究和应用状况[J].哈尔滨建筑大学学报,1995,28(5):1-6.
    [147]Soong T T, Reinhorn A M. An overview of active and hybrid structural control research in the U. S. [J]. The Structural Design of Tall Buildings,1993,2(3): 193-209.
    [148]邢德进,李忠献.SMA智能控制装置及结构地震反应控制分析[J].河北农业大学学报,2006,29(6):104-107.
    [149]欧进萍.结构振动控制-主动、半主动与智能控制[M].北京:科学出版社,2003.
    [150]Shahin A R, Jones J D. Modeling of SMA tendons for active control of structure [J]. Intell. Master. Syst. Struct.,1997,8(1):51-70.
    [151]Saadat S, Salichs J, Noori M, et al. An overview of vibration and seismic applications of NiTi shape memory alloy [J]. Smart Material and Structure, 2002,11(2):218-229.
    [152]赵鸿铁,薛建阳,周建中.SATMD与粘弹性阻尼器相结合控制体系的地震反应分析[J].西安建筑科技大学学报(自然科学版),2006,38(2):149-153.
    [153]Tzan S R, Pantelides C P. Hybrid structural control using viscoelastic dampers and active control systems [J]. Earthq. Eng. Struct. Dyn.,1994,23(12): 1369-1388.
    [154]周建中,赵鸿铁.SATMD与消能减震相结合的混合控制研究[J].世界地 震工程,2003,19(1):136-140.
    [155]潘颖,王超,陈建斌.基于Liapunov理论的结构非线性振动的混合控制[J].应用力学学报,2003,20(4):46-49.
    [156]周星德,明宝华.含Maxwell阻尼的建筑结构振动混合控制研究[J].振动与冲击,2005,24(5):93-95.
    [157]周星德,郜中文.含饱和作动器的基准建筑物混合控制研究[J].应用力学学报,2007,24(1):62-65.
    [158]Hsu C C, Calise A J, Sweriduk G D, et al. Building seismic response attenuation using robust control and architectural cladding [C]//Proceedings of the American Control Conference,1994:1073-1077.
    [159]Lee T S, Chen Y H, Chuang C H. Robust control of building structures [C]// Proceedings of the American Control Conference,1997:3421-3425.
    [160]Thai K, Jabbari F, Bobrow J E. Structural control via semi-active and hybrid control [C]//Proceedings of the American Control Conference,1997:6-10.
    [161]Zames G, Owen J G. Duality theory for MIMO robust disturbance rejection [J]. IEEE Transactions on Automatic Control,1993,38(5):743-752.
    [162]Su Y X, Duan B Y. Disturbance-rejection high-precision motion control of a stewart platform [J]. IEEE Transactions on Control Systems Technology,2004, 12(3):364-374.
    [163]She J H, Fang M X, Ohyama Y, et al. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach [J]. IEEE Trans. Ind. Electron.,2008,55(1):380-389.
    [164]方明星,吴敏,佘锦华.基于等价输入干扰补偿的直流电机定位控制[J].仪器仪表学报,(录用待发表)
    [165]方明星,吴敏,佘锦华.基于等价输入干扰补偿的高精度速度控制[C]//第27届中国控制会议,2008:700-704.
    [166]Blanchini F, Sznaier M. Persistent disturbance rejection via static-state feedback [J]. IEEE Transactions on Automatic Control,1995,40(6): 1127-1131.
    [167]Gao Z Q. Active disturbance rejection control:a paradigm shift in feedback control system design [C]//Proceedings of the 2006 American Control Conference, Minnesota, USA,2006:2399-2405.
    [168]Levin J, Arancibia N O, Ioannou P A, et al. Adaptive disturbance rejection for disk drives using neural networks [C]//Proceedings of the 2008 American Control Conference, Washington, USA,2008:2993-2998.
    [169]Kim H W, Sul S K. A new motor speed estimator using kalman filter in low speed range [J]. IEEE Trans. on Industrial Electronics,1996,43(4):498-504.
    [170]Kweon T J, Hyun D S. High-performance speed control of electric machine using low-precision shaft encoder [J]. IEEE Trans. Power Electronics,1999, 14(2):838-849.
    [171]胡明慧,王永山,邵惠鹤.基于粒子滤波前馈补偿的电机伺服系统控制[J].中国电机工程学报,2007,27(27):99-103.
    [172]Yasuda M, Osaka T, Ikeda M. Feedforward control of a vibration isolation system for disturbance suppression [C]//Proceedings of the 35th IEEE conference on decision and control, Kobe, Japan,1996:1229-1233.
    [173]Choi B K, Choi C H, Lim H. Model-based disturbance attenuation for CNC machining centers in cutting process [J]. IEEE Transactions on Mechatronics, 1999,4(2):157-168.
    [174]Yao B, Al-Majed M, Tomizuka M. High-performance robust motion control of machine tools:an adaptive robust control approach and comparative experiments [J]. IEEE Transactions on Mechatronics,1997,2(2):63-76.
    [175]Ragunathan K, Bikdash M, Homaifar A. Disturbance rejection using sliding-mode control of adjustable speed drives [C]//Proceedings of the 2000 American Control Conference, Chicago, USA,2000:1627-1631.
    [176]傅春,谢剑英.模糊滑模控制研究综述[J].信息与控制.2001,30(5):434-439.
    [177]Gao W B, Wang Y F, Homaifa A. Discrete-time variable structure control systems [J]. IEEE Trans. on Industrial Electronics,1995,42(2):117-122.
    [178]Veluvolu K C, Soh Y C, Cao W. Robust discrete-time nonlinear sliding mode state estimation of uncertain nonlinear systems [J]. Int. J. of Robust Nonlinear Control,2007,17(9):803-828.
    [179]Cheng C C, Lin M H, Hsiao J M. Sliding mode controllers design for linear discrete-time systems with matching perturbations [J]. Automatica,2000, 36(11):1205-1211.
    [180]牟丽君,高存臣,李娟.一类受扰时滞离散系统的滑模跟踪控制[J].控制 与决策,2008,23(8):874-878.
    [181]高兴泉,陈虹.基于T-S模型的轮式移动机器人轨迹跟踪控制[J].控制理论与应用,2007,24(6):873-878.
    [182]Sugeno M, Kang G T. Fuzzy modeling and control of multilayer incinerator [J]. Fuzzy Sets and Systems,1986,18(3):329-346.
    [183]赖永波,屈百达.多时滞不确定系统的模糊保性能H∞控制[J].控制工程,2007,14(3):252-255.
    [184]Mita T, Hirata M, Murata K, et al. H∞ control versus disturbance-observer based control [J]. IEEE Transactions on Industrial Electronics,1998,45(3): 488-495.
    [185]Komada S, Machii N, Hori T. Control of redundant manipulators considering order of disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2000,47(2):413-419.
    [186]Yang K J, Choi Y J, Chung W K. On the tracking performance improvement of optical disk drive servo systems using error-based disturbance observer [J]. IEEE Transactions on Industrial Electronics,2005,52(1):270-278.
    [187]Tan K K. Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors [J]. IEEE Trans. Magnetics,2003,39(3):1813-1818.
    [188]郭红,贾正春,詹琼华,等.永磁同步直线电机电磁推力的谐波分量[J].微电机,2003,36(3):14-17.
    [189]张代林,陈幼平,艾武,等.基于观测器模型的直线电机干扰抑制技术的研究[J].中国电机工程学报,2007,27(12):14-18.
    [190]Liu C S, Peng H. Inverse-dynamics based state and disturbance observers for linear time-invariant system [J]. Journal of Dynamic Systems, Measurement, and Control,2002,124(3):375-381.
    [191]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [192]Han J. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics,2009,56(3):900-906.
    [193]李乔,吴捷.自抗扰控制及其在DC-DC变换器中的应用[J].电工技术学报,2005,20(1):83-88.
    [194]Zhang G Z, Chen J, Li Z P. A design method of active disturbance rejection
    controller for linear motor servo systems [C]//Proceedings of the 27th Chinese Control Conference, Kunming, China,2008:229-233.
    [195]Zheng Q, Dong L L, Dae Hui Lee, et al. Active disturbance rejection control for MEMS gyroscopes [C]//Proceedings of the 2008 American Control Conference, Washington, USA,2008:4425-4430.
    [196]Levine W S. The control handbook. Boca Raton [M]. FL:CRC Press,1996.
    [197]Hunt L R, Meyer G, Su R. Noncausal inverses for linear systems [J]. IEEE Trans. Autom. Control,1996,41(4):608-611.
    [198]Umeno T, Kaneko T, Hori Y. Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators [J]. IEEE Trans. Ind. Electron.,1993,40(5):473-485.
    [199]Zhou K, Doyle J C, Glover K. Robust and optimal control [M]. Englewood Cliffs, NJ:Prentice-Hall,1996.
    [200]Anderson B D O, Moore J B. Optimal control-linear quadratic methods-[M]. Englewood Cliffs, NJ:Prentice-Hall, Inc.,1989.
    [201]Ohnishi K, Matsui N, Hori Y. Estimation, identification, and sensorless control in motion control system [J]. Proc. IEEE,1994,82(8):1253-1265.
    [202]Kwakernaak H, Sivan R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters [J]. IEEE Trans. Autom. Control,1972, 17(1):79-86.
    [203]Kimura H. A new approach to the perfect regulation and the bounded peaking in linear multivariable control systems [J]. IEEE Trans. Autom. Control,1981, 26(1):253-270.
    [204]Sugiura K, Hori Y. Vibration suppression in 2-and 3-mass system based on the feedback of imperfect derivative of the estimated torsional torque [J]. IEEE Trans. Ind. Electron.,1996,43(1):56-64.
    [205]Lewis F L. Applied optimal control and estimation-digital design and implementation [M]. Englewood Cliffs, NJ:Prentice-Hall,1992.
    [206]中华人民共和国建设部.GB50011-2001.建筑抗震设计规范[S].北京:中国建设工业出版社,2001:122-128.
    [207]She J H, Xin X, Yamaura T. Analysis and design of control system with equivalent-input-disturbance estimation [C]//Proceedings of the 2006 IEEE International Conference on Control Applications,2006:1463-1469.
    [208]吴敏,桂卫华,何勇.现代鲁棒控制(第二版)[M].长沙:中南大学出版社,2006.
    [209]Fang M X, She J H, Ohyama Y, et al. Design of low-pass filter in equivalent input disturbance control system[C]// The 48th Japan Joint Automatic Control Conference,2005:109-114.
    [210]Signal Processing Toolbox user's Guide Version 6, The Mathworks Inc., Natick, MA,2005.
    [211]熊俊明.可控调谐液体阻尼器系统对高层建筑地震反应控制的研究:[博士学位论文].广州:华南理工大学,2001.
    [212]黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述[J].地震工程与工程振动,1996,16(2):95-105.
    [213]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997.
    [214]于长官.现代控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [215]Park K S, Koh H M, Ok S Y. Active control of earthquake excited structures using fuzzy supervisory technique [J]. Advances in Engineering Software, 2002,33:761-768.
    [216]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社,2007.
    [217]Fang M X, Wu M, She J H. Active structural control based on the concept of equivalent-input-disturbance [J]. International Journal of Factory Automation, Robotics, and Soft Computing,2009, (1):11-16.
    [218]王国胜,吕强,梁冰,等.基于特征结构配置的结构主动控制及仿真[J].系统仿真学报,2006,18(6):1605-1608.
    [219]Kim J H, Jabbari F. Actuator saturation and control design for buildings under seismic excitation [J]. J. Eng. Mech.,2002,128(4):403-412.
    [220]Chase J G., Breneman S E, Smith H A. Robust H1 static output feedback control with actuator saturation [J].J. Eng. Mech.,1999,125(2):225-233.
    [221]Agrawal A K, Yang J N, Schmitendorf W E, et al. Stability of actively controlled structures with actuator saturation [J].J. Struct. Eng.1997,123(4): 505-512.
    [222]Nguyen T, Jabbari F, Miguel S. Controller design for seismic-excited buildings with bounded actuators [J]. J. Eng. Mech.,1998,124(8):857-865.
    [223]Henrion D, tarbouriech S, Garcia G. Output feedback robust stabilization of uncertain linear systems with saturating control:an LM1 approach [J]. IEEE Trans. Automat. Contr.,1999,44:2230-2237.
    [224]Fang M X, Wu M, She J H. Structural active control based on the concept of equivalent-input-disturbance considering actuator saturation [C]//2009 International Conference on Measuring Technology and Mechatronics Automation,2009:882-885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700