用户名: 密码: 验证码:
磁场影响有机介质中酶促合成柚皮苷酯机理及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物(如柚皮苷)具有多种生理活性,在医药、食品、精细化工等行业中已有广泛应用。对天然来源的黄酮类化合物进行结构修饰,可改善黄酮类化合物的水溶性或脂溶性,或提高其生理活性、增加新的功能等,成为新药研制的有效途径之一。本文以柚皮苷为研究对象,通过脂肪酸酯化反应提高柚皮苷的脂溶性,以改善其生物利用度。引入物理场强化技术,重点研究利用磁场强化有机溶剂中固定化脂肪酶催化合成柚皮苷棕榈酸酯的反应,深入探讨磁场作用下酶结构与活性的变化规律,为实际生产提供理论依据;同时,利用现代光谱分析技术研究了柚皮苷棕榈酸酯与蛋白质分子之间相互作用的特性,为黄酮脂肪酸酯的药物利用提供启发与指导。主要研究内容和结果如下:
     一、有机介质中酶催化合成柚皮苷棕榈酸酯的研究
     较为系统地研究了有机介质中固定化脂肪酶催化合成柚皮苷脂肪酸酯的影响因素,探讨了柚皮苷与棕榈酸酯化反应动力学和反应机制。研究结果表明,脂肪酸链长、酶的种类和加酶量、有机溶剂的种类、初始水分活度、反应温度、振荡速度、底物比例等因素对柚皮苷与脂肪酸的酯化反应有着不同程度的影响。较适宜的反应条件为:以叔戊醇为反应介质,Novozym 435固定化脂肪酶为催化剂,反应温度60℃、振荡速度150 r/min。在此条件下,以柚皮苷和棕榈酸浓度为50 mmol/L和250 mmol/L进行反应,加酶量10 g/L,采用分子筛为脱水剂脱除反应过程中生成的水,反应48 h酯化率为34.80%。在叔戊醇中,Novozym 435催化柚皮苷与棕榈酸的酯化反应为动力学控制,反应遵循Michaelis-Menton方程,符合Ping-Pong Bi-Bi机制。
     二、磁场-酶耦合催化合成柚皮苷棕榈酸酯的研究
     采用磁场预处理耦合酶催化的方式合成柚皮苷棕榈酸酯,研究磁场强度和磁化时间对酶活力以及酯化率的影响。结果表明,适宜的磁处理条件可以显著提高酶活和酯化率。采用磁场预处理有机溶剂和酶的方式,不同场强(100、300、500 mT)处理不同时间(1、2、3 h)后,酶活力均有所提高。500 mT,3 h的磁处理条件下,48 h酯化率从34.80%提高到45.31%,增幅37.4%。采用磁场预处理酶的方式,适宜的场强和时间(500 mT,2 h)可以使酶活力较大幅度地提高,24 h酯化率从18.66%提高到24.10%,增幅为29.2%。
     采用红外光谱研究Novozym 435的游离酶南极假丝酵母脂肪酶B(Candida antartica lipse B,CALB)在磁场作用下二级结构的变化情况,结果表明,磁化作用对CALB二级结构影响不明显,Novozym 435经过磁场处理后催化活力的变化不是由于酶的二级结构发生显著变化引起的,可能是酶活性中心发生了局部的细微的构象变化,即酶的柔性发生了变化所致。
     三、柚皮苷棕榈酸酯的分离纯化及结构表征
     采用硅胶柱层析法分离纯化柚皮苷棕榈酸酯化产物,洗脱剂为乙酸乙酯:乙醇:甲酸(15:1:1,V/V/V)。采用制备高效液相色谱法分离纯化柚皮苷棕榈酸酯化产物,色谱条件为:色谱柱:C18柱(21.5×250 mm);流动相:甲醇;流速:20 mL/min;进样浓度:30 mg/mL;进样体积3 mL;紫外检测波长λ=283 nm。
     用IR、MS、1H-NMR、13C-NMR对磁场-酶催化合成的酯化产物进行结构表征,结果表明生成产物为柚皮苷棕榈酸单酯,酰化反应选择性地发生在葡萄糖基的C-6′′位羟基上。磁场作用没有改变酶催化合成柚皮苷棕榈酸酯的区域选择性。四、柚皮苷棕榈酸酯与蛋白质相互作用的研究
     采用荧光光谱法对柚皮苷及其酯化衍生物柚皮苷棕榈酸酯与牛血清白蛋白(BSA)、溶菌酶的相互作用进行研究。结果表明,柚皮苷棕榈酸酯与蛋白质相互作用符合黄酮类化合物的一般规律。柚皮苷棕榈酸酯对BSA和溶菌酶的荧光猝灭机理都是静态猝灭,与蛋白质结合是自发进行的,对蛋白质内源荧光的猝灭由分子间能量转移引起,柚皮苷棕榈酸酯与BSA和溶菌酶的结合位点数(37℃)分别为0.7和0.6。柚皮苷棕榈酸酯与BSA之间的作用力主要为静电作用力;而柚皮苷棕榈酸酯与溶菌酶二者之间的作用力类型主要为氢键和范德华力。柚皮苷棕榈酸酯与BSA、溶菌酶相互作用的解离常数分别小于柚皮苷与二者的解离常数,提示柚皮苷棕榈酸酯在被蛋白质贮留和转运的过程中,贮留时间比柚皮苷长,有助于药物持久缓释发挥药效。
Flavonoids, such as naringin, are widely used in pharmaceutical, food and cosmetic industry. The bioavailability and bioactivity of natural flavonoids are improved after proper modification. Naringin, one of flavonoids, was employed in this study, and modified by esterification to improve its lipophilicity and bioavailability. Magnetic field was introduced to strengthen the enzymatically synthesis of naringin palmitat in organic solvent with immobilized lipase. Besides, the effect of magnetic field on the lipase was discussed. Furthermore, the interaction between naringin palmitate and protein molecules was investigated so as to obtain the information about drug actions of the esterified naringin. The main contents and results are as follows:
     1. Enzymatically synthesis of naringin palmitate in organic solvent.
     Effect of the chain length of the fatty acids, the origin and concentration of the enzyme, the type of organic solvent, the initial water activity, the reaction temperature, the shaking speed or the molar ratio between the substrates on the the enzymatically reaction of naringin with fatty acids were studied. The proper operation conditions were: immobilized lipase Novozym 435 in t-amyl alchohol at 60℃, with the orbitally shaking speed of 150 r/min. Molecular sieves were used to removed the water produced during the the esterifiation. At the fixed conditions, naringin(50 mmol/L) was esterified with palmitic acid(250 mmol/L), the enzyme concentration of 10 g/L. The conversion rate of naringin reached 34.80% after 48 h. A kinetic study showed that the reaction followed the Michaelis-Menton kinetic and a Ping-Pong Bi-Bi mechanism.
     2. Synthesis of naringin palmitate catalyzed by enzyme under magnetic field.
     Novozym 435, and Novozym 435 and the organic solvent were separately pretreated by magnetic field. The effects of magnetic field intensity and magnetic pretreatment time on the enzyme activity and conversion rate were studied. The results showed that when with proper magnetic field intensity and pretreatment time magnetical pretreatment would improve the enzyme activity as well as the conversion rate. When the enzyme and the organic solvent were pretreated with magnetic field intensity of 100, 300 or 500 mT and pretreatment time of 1, 2 or 3 h, the enzyme activity was raised. The conversion rate was reached 45.31% from 34.80% after 48 h at the ratio of 37.4%. When only Novozym 435 was pretreated by magnetic field, at 500 mT for 2 h, the enzyme activity was greatly increased and the conversion rate reached 24.20% from 18.66% after 24 h, increased by 29.2%.
     The secondary structure of Candida antarctica lipse B(CALB), which is the free form of Novozym 435, was investigated with FT-IR after magnetic pretreatment. The results showed that the secondary structure of CALB after magnetically pretreated was almost indistinguishable from the origin. It seemed that the change of enzyme activity was not induced by the secondary structure change of the molecule, but by the subtle change at the active site of the enzyme, that is, the change of the flexibility of the protein.
     3. Purification and structrual identification of enzymatically synthesized naringin palmitate.
     Naringin palmitate was purification by a silica column using a solvent mixture system of acetic acetate: ethnol: formic acid(15:1:1) as the eluent or by preparative HPLC with a C18 column(21.5×250 mm) and a UV detector(283 nm) using methanol as the eluent. The injection volume of samples was 3 mL at the concentration of 30 mg/mL, and the flow rare of 20 mL/min.
     The product prepared by magnetically assisted enzyme catalysis was purified. The structure of the purified product was identified as mono-ester of naringin and palmitic acid by IR spectra and mass spectra. 1H NMR and 13C NMR data showed the regioselective acylation preferred to the 6′′-hydroxyl group of the naringin glucose. It indicated that the regioselectivity of the enzyme did not change after magnetic pretreatment.
     4. Interaction between naringin palmitate and protein.
     Fluorescence quenching technique was used to investigate the interaction of naringin or its esterified derivative naringin palmitate with bovine serum albumin(BSA) or lysozyme. The results showed that the interaction between naringin palmitate and protein followed the regular principles as other flvonoids. Naringin palmitate caused the flurescence quenching of BSA or lysozyme through a static quenching procedure. The binding of naringin palmitate with BSA or lysozyme was spontaneous and the energy transfer from the protein to naringin palmitate occurred with high probability. The number of binding sites was calculated as 0.7 and 0.6 at 37℃with BSA and lysozyme respectively. It was more likely that electrostatic interaction was involved in the binding process with BSA, while the binding with lysozyme might mainly account for hydrogen bonding force and Van der Waals force. The decomposing constant of naringin palmitate binding with BSA or lysozyme was lower than that of naringin, which indicated that naringin palmitate might perform longer retention when transported by protein and exert pharmacological effect persistly due to slow release.
引文
[1]徐任生.天然产物化学[M].北京:科学出版社, 2006
    [2] Kawaguchi K, Kikuchi S I, Hasunuma R, et al. Suppression of infection-induced endotoxin shock in mice by a citrus flavanone naringin[J]. Planta Medica, 2004, 70(1): 17-22
    [3] Ortuno A., et al. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum[J]. Food Chemistry, 2006, 98:351-358
    [4] Ng T. B., et al. Examination of coumarins, flavonoids and polysaccharopeptide for antibacterial activity[J]. Genetic Pharmacology, 1996, 27 (7) : 1237-1240
    [5]丁佩惠,唐琪,陈莉丽.柚皮苷对小鼠成骨细胞MC3T3-E1增殖、分化和矿化的影响[J].中国中药杂志, 2009, 34(13): 1712-1716
    [6] Ricky W. K Wong, et al. Effect of naringin collagen graft on bone formation[J]. Biomaterials, 2006, 27: 1824-1831
    [7] Dilek Ozyurt, Birsen Demirata, Resat Apak, et al. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce (IV) reducing capacity measurement[J]. Talanta, 2007, 71 (3): 1155-1165
    [8] Ng T. B., Liu F. and Wang Z. T.. Antioxidative activity of natural products from plants [J]. Life Science, 2000, 66 (8): 709-723
    [9] Mi-Kyung Lee, et al. Supplementation of naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol-fed rats[J]. Bioorganic & Medicinal Chemistry, 2002, 10: 2239-2244
    [10] Devinder Singh, et al. Protective effect of naringin, a bioflavonoid on ferric itrilotriacetate-induced oxidative renal damage in rat kidney[J]. Toxicology, 2004, 201: 1281
    [11] Seon-Min Jeon, et al. Antioxidative activity of naringin and lovastatin in high holesterol-fed rabbits[J]. Life Sciences, 2001, 69: 2855-2866
    [12] Giuseppe Galati, et al. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathi-one oxidation and conjugation[J]. Free Radical Biology & Medicine, 2001, 30 (4): 370-382
    [13] Osama A. Badarya, et al. Naringenin attenuates cisplatin nephrotoxicity in rats[J]. Life Sciences, 2005, 76: 2125 -2135
    [14] Ganesh Chandra Jagetia, et al. Influence of naringin on ferric iron induced oxidative damage in vitro[J]. Clinica Chimica Acta, 2004, 347: 189-197
    [15] Seon-Min Jeon, Song-Hae Bok, Moon-Kyoo Jang,et al. Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits[J]. Clinica Chimica Acta, 2002, 317(1-2): 181-190
    [16] Hyun-Ju Seo, et al. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats[J]. Life Sciences, 2003, 73: 933-946
    [17] Seon-Min Jeon, Yong Bok Park, Myung-Sook Choi. Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits[J]. Clinical Nutrition, 2004, 23 (5): 1025-1034
    [18]黄华艺,查锡良.黄酮类化合物抗肿瘤作用研究进展[J].中国新药与临床杂志, 2002, (7): 428
    [19] Ha Sook Chung, et al. Flavonoid constituents of chorizanthe diffusa with potential cancer chermopreventive activity[J]. J Agric Food Chem, 1999, 47(1): 36-41
    [20] Yen Chou Chen,. et al. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids [J]. Biochemical Pharmacology, 2003, 66: 1139-1150
    [21] Lake B. G, Beamand J. A, Tredger J. M, et al. Inhabition of xenobiotic-induced genotoxicity in cultured precision-cut human and rat liver slices[J]. Mutation Research, 1999, 440: 91-100
    [22] Shu Lan Yeh. Flavonoids suppresses the enhancing effect of 13-carotene on DNA damage induced by 4-(methylnit ro sam ino )·1-( 3-pyridy1 )·1-butanone (NNK) in A549 cells [J]. Chemico Biological Interaction, 2006, 160: 175-182
    [23] Yung-Chin Hsiao, Wu-Hsien Kuo, Pei-Ni Chen, et al. Flavanone and 2′-OH flavanone inhibit metastasis of lung cancer cells via down-regulation of proteinases activities and MAPK pathway[J]. Chemico-Biological Interactions, 2007, 167(3): 193-206
    [24] Evans A M. Influence of dietary components on the gastrointestinal metabolism and transport of drugs[J]. Ther Drug Monit. 2000, 22 (1): 131-136
    [25] Fukuda K, Ohta T and Yamazoe Y. Grapefruit component interacting with rat and human P450 CYP3A: possible involvement of non-flavonoid components in drug interaction [J]. Biological and Pharmaceutical Bulletin, 1997, 20 (5): 560-564
    [26] Hyoung J., et al. Effects of naringin on the pharmacokinetics of verapamil and one of its metabolites, norverapamil, in rabbits[J]. Biopharm. Drug Dispos, 2005, 26: 295-300
    [27] Jun-Shik Choia, et al. Enhanced paclitaxel bioavailability after oral coadministration of paclitaxel prodrug with naringin to rats[J]. International Journal of Pharmaceutics, 2005,292: 149-156
    [28] Weber A., et al. Can grapefruit juice influence ethinylestradiol bioavailability[J]. Contraception, 1996, 53: 41-47
    [29] Fuhr U, Klittich K and Staib A H. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man[J]. Br. J. Clin. Pharacol, 1993, 35(4): 431-436
    [30]王玉亮,胡增如,李凤婷,等.骨碎补防治链霉素毒副作用的临床应用[J].临床荟萃, 2000, 15(5) : 694-696
    [31] Kenji Sh, Irato I, et al. The effects of naringin and naringenin on endotoxin-induced uveitis in rats[J]. Journal of Ocular Pharmacology and Therapeutics, 2005, 21(4): 298-304
    [32] Ever D L , Chao C F , Wang X, et al. Human cytomegalovirus-inhibitory flavonoids : studies on antiviral activity and mechanism of action [J]. Antivirus, 2005, 68: 124-134
    [33] Gan Esh Chandra Ja Getia. The grapefruit flavanone naringin protects against the radiat ion-induced genomic instability in the mice bone marrow: a micmnucleus study [J]. Mutation Research on Genetic Toxicology and Environmental Mutagenesis, 2002, 519(122): 37-48
    [34] Sebastirn P., Fernrndez, Cristina Wasow Ski, et al. Central nervous system depressant action of flavonoid glycosides[J]. European Journal of Pharmacology, 2006, 539: 168-176
    [35] Gordon P B, Holen I, Scslen P O , et al. Protection by naringin and some other flavonoids of hepatocytes autophagy and endocytosis against inhibition by okadaic acid[J]. J Biol Chem, 1995, 270: 5830-5838
    [36] Beljanski. Pharmaceutical composition and method of use[P]. United States: USP5145839, 1992
    [37]邹忠梅,苏志恒,李书启,等.柚皮苷在制备抗抑郁药物中的应用[P].中国: 200910009139.1, 2009
    [38]杨星昊,吴剑波,郭升.治疗胃肠功能紊乱的组合物、其制备方法及其在制备治疗胃肠功能紊乱药物中的应用[P].中国: 200910183265.9, 2009
    [39]苏薇薇,李沛波,彭维,等.柚皮苷在制备用于抗动脉粥样硬化药物中的应用[P].中国: 200810198777.8, 2008
    [40]严启新,谢绍礼,李勇,等.一种抗痔疮药物组合物[P].中国: 200710124647.5, 2007
    [41]吴忠,苏薇薇,王永刚,等.柚皮苷在制备防治流感药物中的应用[P].中国: 200510101404.0, 2005
    [42]苏薇薇,王永刚,方铁铮,等.柚皮苷用于制备治疗急、慢性支气管炎的药物[P].中国: 03113605.2, 2003
    [43] Bakal, Abraham I, et al. Food composition containing fish oil and a fish oil stabilizing agent[P]. United States: USPA0020004074, 2002
    [44]李赤翎,俞建,曾亮,等.柚皮苷对猪肉的抗氧化作用的研究[J].食品研究与开发, 2008, 29(10): 20-23
    [45] Geers, Bernadette, et al. Novel flavone glycoside derivatives for use in cosmetics, pharmaceuticals and nutrition[P]. United States: USPA0030170186, 2003
    [46]覃青云,卢凯玲,许静,等.柚皮苷在口腔护理用品中的应用研究[J].牙膏工业, 2009, 19(2): 25-29
    [47]覃青云,卢凯玲,黄晓燕,等.柚皮苷在制备口腔护理保健品中的应用[P].中国: 200810300599.5, 2008
    [48]谭明雄,陈振锋,罗旭健,等.天然药物有效成分的金属配合物研究进展[J].林产化学与工业, 2008, 28(6): 93-99
    [49]唐丽君,陈翔,仇佩虹,等.黄酮类金属配合物的研究进展[J].广东微量元素科学, 2008, 15(12): 6-13
    [50] Ming Li-june. Structure and function of "Metalloantibiotics"[J]. Medicinal Research Reviews, 2003, 23(6): 697-762
    [51] Soukup, et al. Flavor and mouthfeel character in foodstuffs by the addition of bitter principles[P]. United States: USP4479972, 1984
    [52] Takado Taketoshi, Iwamoto Yutaka, Iida Sumihisa, et al. Water-soluble naringin composition [P]. Japan: JP2007039419, 2007
    [53] Pericles Calias, Theofanis Galanopoulos, et al. Synthesis of inositol-phosphate-quercetin conjugates[J]. Carbohydrate Research, 1996, 292: 83-90
    [54]陈平,樊瑞胜,聂芊.水溶性橙皮苷的合成及结构表征.食品科学, 2007, 28(8): 143-147
    [55]宋芝娟,刘文,梁念慈,等.槲皮素二硫酸酯二钠的对猪血小板F-肌动蛋白生成的影响[J].中草药, 1997, 28(8): 477-479
    [56] Igor B. Afanas’ev, Elena A. Ostrakhovitch, Elena V. Mikhal’chik, et al. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation withtransition metals[J]. Biochemical Pharmacology, 2001, 61: 677-684
    [57]蒋柳云,刘玉明.两种槲皮素-Zn配合物的抗氧化活性及其结构的量子化学研究[J].有机化学, 2005, 25(6): 684-659
    [58]贾冬英,姚开,何强等.柚皮苷——金属配合物的抗氧化活性研究[J].中国油脂, 2005, 30(4): 55-57
    [59] Miyake T, Yumoto T. Enzyme-treated hesperidin, process for producing the same and method of using enzyme-treated hesperidin[P]. Japan: EP825196, 1998
    [60] So Jin Lee, Jae-Cherl Kim, Myo Jeong Kim, et al. Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylases to give glycosylated naringin[J]. Agric. Food Chem., 1999, 47: 3669-3674
    [61] Takashi Kometani, Takahisa Nishimura, Takashi Nakae, et al. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species[J]. Biosci. Biotech. Biochem., 1996, 60(4): 645-649
    [62]沈生荣,金超芳,杨贤强.儿茶素的分子修饰[J].茶叶, 1999, 25(2): 76-79
    [63] Sakai M., et al. 3-O-Acylated catechins and method of producing same[P], Japan: JP6279430
    [64] Tanaka T, Kusano R, Kouno I. Synthesis and antioxidant activity of novel amphipathic derivatives of tea polyphenol[J]. Bioorga and Ned Chem. Lett., 1998, (8): 1801-1806
    [65] Mellou F, Lazari D, Skaltsa H., et al. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity[J]. Biotechnol, 2005, (116): 295–304
    [66] Sangku Lee, Chul-Ho Lee, Surk-Sik Moon, et al. Naringenin derivatives as anti-atherogenic agents[J]. Bioorganic & Medicinal Chemistry Letters, 2003, (13): 3901–3903
    [67]段煜.脂肪酶选择性催化合成芦丁脂肪酸酯及物化性质(D).成都:四川大学, 2006
    [68]陈晓岚.芳环化合物磷酰化结构改造及磷酰化黄酮—蛋白弱相互作用的研究(D).郑州:郑州大学, 2004
    [69] Yoshiyuki Watanabe, Mizuka Nagai, Kazuhiro Yamanaka, et al. Synthesis of lauroyl phenolic glycoside by immobilized lipase in organic solvent and its antioxidative activity[J]. Biochemical Engineering Journal, 2009 (43): 261–265
    [70]韦敏,杨中林,李萍.柚皮苷及其磷脂复合物促进成骨细胞活性和小肠段吸收比较.中国天然药物, 2007, 5(5): 366-369
    [71] Latifa Chebil, Catherine Humeau, Aude Falcimaigne, et al. Enzymatic acylation of flavonoids. Process Biochemistry[J], 2006, (41): 2237–2251
    [72] Danieli B, De Bellis P, Carrea G, Riva S. Enzyme-mediated regioselective acylations of flavonoid disaccharide monoglycosides[J]. Helv Chim Acta, 1990(73): 1837–1844
    [73] Kodelia G, Athansiou K, Kolisis FN. Enzymatic synthesis of butyl-rutin ester in organic solvents and its cytogenetic effects in mammalian cells in culture[J]. Appl Biochem Biotechnol, 1994, (44): 205–212
    [74] Riva S, Danieli B, Luisetti M. A two-step efficient chemoenzymatic synthesis of flavonoid glycoside malonates[J]. Nat Prod, 1996, (59): 618–621
    [75] Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and tri-saccharides with fatty acids: choosing the appropriate enzyme, support and solvent[J]. Biotechnol, 2002, (96): 55
    [76] Cao L, Langen L, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? [J]. Curr Opin Biotechnol, 2003, (14): 387
    [77] Uppenberg J, Hansen M T, Patkar S, et al. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica[J]. Structure, 1994, 2: 293-308
    [78] Danieli B, De Bellis P, Carrea G, et al. Enzyme-mediated acylation of flavonoid monoglycosides[J]. Heterocyles, 1989, (29): 2061–2064
    [79] Kodelia G, Athansiou K, Kolisis FN. Enzymatic synthesis of butyl-rutin ester in organic solvents and its cytogenetic effects in mammalian cells in culture[J]. Appl Biochem Biotechnol, 1994, (44): 205–212
    [80] Lambusta D, Nicolosi G, Patti A, et al. Enzyme-mediated regioprotection– deprotection of hydroxyl groups in (+)-catechin[J]. Synthesis, 1993, (11): 1155–1158
    [81] Nakajima N, Ishihara K, Itoh T., et al. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments[J]. Biosci Bioeng, 1999, (87): 105–107
    [82] Cernia E, Palocci C, Soro S. The role of the reaction medium in lipase catalyzed esterifications and transesterifications[J]. Chem Phys Lipids, 1998, (93): 157–168
    [83] Danieli B, Luisetti M, Sampognaro G., et al. Regioselective acylation of polyhydroxylated natural compounds catalyzed by Candida antarctica lipase B (Novozym 435) in organic solvents[J]. Mol Catal B: Enzym, 1997, (3): 193–201
    [84] Kontogianni A, Skouridou V, Sereti V., et al. Lipase catalyzed esterification of rutin andnaringin with fatty acids of medium carbon chain[J]. Mol Catal B: Enzym, 2003, (21): 59–62
    [85] Riva S, Danieli B, Luisetti M. A two-step efficient chemoenzymatic synthesis of flavonoid glycoside malonates[J]. Nat Prod, 1996, (59): 618–621
    [86] Kontogianni A, Skouridou V, Sereti V., et al. Regioselective acylation of flavonoids catalyzed by lipase in low toxicity media. Eur J Lip Sci Technol, 2001, (103): 655–660
    [87] Ardhaoui M, Falcimaigne A, Engasser J-M, et al. Acylation of natural flavonoids using lipase of Candida antarctica as biocatalyst[J]. Mol Catal B: Enzym, 2004, (29): 63–67
    [88] Ardhaoui M, Falcimaigne A, Engasser JM, et al. Enzymatic synthesis of new aromatic and aliphatic esters of flavonoids using Candida antarctica lipase as biocatalyst[J]. Biocatal Biotransformation, 2004, (22): 253–259
    [89] Ardhaoui M, Falcimaigne A, Ognier S, et al. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids[J]. Biotechnol, 2004, (110): 265–272
    [90] Gayot S, Santarelli X, Coulon D. Modification of flavonoid using lipase in non-conventional media: effect of the water content[J]. Biotechnol, 2003, (101): 29–36
    [91] Kitao S, Ariga T, Matsudo T, et al. The synthesis of catechin glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase[J]. Biosci Biotech Biochem, 1993, (57): 2010–2015
    [92] Miyake T, Suzuki K, Yoneyama M. 4G-alfa-D-glucopyranosyl rutin, and its preparation and uses. EP 0420376, 1991
    [93] Sakai M, Suzuki M, Nanjo F, et al. 3-O-acylated catechins and methods of producing same. EP 0618203, 1994
    [94] Otto R T, Geers B, Weiss A, et al. Novel flavone glycoside derivatives for use in cosmetics, pharmaceuticals and nutrition. WO 0179245, 2001
    [95]郭勇.酶工程原理与技术[M].北京:高等教育出版社, 2005
    [96] Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media[J]. Mol Catal B: Enzym, 2001, (11): 949–954
    [97] Wehtje E, Adlercreutz P. Water activity and substrate concentration effects on lipase activity [J]. Biotechnol Bioeng, 1997, (55): 798–806
    [98] Ducret A, Giroux A, Trani M, et al. Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure [J].Biotechnol Bioeng, 1995, (48): 214–221
    [99] Humeau C, Girardin M, Rovel B, et al. Effect of the thermodynamic water activity and the reaction medium hydrophobicity on the enzymatic synthesis of ascorbyl palmitate [J]. Biotechnol, 1998, (63): 1–8
    [100] Watanabe Y, Miyawaki Y, Adachi S., et al. Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties [J]. Biochem Eng J, 2001, (8): 213–216
    [101] Vulfson E N, Sarney D B, Law B A. Enhancement of subtilisin-catalysed interesterification in organic solvents by ultrasound irradiation[J]. Enzyme Microb Technol, 1991,13(2): 123
    [102]赵丹彤,王萍,李春元,等.超声对有机溶剂中酶促反应的影响.药物生物技术[J], 2008, 5(3): 231-234
    [103]吴虹,宗敏华,娄文勇,等.超声作用下的酶促废油脂转酯反应[J].华南理工大学学报(自然科学版), 2006, 34(5): 68
    [104] Gialih L, Chien L H. Ultrasound-promoted lipase-catalyzed reactions[J]. Tetrahedron Letters, 1995, 36(34): 6067-6078
    [105] Xiao Y M, Wu Q, Cai Y,et al. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents[J]. Carbohydrate Research, 2005, 340: 2097-2103
    [106]吕鹏,庄重,凌建亚,等.超声对酶的影响[J].生物技术通讯. 2004, 15(5): 534-536
    [107]夏咏梅,孙诗雨,方云,等.微波辐射-酶耦合催化(MIECC)反应[J].化学进展, 2007, 19(2/3): 250-255
    [108] Ipsita Roy, Munishwar N. Gupta. Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification[J]. Tetrahedron, 2003, 59(29): 5431-5436
    [109] Bachu, P.,Gibson, J. S.,Sperry, J.. et al. The influence of microwave irradiation on lipase-catalyzed kinetic resolution of racemic secondary alcohols[J]. Tetrahedron: Asymmetry 2007, 18: 1618-1624
    [110] Yu, D. H., Wang, Z., Chen, P., et al. Microwave-assisted resolution of (R,S)-2-octanol by enzymatic transesterification[J]. J. Mol. Catal. B: Enzym. 2007, 48: 51-57
    [111] Soysal C, Soylemez Z. Kinetics and inactivation of carrot peroxidase by heat treatment[J]. J. Food Eng., 2005, 68: 349-356
    [112] Parker M C, Besson T, Lamare S, et al. Microwave radiation can increase the rate of enzyme-catalysed reactions in organic media[J]. Tetrahedron Lett., 1996, 37(46):8383-8388
    [113] Stephen Caddick , Richard Fitzmaurice. Microwave enhanced synthesis. Tetrahedron, 2009, (65): 3325–3355
    [114] Hoz A., Ortiz A D., Moreno A. Microwaves in organic synthesis.Thermal and non-thermal microwave effects[J]. Chem.Soc.Rev., 2005,34(2): 164-178
    [115] Bednarz S, Bogdal D. The comparative study of the kinetics of knoevenagel condensation under microwave and conventional condition[C]. The Fifth International Electronic conference on synthetic organic chemistry, Switzerland(ECSOC-5), 2001: 267-268
    [116] Loupy A.Microwaves in Organic Synthesis[M].Wiley-VCH,Weinheim(Germany), 2002
    [117]李金华.跨世纪的磁化学——二十一世纪突发发展的新科学[J].化工之友, 1999, 3: 20-21
    [118]李红,胡道道,房喻,等.磁场对大分子构象的影响研究进展[J].高分子通报, 2005, 5: 108-113
    [119] Blanchard, J., Blackman, C. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 1994, 5: 217–238
    [120]贺华君,朱元保,钟科军,等.磁场对酶构象的影响[J].吉首大学学报(自然科学版), 1998, 19(4): 25-30
    [121]郑必胜,郭祀远,李琳,等.磁场处理强化水溶液蒸发效能的研究[J].华南理工大学学报(自然科学版), 1995, 23(7): 20-25
    [122]陶伟华,王红民.磁场对有机溶剂中脂肪酶催化活性的影响[J].天水师范学院学报. 2005, 25(2): 45-47
    [123] Kobayashi T, Adachi S, Matsuno R. Kinetic analysis of the immobilized-lipase -catalyzed synthesis of octanoyl octyl glucoside in acetonitrile[J]. Biochemical Engineering Journal, 2003, 16: 323-328
    [124] Yadav G D, Lathi P S. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases[J]. Biochemical Engineering Journal, 2003, 16: 245-252
    [125] Yu Jiu-gao, Zhang Jian-she, Zhao Ang. Study of glucose ester synthesis by immobilized lipase from Candida sp[J]. Catalysis Communications, 2008, 9: 1369-1374
    [126]徐凤杰,谭天伟.脂肪酶催化合成异维生素C棕榈酸酯及其动力学[J].北京化工大学学报, 2007, 34(增刊): 95-98
    [127]赵天涛,张丽杰,高静等.脂肪酶催化乳酸与乙醇合成乳酸乙酯的反应动力学[J].催化学报, 2008, 29(2): 141-144
    [128] Yadav G D, Lathi P S. Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 27: 113-119
    [129] Garcia T., Coteron A., Martinez M.,et al. Kinetic model for the esteri"cation of oleic acid and cetyl alcohol using an immobilized lipase as catalyst. Chemical Engineering Science, 2000 (55) : 1411-1423
    [130]袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社, 2005
    [131]马兰戈尼A G著,赵裕蓉、张鹏译.酶催化动力学——方法与应用[M].北京:化学工业出版社, 2007
    [132]赵天涛,高静,李伟杰.南极假丝酵母脂肪酶B的催化机理及应用前景[J].分子催化, 2005, 19(2): 155-160
    [133] Yadav G D, Manjula Devi k. Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling[J]. Chem. Eng. Sci., 2004, 59: 373-383
    [134] Eduardo B. De Oliveiraa, Catherine H, Latifa C et al. A molecular modelling study to rationalize the regioselectivity in acylation of flavonoid glycosides catalyzed by Candida antarctica lipase B[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59: 96–105
    [135] Ishihara K, Nakajima N. Structural aspects of acylated plant pigments: stabilization of flavonoid glucosides and interpretation of their functions[J]. Journal of Molecular Catalysis B: Enzyme 2003, 23: 411-417
    [136] Ardhaoui M, Falcimaigne A, Enagasser JM et al. Enzymztic synthesis of new zromatic and aliphatic esters of flavonoids using Candida antarctica lipase as biocatalyst[J]. Biocatalysis Biotransformation, 2004, 22: 253-259
    [137] Fu F-N, Deoliverira D B, Trumble W R, et al. Secondary structure estimation of protein using the amide III region of Fourier transform infrared spectroscopy: application to analyze calcium binding-induced structural changes in calsequestrin[J]. Appl Spectrosc, 1994, 48: 1432-1441
    [138] Girebenow K, Klibanov A M, 1995. Lyophilization-induced reversible changes in the secondary structure of proteins[J]. Proc Natl Acad Sci USA, 1995, 92: 10969-10976
    [139] Singh B R, Fuller M P, Schiavo G. Molecular structure of tetanus neurotoxin as revealedby Fourier transform infrared and circular dichroic spectroscopy[J]. Biophys Chem, 1990, 46: 155-166
    [140]王山杉.磁场处理对酿酒酵母细胞结构及生理功能影响的研究[D].广州:华南理工大学, 2008
    [141] Nath R. Magnetic field effectson biological system.New York: Plenum press,1979:32.
    [142]贺华君,朱元保,范秋领.磁场对大肠杆菌及胞内谷氨酸脱羧酶的影响[J].吉首大学学报, 1999, 20 (3) :3-5
    [143]朱传征、杨宝林、戴立益等.磁场对氯仿分子极化率(α)、偶极矩(μ)影响的研究[J].华东师范大学学报(自然科学版), 1996, (2): 106-108
    [144]胡晖、高红、贾绍义.磁场对物质理化性质的影响[J].磁性材料及器件, 2000, 31(3): 36-41
    [145]韦革宏、和文祥、毕银丽,等.不同条件下脲酶磁效应研究[J].西北农业学报, 1999, 8(2): 94-96
    [146] McCabe R.W., Rodger A., Taylora A., A study of the secondary structure of Candida antarctica lipase B using synchrotron radiation circular dichroism measurements[J]. Enzyme and Microbial Technology, 2005, 36: 70–74
    [147] Giuseppe Vecchio, Francesca Zambianchi, Paola Zacchetti. Fourier-transform infrared spectroscopy study of dehydrated lipases from Candida antarctica B and Pseudomonas cepacia[J]. Biotechnology and bioengineering, 1999, 64(5): 545-551
    [148] Marianne Graber, Romain Irague, Eric Rosenfeld, et al. Solvent as a competitive inhibitor for Candida antarctica lipase B[J]. Biochimica et Biophysica Acta, 2007, 1774: 1052–1057
    [149]邹承鲁.活性部位的柔性[J].生理科学进展, 2001, 32(1): 7-12
    [150] Schmitke J L, Stern L J, Klibanov A M. The crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile[J]. P Natl Acad Sci USA. 1997, 94: 4250–4255
    [151] Fitzpatrick P A, Ringe D, Klibanov A M. X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile[J]. Biochem Biophys Res Commun, 1994, 198: 675–681
    [152] Wangikar P P, Michels P C, Clark D S, et al. Structure and function of subtilisin BPN solubilized in organic solvents[J]. Am Chem Soc, 1997, 119: 70–76
    [153] Peter Trodler, Jürgen Pleiss. Modeling structure and flexibility of Candida antarcticalipase B in organic solvents[J]. BMC Struct Biol, 2008, 8: 9
    [154] Broos J, Visser A J W G, Engbersen J F J, et al. Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility[J]. Am Chem Soc, 1995, 117:12657–12663
    [155] Toba S, Merz K M. The concept of solvent compatibility and its impact on protein stability and activity enhancement in nonaqueous solvents[J]. Am Chem Soc, 1997, 119: 9939–9948
    [156] Mijovic J, Bian Y, Gross R A, et al. Dynamics of proteins in hydrated state and in solution as studied by dielectric relaxation spectroscopy[J]. Macromolecules, 2005, 38: 10812–10819
    [157] Youn Sung-hun, Kim Hyun-jung, Kim Tae-han et al. Lipase-catalyzed acylation of naringin with palmitic acid in highly concentrated homogeneous solutions [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 46: 26–31
    [158]高明哲,袁晓艳,肖红斌.制备型高效液相色谱法从积雪草提取物中分离纯化积雪草甙和羟基积雪草甙对照品[J].色谱, 2008, 26(3): 362-365
    [159] Bi S Y, Ding L, Tian Y, et al. Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 2004, 703(1-3): 37-45
    [160] Xing-Jia Guo, Xiu-Dan Sun, Shu-Kun Xu. Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. Journal of Molecular Structure, 2009, 931: 55-59
    [161] Kanakis C. D., Tarantilis P. A., Polissiou M. G., et al. Antioxidant flavonoids bind human serum albumin. Journal of Molecular Structure, 2006, 798: 69-74
    [162] Yaheng Zhang, Ying Li, Lijun Dong, Jiazhong Li, et al. Investigation of the interaction between naringin and human serum albumin. Journal of Molecular Structure, 2008, 875: 1–8
    [163] Zsila F., Bikadi Z., Simonyi M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods, Biochem. Pharmacol, 2003, 65: 447– 456
    [164]李玉琴,贾宝秀,冀海伟,等.左旋紫草素与溶菌酶相互作用的研究.分析测试学报, 2009, 28(15): 544-549
    [165]谭平,张友玉,文艳清等.荧光猝灭法研究溶菌酶与白藜芦醇苷的相互作用.湖南师范大学自然科学学报, 2009, 32(1): 92-96
    [166]马康,陈晓青,陈景文.荧光光谱法研究三种黄酮类化合物与BSA的相互作用.光谱实验室, 2008, 25(4): 662-668
    [167]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社, 2006
    [168]杨频,高飞.生物无机化学原理[M].北京:科学出版社, 2002
    [169] Jianghong Tang, Weiping Wang, Feng Luan, et al. Binding of the bioactive compound 5,7,4′-trihydroxy-6,3′,5′-trimethoxyflavone to human serum albumin[J]. Int. J. of Bio. Macromol., 2005, 37(1-2): 85-91
    [170] Xin Lin Wei, Jian Bo Xiao, Yuanfeng Wang, et al. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA[J]? Spectrochimica Acta Part A, 2010, 75(1): 299-304
    [171] Yan-Qing Wang, Hong-Mei Zhang, Gen-Cheng Zhang, et al. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study[J]. Journal of Luminescence, 2007, 126: 211–218
    [172] Naik P. N., Chimatadar S. A., Nandibewoor S. T.. Study on the interaction between antibacterial drug and bovine serum albumin: A spectroscopic approach[J]. Spectrochimica Acta Part A, 2009, 73: 841–845
    [173]张国文,陈秀霞,潘军辉等.桑色素与牛血清白蛋白结合反应的热力学分析[J].南昌大学学报工科版, 2008, 30(3): 229-233
    [174] Kalyan Sundar Ghosh, Bijaya Ketan Sahoo, Swagata Dasgupta. Spectrophotometric studies on the interaction between (?)-epigallocatechin gallate and lysozyme[J]. Chemical Physics Letters, 2008, 452: 193-197
    [175]张海蓉,边贺东,潘英明等,光谱法研究儿茶素与牛血清白蛋白的相互作用[J].光谱学与光谱分析, 2009, 129(111): 3052-3056
    [176] Ross D P, Subraman Ian S. Thermodynamics of p rotein association reactions: Forces contributing to stability[ J ]. Biochemistry, 1981, 20: 3096– 3099
    [177] Artali R , Bombieri G, Calabi L , et al. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan Acetylcholine Binding Protein (AChBP)[J]. II Farmaco., 2005, 60(4) : 313-320
    [178]陈代武,谢青季.蒋雪琴槲皮素与酪蛋白和牛血清白蛋白的相互作用及共存碳纳米管的影响[M].物理化学学报, 2008, 24(3): 379- 387
    [179]张国文,王安萍.荧光法研究中药功能因子山奈酚与溶菌酶的相互作用[J].南昌大学学报(理科版), 2009, 33(1):46-49
    [180]张国文,陈秀霞,郭金保.荧光法研究橙皮苷、淫羊藿苷与溶菌酶的相互作用[ J ].光谱学与光谱分析, 2009, 29(11): 184-187
    [181] Chong-qiu Jiang, Ting Wang. Study of the interactions between tetracycline analogues and lysozyme[J]. Bioorganic & Medicinal Chemistry, 2004, 12: 2043-2047
    [182] Imoto T., Leslie S. Forster, Rupley J. A., et al. Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration[J]. Proc. Nat. Acad. Sci. USA, 1971, 69(5): 1151-1155
    [183] Meng, Q. H., Lewis, P.,Wahala, K., et al. Incorporation of esterified soybean isoflavones with antioxidant activity into lowdensity lipoprotein[J]. Biochim. Biophys. Acta, 1999, 1438: 369–372
    [184] Chalas, J., Claise, C., Edeas, M.,et al. Effect of ethyl esterification of phenolics on low-density lipoprotein oxidation[J]. Biomed. Pharmacother, 2001, 55: 54–60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700