用户名: 密码: 验证码:
基于事故链的电网脆弱性评估与稳定控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和资源环境的压力日益严峻,现代电网将以超高压、大容量、远距离输电和大区互联为显著特征。近年来国内外发生的几起大停电事故表明连锁故障是危及现代电网安全稳定的主要问题,在事故发展过程中充分暴露了大型互联电网的脆弱性,因此对大停电的发展机理、脆弱性评估以及预防措施的研究愈发重要和迫切。国内外学者做了大量研究工作,提出了多种连锁故障模型,如高阶概率模型、复杂网络模型、稳态模型等,并在此基础上研究电网的脆弱性,但是由于模型没有充分考虑电网物理特性和运行中的不确定性因素,与实际情况存在一定的偏差;而连锁故障的预防多是在传统稳定控制方法基础上进行局部的预测和调整,针对连锁故障的控制研究并不多见,电网脆弱性评估在连锁故障控制中的应用等问题尚未解决。本文针对这些问题重点研究了基于事故链模型的电网脆弱性评估和连锁故障的控制问题,主要做了如下工作:
     (1)连锁故障模型作为脆弱性评估和控制的基础,根据潮流转移、线路相继过载以及输电断面的破坏这一连锁故障的典型发展模式,首先研究了电力系统事故链模型的在线生成方法。该方法的核心是对事故链中间环节的预测,以线路故障作为基本事件完成每一级事故链中间环节的预测,考虑到事故链中间环节全部触发将造成系统失稳,因此采用暂态稳定判据确定事故链是否生成完毕。该方法依赖于线路的动态信息,可以考虑到潮流和暂态稳定问题,对系统的模型有良好的适应性并且计算简单,可通过在线计算实现。
     (2)电力系统事故链模型作为典型的多重连锁故障序列,与电网的脆弱性密切相关;同时事故链又可以看做复杂的多米诺骨牌效应,每条事故链的触发关联着事故链的中间环节及其对应的影响因素,因此事故链中间环节影响因素的研究对电网脆弱性评估非常重要。将事故链中间环节作为简单的人机系统,其触发受到人因这一不确定性的因素影响较大,鉴于目前电力系统对人因量化分析的不足,依据当前人因可靠性分析的重要成果,基于模糊-克隆选择的量化方法,研究了电力系统的人因安全量化模型,为事故链的重要度评估提供人因失效的概率。
     (3)从脆弱性和连锁故障角度出发,事故链之间具有可比性,表现在事故链触发的概率和后果,因此引入风险理论对事故链的风险重要度进行研究,将事故链的风险分解为事故链中间环节触发概率和后果的加权值,并以中间环节为单位综合考虑了连锁故障中设备、人因等影响因素。然后,依据事故链的风险重要度,总结了可靠性领域中重要度方法的优劣,研究适用于电力系统的脆弱性评估方法。基于事故链风险重要度的电网脆弱性评估方法计算简单,几乎不受到网络规模的影响,可以对输电线路和输电断面的脆弱性进行排序,通过仿真验证了方法的有效性,并给出了电网脆弱性与稳定性和大停电的关系。
     (4)基于电网脆弱性评估的结论,针对连锁故障的慢动态和快动态两个阶段,分别研究了连锁故障的预防控制和紧急控制原理以及控制的协调执行方案。连锁故障慢动态阶段,通过预防脆弱线路的过载、失稳和强制故障来避免连锁故障的逐步蔓延,并着重研究了电网存在突出脆弱线路的条件下基于暂态支路势能的脆弱线路稳定控制,通过仿真计算验证了基于脆弱环节的连锁故障预防控制的有效性。连锁故障快动态阶段,消除脆弱断面分区内的不平衡功率是稳定控制的首要问题,首先考虑到发电机保护动作的随机性以及紧急控制对系统的二次扰动问题,引入模糊推理和风险分析,研究了功率平衡紧急控制实时启动方法;然后基于粒子群优化算法研究了当启动条件满足时脆弱分区内部的紧急控制策略,以快速计算控制地点及相应的控制量。通过仿真计算验证了该紧急控制原理的有效性和应用前景。
With the development of the economy and the stresses from resources and entironment, the modern power grid is characterized as eltra high voltage, long-distance transmission, large capacity generators and cross-regional interconnections.Therefore, the researches on the evolvement, vulnerability and preventive measures of blackouts have been received much attention. Many works have been done and some cascading outage models have been proposed, such as high-level probabilistic model, complex network model and state-steady model. On the basis of the models, the vulnerability has been analyzed, however, the analytical results were imprecise to the practical system because some models were ignored the power flow and stability of system and the uncertainties in the operational conditions. And, in the existing works, preventive measures were presented to partial prediction and control, while the researches of the control methods against the cascading failures were very few. Additionally, the application of vulnerability assessment results in cascading failure controls has not been solved so far. In this paper, the vulnerability assessment based on the fault chain model and the control methods against cascading failures are studied. The main works are as follows:
     The model of cascading failures is the foundation of vulnerability assessment and control. According to the typical mode of cascading failures, i.e. power flow transfer, sequent overload of lines and damage of transimission segments, the online determination method of the fault chain model is proposed in this paper. The predictive index of fault chain links is the core of the method. A fault chain can be obtained through calculating the index until the system is unstable. The method depending on the dynamic communication of lines and taking the power flow and transient stability into account is accommodated to the system model and computed online efficiently.
     The fault chain model as the typical sequence of cascading failure can be also regarded as complex domino effect. The occurrence of a fault chain is associated with that of each fault chain link, which is a simple man-mechine system. The occurrence of a fault chain link is influenced by some uncertainties such as human factor, but the human factor quantitative analysis is not enough for power system. Therefore, based on the human reliability analysis, the human security quantitative model is proposed in this paper using the fuzzy clone selection algorithm. The results of human error probability can be applied to fault chain assessment.
     The fault chains are comparable from the aspects of vulnerability and cascading failures. The comparability is expressed as the probability and the consequence of the fault chain. Therefore, the risk theory is introduced and the risk importance of fault chains is proposed. The risk importance of fault chains integrates the probabilities and consequences of occurrences of fault chain links, which are connected with many uncertain factors during the cascading outages. And then, based on the fault chain risk importances, the vulnerability assessment method of power grid is derived from the importance measures of reliability research. The method can be calculated in an efficient way hardly influenced by the grid size. The validity of the method can be demontrated by the simulations, and the relationship between vulnerability of power grid and stability is also provided in the simulations.
     On the basis of the vulnerability assessment conclusions, the preventive control and emergency control thoeries and their executive scheme are proposed to address the slow-phase and the speedy-phase of cascading failures. During the course of the slow motion of cascading outages, the prevention of the overload, instability and intentional attack of vulnerable lines is the main work. In this paper, the control method of the vulnerable lines using transient potential energy is proposed against the instability of the most vulnerable line. During the speedy motion of cascading outages, the system is very dangerous so that eliminating the imbalance power is the primary problem. Taking the uncertain factor caused by generator relay and the control cost into account, the real-time initiation approach of power balance emergency control based on fuzzy risk analysis and control stategy using the particle swarm optimization algorithm are proposed in this paper. Finally, the validity and prospect of the methods are testified by the simulations.
引文
[1]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009,29(34):1-8.
    [2]李威,丁杰,姚建国.智能电网发展形态探讨.电力系统自动化,2010,34(2):24-29.
    [3]胡学浩.智能电网——未来电网的发展态势.电网技术,2009,33(14):1-5.
    [4]Djapic P, Ramsay C, Pudjianto D, et al. Taking an active approach. IEEE Power & Energy Magzine,2007,5(4):68-77.
    [5]Sergel R, Michael R J, Cook D N, et al. Smart grid policy. Washington DC:Federal Energy Regulatory Commission,2009.
    [6]Kasajima T, Endo R, Wada Y, et al. The development of the advanced distribution automation system with optical fiber network of Tokyo Electric Power Co. Inc.. IEEE Power Engineering Society General Meeting, Denver, CO,2004.
    [7]NIST. NIST framework and roadmap for smart grid interoperability standards release 1.0 (draft).2009.11.03. http://www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf.
    [8]John J S. A feeling and thinking distribution grid.2009.4.1. http://www.greentechmedia.com/articles/read/a-feeling-and-thinking-distribution-grid-5984.
    [9]杨德昌,李勇,C. Rehtanz,刘泽洪,罗隆福.中国式智能电网的构成和发展规划研究.电网技术,2009,33(20):13-20.
    [10]李斌,薄志谦.面向智能电网的保护控制系统.电力系统自动化,2009,33(20):7-13.
    [11]赵珊珊,张东霞,印永华.智能电网的风险评估.电网技术,2009,33(19):7-10.
    [12]沈国辉,刘金波,陈光,孟鑫,狄方春.特高压调度运行支持系统关键技术.电网技术,2009,33(20):33-37.
    [13]Amin M, Schewe P F. Preventing blackouts:building a smarter power grid. Scientific American,2008, (8):60-67.
    [14]EPRI. Distribution fast simulation and modeling (DFSM) high level requirements. 2009.1.1.http://www.epri-intelligred.com/intelligrid/docs/DFSM_High_Level_Requir ements 1-1Feb2005.
    [15]U. S.-Canada Power System Outage Task Force. Final Report on the August 14,2003 Blackout in the United State and Canada:causes and recommendations. April 2004.
    [16]Ekraft Systems. Power failure in Eastern Denmark and Southern Sweden on 23 September 2003-Final Report on the Courses of Events. Nov.4,2003. http://www.pserc.wise.edu/
    [17]Union for the Coordination of Electricity Transmission (UCTE). Interim Report of the Investigation Committee on the 28 September 2003 Blackout in Italy. October 23, 2003. http://www. Pserc.wisc.edu/
    [18]于洋.电力系统连锁故障及相关问题的研究.浙江大学[博士学位论文].2008,7.
    [19]韩祯祥,甘德强,薛禹胜等.2004年国际大电网会议系列报道.电力系统自动化,2005,29(1):3-5.
    [20]韩祯祥,吴浩,薛禹胜.2006年国际大会议系列报道.电力系统自动化,2006,30(20):1-4.
    [21]李春艳,孙元章,陈向宜等.西欧“11.4"大停电事故的初步分析及防止我国大面积停电事故的措施.电网技术,2006,30(24):16-21.
    [22]李再华,白晓民,丁剑等.西欧大停电事故分析.电力系统自动化,2007,31(1):1-4.
    [23]鲁顺,高立群,王坷等.莫斯科大停电分析及启示.继电器,2006,34(16):27-32.
    [24]G.Andersson, P.Donalek, R.Farmer et al. Causes of the 2003 Major Grid Blackouts in North America and Europe, and Recommended Means to Improve System Dynamic Performance. IEEE Transaction on Power System,2005,20(4):1922-1928.
    [25]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识.电力系统自动化设备,2006,26(12):1-5.
    [26]Miroslav Begovic, Damir Novosel, Daniel Karlsson, Charlie Henville, Gary Michel. Wide-area Protection and Emergency Control. Proceedings of the IEEE,2005,93(5): 876-891.
    [27]李虹,李卫国,毕天姝,熊浩清.基于WAMS的电力系统实时状态估计和预报.电力系统自动化,2009,33(16):35-40.
    [28]C. Taylor, D. Erickson, K. Martin, R. Wilson, V, Venkatasubramanian. WACS-Wide area stability and voltage control system:R&D and online demonstration. Proceedings of the IEEE,2005,93(5):892-906.
    [29]Marek Zima, Goran Andersson. Wide area monitoring and control as a tool for mitigation of cascading failures. The 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames, Iowa, Sep.12-16, 2004.
    [30]Margaret H. Dunham著.郭崇慧,田凤占等译.数据挖掘教程.北京:清华大学出版社,2005.
    [31]V. Figueiredo, F. Rodrigues, Z. Vale, J. B. Gouveia. An electric energy consumer characterization framework based on data mining techniques. IEEE Trans. on Power Systems,2005,20(2):596-602.
    [32]Xu Tao, He Renmu, Wang Peng, Xu Dongjie. Applications of data mining technique for power system transient stability prediction.2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Hongkong, China,2004.
    [33]S. K. Tso, J. K. Lin, H. K. Ho, C. M. Mark, K. M. Yung, Y. K. Ho. Data mining for detection of sensitivity buese arid influential buses in a power system subjected to disturbances. IEEE Trans. on Power Systems,2004,19(1):563-568.
    [34]J. A. Pecas Lopes, M. H. Vasconcelos. On-line dynamic security assessment based on Kernel Regression Trees.2000 IEEE Power Engineering Society Winter Meeting, Singapore,2000.
    [35]高湛军,潘贞存,从伟,卞鹏.基于光纤以太网的纵联保护通信方案.电力系统自动化,2005,29(1):57-60.
    [36]王晨毅,王晖,魏敦楷,蒋凤仙.多信道数据采集和光纤传输系统的实现.仪器仪表学报,2007,28(9):1678-1683.
    [37]杜新宇.光纤通信技术在电网调度自动化系统中的应用.电气应用,2007,(4):s44-s45.
    [38]符国辉,林子钊,王铁辉.识别输电网络脆弱环节的新方法.电力建设,2003,24(2):27-30.
    [39]王先培,朱天清,熊平.基于MAS的电力系统脆弱性评估与控制.电力系统及其自动化学报,2003,15(3):20-23.
    [40]Ross Baldick et al.. Vulnerability assessment for cascading failures in electric power systems. in Proc. IEEE Power and Energy Society Power Systems Conference and Exposition 2009, Seattle, USA,2009.
    [41]Carreras B A, Lynch V E, Dobson I et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems. Hawaii International Conference on System Science, Hawaii, USA,2002.
    [42]Carreras B A, Newm an D E, Dobson I et al. Evidence for self-organized criticality in electric power system blackouts. Hawaii International Conference on System Science, Hawaii, USA,2001.
    [43]Yu Qun, Guo jianbo. Self-organized Criticality and Its Application in Power System Collapse Prevention. Intenational Conference on Power System Technology, Chongqing, China,2006.
    [44]Dobson I, Carreras B A, Lynch V E et al. An initial mode for complex dynamics in electric power system blackouts. Proceedings of the 34th Hawaii International Conference on System Science, Maui, Hawaii, USA,2001.
    [45]Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. The 36th Hawaii International Conference on System Science, Hawaii, USA,2003.
    [46]B.A.Carreras. Dynamical and probabilistic approaches to the study of blackout vulnerability of the power transmission grid. Proceedings of the 37th Hawaii International Conference on System Science, Hawaii, USA,2004.
    [47]I. Dobson, B. A. Carreras, D. E. Newman. A branching process approxiamation to cascading load-dependent system failure. Proceedings of the 37th Hawaii International Conference on System Science, Hawaii, USA,2004.
    [48]I.Dobson, B. A. Carreras, D. E. Newman. Branching process models for the exponentially increasing portions of cascading failure blackouts. Proceedings of the 38th Hawaii International Conference on System Science, Hawaii, USA,2005.
    [49]Lu zongxiang, Meng Zhongwei, Zhou Shuangxi. Cascading failure analysis of bulk power system using small-world network model. The 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames, Iowa, Sep.12-16,2004.
    [50]G. Surdutovich, C. Cortez, R. Vitilina, J. R. Pinto da Silva. Dynamics of'small world' networks and vulnerability of the electric power grid. The Ⅷ Symposium of Specialists in Electric Operational and Expansion Planning,2002.
    [51]史进,涂光瑜,罗毅.电力系统复杂网络特性分析与模型改进.中国电机工程学报,2008,28(25):93-98.
    [52]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估.中国电机工程学报,2005,25(25):118-122.
    [53]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    [54]Barabasi A L, Albert R. Emergence of scaling in random networks. Science,1999, 286(5439):509-512.
    [55]P. Hines, S. Blumsack. A centrality measure for electrical networks. Proceedings of 41st Annual Hawaii International Conference on System Science, Hawaii, USA,2008.
    [56]Y. Liu and X. Gu. Skeleton-network Reconfiguration Based on Topological Characteristics of Scale-free Networks and Discrete Particle Swarm Optimization. IEEE Trans. Power Systems,2007,22(3):1267-1274.
    [57]Paolo Crucitti, Vito Latora, and Massimo Marchiori. Model for cascading failures in complex networks. Phys. Rev. E,2004,69(42):045104-1-045104-4.
    [58]Kinney R, Crucitti P, Albert R, Katora V. Modeling cascading failures in the North American power grid. Eur. Phys. J.,2005,46:101-107.
    [59]Carreras B A, Newman D E, Dolrou I, Poole A B. Initial evidence for self-organized criticality in electric power system blackouts. Proceedings of 33th Hawaii International Conference on System Science, Hawaii, USA,2000.
    [60]Shengwei Mei, Fei He, Xuemin Zhang, Shengyu Wu, and Gang Wang. An improved OPA model and blackout risk assessment. IEEE Trans. Power Syst.,2009,24(2): 814-823.
    [61]D. P. Nedic, I. Dobson, D. S. Kirschen, B. A. Carreras, V. E. Lynch. Criticality in a cascading failure blackout model. Int. J. Electr. Power Energy Syst.,2006,28: 627-633.
    [62]M. A. Rios, D. S. Kirschen, D. Jawayeera, D. P. Nedic, R. N. Allan. Value of security: modeling time-dependent phenomena and weather conditions. IEEE Trans. Power Syst.,2002,12:543-548.
    [63]Accident Investigation and Reporting. http://home.freeuk.net/mike.everley/download/ac.pdf
    [64]罗毅.电力系统安全监控制的理论及方法研究.华中科技大学[博士学位论文],2004.
    [65]罗毅,王英英,万卫等.电网连锁故障的事故链模型.电力系统自动化,2009,33(24):1-6.
    [66]宋福龙,罗毅,涂光瑜等.基于事故树分析法的电力系统事故链监控研究.继电器,2006,34(2):29-34.
    [67]罗金山,罗毅,涂光瑜等.基于随机Petri网模型的地区电网事故链监控研究.继 电器,2006,34(7):32-37.
    [68]D. J. Watts. A simple model of global cascades on random networks. Proc. Natl. Acad Sci.,2002,99:5766-5711.
    [69]史进.基于复杂网络理论的电力系统网络模型及网络性能分析的研究.华中科技大学[博士毕业论文],2008.6.
    [70]Alvert R, Albert I, and Nakarado G L. Structural vulnerability of the North American power grid. Phys. Rev. E,2004,69(22):025103-1-025103-4.
    [71]Xiaogang Chen, Ke Sun, Yijia Cao, and Shaobu Wang. Identification of vulnerable lines in power grid based on complex network theory. in Proc.2007 IEEE Power Engineering Society General Meeting, Tempa, USA,2007.
    [72]Qiming Chen, McCalley J.D.. Identifying high risk N-k contingencies for online security assessment. IEEE Trans. Power Syst.,2005,20(2):823-834.
    [73]Zhenyu Huang, Jarek Nieplocha. Transforming Power Grid Operations via High-Performance Computing, in Proc. PESGM 2008-the IEEE Power and Energy Society General Meeting, Pittsburgh, USA,2008.
    [74]Brandwajn V., Kumar A.B.R., Ipakchi A., Bose A., and Kuo S.D.. Severity indices for contingency screening in dynamic security assessment. IEEE Trans. Power Syst., 1997,12(3):1136-1142.
    [75]Donde V., Lopez V., Lesieutre B., Pinar, A., Chao Yang, and Meza, J.. Severe multiple contingency screening in electric power systems. IEEE Trans. Power Syst.,2008, 23(2):406-417.
    [76]A. L. Motto, J. M. Arroyo, and F. D. Galiana. A mixed-integer LP procedure for analysis of electric grid security under disruptive threat. IEEE Trans. Power Syst., 2005,20(3):1357-1365.
    [77]J. Salmeron, K. Wood, and R. Baldick. Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst.,2004,19(2):905-912.
    [78]J. M. Arroyo and F. D. Galiana. On the solution of the bilevel programming formulation of the terrorist threat problem. IEEE Trans. Power Syst.,2005,20(2): 789-797.
    [79]John D. Andrews and Sally Beeson. Birnbaum's measure of component importance for noncoherent systems. IEEE Transactions on Reliability,2003,52(2):213-219.
    [80]Sally Beeson and John D. Andrews. Importance measures for non-coherent-system analysis. IEEE Transactions on Reliability,2003,52(3):301-310.
    [81]L.M.Barlett and J.D.Andrews. An ordering heuristic to develop the binary decision diagram based on structural importance. Reliability Engineering and System Safety, 2001,72(1):31-38.
    [82]孙小梅.基于事故链理论的电网结构脆弱性评估与监控.华中科技大学[硕士学位论文],2007.6.
    [83]李响,张国庆,郭志忠.基于输电断面N-1静态安全潮流约束的联切负荷方案.电力系统自动化,2004,28(22):42-45.
    [84]K. R. Padiyar, S. Krishna. Online Detection of Loss of Synchronism Using Energy Function Criterion. IEEE Transactions on Power Systems,2006,21(1):46-55.
    [85]李爱民,蔡泽祥.基于轨迹分析的互联电网频率动态特性及低频减载的优化.电工技术学报,2009,24(9):171-177.
    [86]滕林,刘万顺,寅志皓,李贵存,俞波,滕云.电力系统暂态稳定实时紧急控制的研究,中国电机工程学报,2003,23(1):64-69.
    [87]金龙哲,宋存义.安全科学原理.北京:化学工业出版社,2004.
    [88]Rushdi Ali M. and Ba-Rukab Omar M.. Fault-tree modeling of computer system security. International Journal of Computer Mathmatics,2005,82(7):805-819.
    [89]Xingbin Yu, and Chanan Singh. A practical approach for integrated power system vulnerability analysis with protection failures. IEEE Trans. Power Syst.,2004,19(4): 1811-1820.
    [90]Hui Ren, Ian Dobson. Using transmission line outage data to estimate cascading failure propagation in an electric power system. IEEE Transactions on Circuits and Systems—Ⅱ:Express Briefs,2008,55(9):927-931.
    [91]张保会,姚峰,周德才等.输电断面安全性保护及其关键技术研究.中国电机工程学报.2006,26(21):1-7.
    [92]Ian Dobson, B. A. Carreras, and D. E. Newman. A loading dependent model of probabilistic cascading failure. Probab. Eng. Inf. Sci.,2005,19(1):15-32.
    [93]D. Pd Nedic, I. Dobson, D.S. Lirschen, and B. A. Carrera. Criticality in a cascading failure blackout model. Int. J. Elect. Power Energy Syst.,2006,28(9):627-633.
    [94]徐慧明,毕天姝,黄少锋等.基于WAMS的潮流转移识别算法.电力系统自动化,2006,30(14):14-20.
    [95]余晓丹,贾宏杰,陈建华.电力系统连锁故障预测初探.电网技术,2006,30(13):20-25.
    [96]Lu Jinling, Chen Yuan, and Zhu Yongli. Identification of cascading failures based on overload character of transmission lines. in Proc. of 3rd International Conference on Deregulation and Restructuring and Power Technologies 2008, Nanjing, China,2008.
    [97]Jeong H, Tombor B, Albert R. et al. The large-scale organization of metabolic network. Natures,2000,407:651-654.
    [98]蔡国伟,穆钢,K W Chan,卢芳.基于网络信息的暂态稳定性定量分析——支路势能法.中国电机工程学报,2004,24(5):1-6.
    [99]Clement C. Fong, John A. Buzacott. Improved bounds for system-failure probability. IEEE Transactions on Reliability,1987,27(4):289-293.
    [100]Marzio Marseguerra, Enrico Zio, Massimo Librizzi. Quantitative Developments in the Cognitive Reliability and Error Analysis Method (CREAM) for the Assessment of Human Performance. Annals of Nuclear Energy,2006,33:894-910.
    [101]F. Vanderhaegen, David Jouglet, Sylvain Piechowiak. Human-Reliability Analysis of cooperative redundancy to support diagnosis. IEEE Transactions on Reliability,2004, 53(4):458-464.
    [102]Alberto Pasquini, Giuliano Pistolesi, Antonio Rizzo. Reliability analysis of systems based on software and human resource. IEEE Transactions on Reliability,2001,50(4): 337-345.
    [103]R.Billinton, Li Wenyuan. A Novel Method for Incorporating Weather Effects in Composite System Adequacy Evaluation. IEEE Transactions on Power Systems,1991, 6(3):1154-1160.
    [104]袁周,黄志坚.电力系统人因可靠性分析.北京:中国电力出版社,2004.
    [105]C. Michael Lewis, William Wren Stine. Hidden dependence in human errors. IEEE Transactions on Reliability,1989,38(3):296-300.
    [106]Man Cheol Kim, Poong Hyun Seong, Erik Hollnagel. A probabilistic approach for determining the control mode in CREAM. Reliability Engineering and System Safety, 2006,91(2):191-199.
    [107]Xuhong He, Yao Wang, Zupei Shen, Xiangrui Huang. A simplified CREAM prospective quantification process and its application. Reliability Engineering and System Safety,2008,93(2):298-306.
    [108]Hollnagel E, Cognitive Reliability and Error Analysis Method. Oxford:Elsevier Science Ltd,1998.
    [109]W. D. Jung, W. C. Yoon, J.W. Kim. Structured information analysis for human reliability analysis of emergency tasks in nuclear power plant. Reliability Engineering and System Safety,2001,71(1):21-32.
    [110]Myrto Konstandinidou, Zoe Nivolianitou, Chris Kiranoudis, Nikolaos Markatos. A fuzzy modeling application of CREAM methodology for human reliability analysis. Reliability Engineering and System Safety,2006,91(6):706-716.
    [111]Zaili Yang, Steve Bonsall, Jin Wang. Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Transactions on Reliability,2008,57(3): 517-528.
    [112]Yi Ding, Ming J. Zuo, Anotoly Lisnianski, Zhigang Tian. Fuzzy multi-state systems: general definitions, and performance assessment. IEEE Transactions on Reliability, 2008,57(4):589-594.
    [113]Denisse Hidalgo, Oscar Castillo, Patricia Melin. Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Information Sciences,2009,179(13): 2123-2145.
    [114]Christopher J. White, Heba Lakany. A fuzzy inference system for fault detection and isolation:application to a fluid system. Expert Systems with Applications,2008, 35(3):1021-1033.
    [115]郑士芹,王秀峰.基于多模态函数优化的改进克隆选择算法.计算机工程与应用.2006,42(3):15-18.
    [116]Huibo Lou, Chengxiong Mao, Dan Wang, Jiming Lu. PWM Optimization for Three Level Voltage Inverter Based on Clonal Selection Algorithm. IET Electric Power Applications,2007,1(6):870-878.
    [117]Felipe Campelo, Frederico G Guimaraes, Hajime Igarashi, and Jaime A. Ramirez. A clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics,2005,41(5):1736-1739.
    [118]李汶元.电力系统风险评估——模型、方法和应用.北京:科学出版社,2005.
    [119]L. Mili, Q. Qui, A.G Phadke. Risk assessment of catastrophic failures in electric power systems. International Journal of Critical Infrastructures,2004,1(1):38-63.
    [120]Ian Dobson, Kevin R. Wierzbicki, Janghoon Kim, Hui Ren. Towards quantifying cascading blackout risk. Bulk power system dynamics and control-VII, Charleston, South Carolina, USA,2007.
    [121]宋毅,王成山.一种电力系统连锁故障的概率风险评估方法.中国电机工程学报, 2009,29(4):27-33.
    [122]Ming Ni, James D. McCalley, Vijay Vittal, Tayyib Tayyib. Online Risk-based Security Assessment. IEEE Transactions on Power Systems,2003,18(1):258-265.
    [123]宋毅.电力系统连锁故障机理及风险评估方法研究.天津大学[博士学位论文],2008.
    [124]Borgonovo E, Apostolakis GE. A new importance measure for risk-informed decision-making. Reliability Engineering and System Safety,2001,72(2):193-212.
    [125]Ansi Wang, Yi Luo, Guodong Liu. Analysis of the instability modes caused by the UHV interconnection. SUPERGEN, Nanjing, China,2008.
    [126]李碧君,徐泰山,薛禹胜,尹玉君,郑亮.大电网安全稳定综合协调防御系统的工程设计方法.电力系统自动化,2009,33(23):90-94.
    [127]张怡,吴文传,张伯明,万源,孙素琴,伍双喜.暂态稳定预警与预防控制系统的开发和应用.电力系统自动化,2010,34(3):44-48.
    [128]孙闻,房大中,袁世强,薛振宇.基于轨迹灵敏度的暂态稳定预防控制方法.天津大学学报,2010,43(2):109-114.
    [129]吴子美,刘东,周韩.基于风险的电力系统安全预警的预防性控制决策分析.电力自动化设备,2009,29(9):105-109.
    [130]李响,张国庆,郭志忠.基于输电断面N-1静态安全潮流约束的联切负荷方案.电力系统自动化,2004,28(22):42-45.
    [131]Emmanuel J. Thalassinakis, Evangelos N. Dialynas. A Monte-Carlo Simulation Method for Setting the Underfrequency Load Shedding Relays and Selecting the Spinning Reserve Policy in Autonomous Power Systems. IEEE Transactions on Power Systems,2004,19(4):2044-2052.
    [132]李爱民,蔡泽祥.基于轨迹分析的互联电网频率动态特性及低频减载的优化.电工技术学报,2009,24(9):171-177.
    [133]滕林,刘万顺,貟志皓,李贵存,俞波,滕云.电力系统暂态稳定实时紧急控制的研究,中国电机工程学报,2003,23(1):64-69.
    [134]Vladimir V. Terzija. Adaptive Underfrequency Load Shedding Based on the Magnitude of the Disturbance Estimation. IEEE Transactions on Power Systems, 2006,21(3):1260-1266.
    [135]Miroslav Begovic, Damir Novosel, Daniel Karlsson, Charlie Henville, Gary Michel. Wide-area Protection and Emergency Control. Proceedings of the IEEE,2005,93(5): 876-891.
    [136]方勇杰,戴永荣,李雷,等.OPS-1在线预决策的暂态稳定控制系统.电力系统自动化,2000,24(3):56-59.
    [137]徐箭,陈允平.基于动态安全域的电力系统暂态稳定预防控制、紧急控制及其协调.电力自动化设备,2009,29(8):1-7.
    [138]Yunhe Hou, Shengwei Mei, Huafeng Zhou, Jin Zhong. Blackout Prevention: Managing Complexity with Technology.2008 IEEE Power & Energy Society General Meeting, Pittsburgh, USA,2008.
    [139]Yuri V. Makarov, Viktor I. Reshetov, Dladimir A. Stroev, Nikolai I. Voropai. Blackout Prevention in the United States, Europe, and Russia. Proceedings of the IEEE,2005, 93(11):1942-1955.
    [140]Koji. Yamashita, Juan Li, Pei Zhang, Chen-Ching Liu. Analysis and Control of Major Blackout Events.2009 IEEE/PES Power Systems Conference and Exposition, Seattle, USA,2009.
    [141]丁理杰,江全元,包哲静,曹一家.基于多智能体技术的大电网连锁跳闸预防控制.电力系统自动化,2008,32(17):6-11.
    [142]贺庆,郭剑波.基于沙堆模型的控制规则.电力系统自动化,2010,34(3):1-6.
    [143]余贻鑫,王艳君,陈晓明.基于实用安全域的电力系统安全成本分摊.中国电机工程学报,2009,29(19):1-7.
    [144]刘洪,葛少云,李慧.基于硬约束调节的改进粒子群无功优化.天津大学学报,2009,42(9):796-801.
    [145]王伟.广义预测控制理论及其应用.北京:科学出版社,1998.
    [146]陈德树.大电网安全保护技术初探.电网技术,2004,28(9):14-18.
    [147]吴军,涂光瑜,罗毅,陈德树.基于功率平衡保护的紧急负荷控制研究.郑州大学学报(工学版),2005,26(2):47-50.
    [148]吴军,涂光瑜,罗毅,陈德树,熊慕文,李晨.电力系统分层紧急负荷控制[J].电力系统自动化,2006,30(20):26-31.
    [149]王茂海,徐正山,谢开,吕少坤.基于WAMS的系统自然频率特性系数确定方法.电力系统自动化,2007,31(3):15-20.
    [150]P. M. Anderson, M. Mirheydar. A low-order system frequency response model. IEEE Transactions on Power Systems,1990,5(3):720-729.
    [151]袁松贵,吴敏,彭赋,朱豆等.改进PSO算法用于电力系统无功优化的研究.高电压技术,2007,33(7):159-162.
    [152]娄慧波,毛承雄,陆继明,崔艳艳.基于微粒群算法的三电平正弦脉冲宽度调制开关时刻优化.中国电机工程学报,2007,27(33):108-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700