用户名: 密码: 验证码:
多元醇液相重整反应的催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于化石资源的大量消耗,同时化石资源的利用导致的全球环境问题日益严重,因此急需寻找清洁可再生的替代能源。在众多新能源中,生物质的转化和利用由于生物质的可再生性而受到了高度的关注。
     最近Dumesic等人提出了生物质液相催化重整(APR)工艺,该工艺以从生物质中提取的碳水化合物(乙二醇、甘油、葡萄糖或山梨醇)为原料,通过改变不同的催化剂和反应条件可以灵活制取氢气、低碳数烷烃、合成气等不同的产品,具有原料安全易得、低温操控、能量利用率高、CO2净排量为零等优点。因此,该工艺具有广阔的发展前景。
     与其他第ⅧB族贵金属相比,Ni基催化剂不但价格低廉,而且具有较强的C-C键断裂能力和较高的水煤气变换反应(WGS)活性,所以其在APR反应中的应用受到了催化工作者的广泛关注。Co基催化剂同样具有价格优势,且Co基催化剂在生物质液相重整领域中研究较少。因此本文主要对Ni基和Co基催化剂上的乙二醇及丙三醇液相重整反应进行了研究,得到以下主要结果:
     1. Sn-RQ NiMo催化剂上的乙二醇液相重整制氢研究
     采用急冷法制备了骨架Ni-Mo催化剂(RQ Ni50-xMox)并应用于乙二醇液相重整制氢反应中。研究表明,Mo的加入显著提高了催化活性,并且活性随着Mo含量的增加而增加,但是H2选择性呈现下降趋势。结合XRD表征结果可知,随着Mo的加入,Ni2Al3相更易被抽提,活化后的催化剂晶粒减小,使更多的Ni暴露在表面上,有利于与反应物的接触,使催化剂活性增加。由于Mo的加入有利于甲烷化反应的进行,因此反应的H2选择性下降。文献工作表明,Sn修饰的Raney Ni催化剂虽然在乙二醇液相重整制氢反应中表现出了良好的H2选择性,但同时活性也有所降低。由于Mo的加入能够显著提高反应活性,因此我们分别用SnCl4、SnCl2以及Sn(n-C4H9)4作为锡源对RQ Ni47.8Mo2.2催化剂进行修饰。研究表明,Sn的加入使H2选择性得到大幅度的提高,且不同Sn源修饰的催化剂表现出的催化性能有所区别。在三种Sn源中,SnCl4修饰的催化剂具有最佳的催化性能:在Sn/Ni原子比为2%时,H2选择性即达到了91.1%;当Sn/Ni原子比达到5%时,H2选择性达到95%以上,同时基本消除了烷烃的生成。由H2-TPD结果可知,催化剂经Sn修饰后,表面活性位种类减少,从而有可能减少反应物分子在催化剂上的吸附模式,降低了副反应的发生。动力学研究发现,Sn的修饰作用主要体现在两方面,即抑制甲烷化反应和促进WGS反应的进行。对于同一种Sn源修饰的催化剂,其活性和Sn在催化剂中的分散情况有关,Sn的分散情况越好,则活性越高。对SnCl4修饰的RQ Ni和RQ Ni47.8Mo2.2催化剂进行了100h稳定性考察发现,RQ Ni47.8Mo2.2的初始活性和稳态活性均比Sn(IV)-RQNi催化剂高,且催化剂的H2选择性在反应过程中始终保持在99%以上,显示了良好的应用前景。
     2. CoNi/Al2O3催化剂上的乙二醇液相重整制氢研究
     Dumesic等人发现Ni/Al2O3催化剂虽然拥有较好的活性,但在498 K和2.58MPa的反应条件下,该催化剂因为烧结而迅速失活。文献报道CoNi双金属催化剂在甲烷二氧化碳重整制合成气反应中具有优秀的反应活性和稳定性以及抗烧结能力。我们以Co(NO3)6-6H2O、Ni(NO3)6·6H2O和γ-Al203为原料采用共浸渍方法制备了一系列不同Co/Ni原子比的CoNi/γ-Al2O3催化剂,并考察了其在乙二醇APR反应中的催化活性和选择性。研究表明,CoNi双金属催化剂与单金属催化剂相比,具有更加优秀的催化活性,同时不同的Co/Ni比对反应活性和选择性具有显著影响。随着Ni含量的增加,催化剂的活性和烷烃选择性先升高后降低,而H2选择性的变化规律与之相反。我们在Co67Ni33催化剂上得到了最佳的反应活性(以CO2生成速率表示)85.5μmol g-1 min-1,其H2和烷烃选择性分别为47%和33%。XRD结果表明,催化剂焙烧后形成了NixCo3-xO4的固熔体。TPR研究表明,CoNi双金属催化剂比单金属的Co和Ni催化剂更容易还原,说明固熔体的形成降低了金属与载体间的相互作用。从XAFS谱发现,CoNi双金属催化剂存在方向为Co→Ni的电子转移,并且其电子转移程度在Co67Ni33催化剂上最大。对Co100、Ni100和Co67Ni33催化剂进行稳定性考察发现,Col00和Ni100催化剂在反应条件下快速失活;Co67Ni33催化剂在反应150 h后,仍然保持了86%的初始反应活性,显示出了优秀的催化活性和稳定性。对反应前后的Co67Ni33催化剂进行表征,反应150 h后,催化剂的比表面积没有明显变化,反应后仍然保持了较好的分散度。TEM表明,Col00催化剂反应后严重烧结,其颗粒大于120nm.Ni100催化剂反应后比表面积从101 m2g-1下降到40 m2g-1,说明催化剂结构遭到破坏,造成Ni催化剂活性迅速降低。此外,我们还在CoNi/γ-Al2O3催化剂中添加第三金属Sn、Au、Pt来提高反应的H2选择性。研究表明,Sn的添加在大幅提高H2选择性的同时显著降低了催化剂的活性;少量Au的添加即可提高反应活性,但对H2选择性基本无影响;而Pt的添加使催化剂的活性和H2选择性同时提高。
     3. CoNi/Al2O3催化剂上的丙三醇液相重整反应研究
     由于CoNi/Al2O3催化剂具有优秀的催化活性和稳定性,我们也将其应用于丙三醇液相重整反应中。研究表明,随着Ni含量的增加,催化剂的活性和选择性同样呈现火山型的变化规律,与乙二醇不同,我们在Co50Ni50催化剂上得到了最佳的反应活性(C02生成速率为150.6μmol g-1 min-1)和H2选择性(43.2%)。但是对Co67Ni33和Co50Ni50做了100 h稳定性考察后发现,Co67Ni33催化剂的稳态活性和稳定性均高于后者。表征结果表明,反应后C67Ni33催化剂具有比Co50Ni50催化剂更小的晶粒尺寸和更高的活性比表面积。由于丙三醇液相重整反应中有酸生产,因此催化剂金属活性组分的流失也是活性下降的一个重要因素。ICP结果表明,反应过程中两个催化剂上Co的流失(10-60 wppm)比Ni的流失(< 1 wppm)严重,说明Co的流失是催化剂活性下降的重要原因。而Co67Ni33催化剂中Co的流失小于Co50Ni50。反应100 h后Co67Ni33和Co50Ni50催化剂的Co/Ni比例发生改变,分别为60/40和39/61,从而对催化剂的活性和选择性造成影响。最后,我们通过对Co67Ni33催化剂上甲醇、乙醇、乙二醇和1,2-丙二醇四种主要液相产物的液相重整反应研究,讨论了CoNi/Al2O3催化剂上丙三醇可能的反应路径。丙三液相重整反应主要有两条路径:第一条路径为丙三醇液相重整生成H2,CO2和烷烃,另外一条路径是丙三醇脱水加氢后生成1,2-丙二醇,并且在较高的丙三醇转化率下,1,2-丙二醇可以继续反应生成气相产物和乙醇,后者可以和H2O反应生成乙酸。
     此外,我们还对丙三醇直接液相重整制二醇的反应进行了研究。采用浸渍法制备了丫-Al203负载的Ru、Cu、Fe、Co、Ni催化剂,并对其进行筛选,发现丙三醇在Fe催化剂上不生成二醇;Ru和Ni催化剂虽然活性较高,但二醇选择性较差,这主要是因为Ru和Ni对于C-C键的断裂能力较强,使部分原料直接转化成气相产物。Co和Cu催化剂的活性较差,其产物中含有较多丙酮醇,这是因为Co和Cu的液相重整制氢能力较差,不能产生足够的H2和丙酮醇反应生成1,2-丙二醇。在Co和Cu催化剂中添加Ni可以提高二醇的得率,但过多Ni的加入会使大量原料直接重整生成气相产物。对于CuNi催化剂和CoNi催化剂,其最佳的Ni含量分别为75%和10%。
     4. Co/ZnO催化剂上的乙二醇液相重整制氢研究
     采用共沉淀法制备了不同Co/Zn比例的Co/ZnO催化剂,并将其应用于乙二醇液相重整制氢反应。XRD结果表明,焙烧后催化剂形成了ZnCo2O4的尖晶石物相;在723 K温度下还原后,催化剂的物相为金属Co和ZnO。由还原后催化剂的XPS谱可知,随Co/Zn比例的升高,催化剂表面金属Co的含量随之上升,这与测得的催化剂还原度变化趋势相一致。在乙二醇液相重整反应中,当Co/Zn比例从1:3上升到2:1,反应的H2选择性从89%下降到52%,且H2的TOF值从101.4h-1下降到27.9 h-1。反应的气相产物中出现了烯烃,这主要是因为Co是一种良好的费-托合成(FTS)反应的催化剂;反应的液相产物为甲醇,乙醇和乙酸。我们分别研究了Co/ZnO-21催化剂上甲醇、乙醇和乙酸的液相重整反应,并讨论了乙二醇在Co/ZnO催化剂上可能的反应路径。结果表明,在Co/ZnO催化剂上乙二醇除了发生文献报道的反应外,还应把乙醇在催化剂上生成乙酸和异丙醇以及通过FTS反应生成烯烃的途径考虑在内。
With decreased crude-oil reserves, enhanced demand for fuels worldwide, increased climate concerns about the use of fossil-based energy carriers, the focus has recently turned towards improved utilization of renewable energy resources. Biomass has attracted much attention, because it is an abundant and carbon-neutral renewable energy resource, which can be used for the production of biofuels and valuable chemicals.
     Recently, Dumesic and coworkers reported a process to generate hydrogen, alkanes and syngas by aqueous-phase reforming (APR) of oxygenated hydrocarbon, such as ethylene glycol, glycerol, glucose, and sorbitol. Compared with the existed steam reforming process, the APR process has the advantages of higher energy efficiency, lower operating temperature, and broader range of safe liquid feedstocks.
     Ni shows high activity for C-C bond cleavage and moderate activity for water-gas shift (WGS) reaction among the VIIIB metals, and is less costly than Pt, so it has attracted much attention in the APR of polyols. Co-base catalysts, which also have cost superiority and moderate activity for C-C bond cleavage and WGS reaction, haven't been exploited in the field of APR of polyols. In the present work, we carried out the APR of ethylene glycol and glycerol over the Ni-based and Co-based catalysts, and obtained the following results.
     1. Aqueous phase reforming of ethylene glycol to H2 over Sn-RQ NiMo catalysts
     The rapidly quenched skeletal Ni-Mo (RQ Ni50-xMox) catalysts were prepared by alkali leaching of RQ Ni50-xMoxAl50 alloy and investigated in the APR of ethylene glycol. Addition of Mo to the RQ Ni catalyst improved the activity remarkably, but the H2 selectivity decreased with the increment of Mo content. Ni2Al3 phase was easier to be leached at the presence of Mo, which resulted in smaller Ni crystallite size. The reason for the decreased H2 selectivity is that Mo can improve the activity of the methanation reaction. It has been reported that addition of Sn to Raney Ni catalyst can improve the H2 selectivity but suppress the activity. Thus, we modified the RQ Ni47.8Mo2.2 catalyst with SnCl4, SnCl2 and Sn(n-C4H9)4. The addition of Sn to RQ catalyst drastically enhanced the H2 selectivity, and SnCl4 has the best modification efficiency. The selectivity to H2 reached 91.1%at Sn/Ni atomic ratio of 2%. Moreover, when the Sn/Ni atomic ratio was 5%, the selectivity to H2 was above 95%, while the formation of alkanes was substantially suppressed. H2-TPD results showed that the number of desorption peaks reduced after Sn modification, suggesting that the active sites over the catalysts became more uniform, which may have decreased the adsorption modes of the reactant and suppressed side reactions. According to the kinetic results of the APR of ethylene glycol, we concluded that the addition of Sn to RQ Ni47.8Mo2.2 improved the H2 selectivity by promoting the WGS reaction while suppressing the methanation reaction. For the catalysts modified by the same Sn species, higher dispersion of Sn in the catalysts resulted in higher catalytic activity. The stability tests over Sn(IV)-RQ Ni47.8Mo2.2 and Sn(IV)-RQ Ni catalysts showed that Sn(IV)-RQ Ni47.8Mo2.2 showed higher activity and stability than Sn(IV)-RQ Ni catalyst, and its H2 selectivity catalyst was above 99% during 100 h reaction, indicating that this catalyst is a good candidate in fuel-cell system.
     2. Aqueous phase reforming of ethylene glycol to H2 over CONi/Al2O3 catalysts
     Dumesic et al. found that the Ni/Al2O3 catalyst deactivated rapidly under the APR condition. However, bimetallic supported Co-Ni catalysts displayed an excellent catalytic performance in carbon dioxide reforming of methane. We prepared the CoNi/y-Al2O3 catalysts by the coimpregnation method and studied their catalytic performance in the APR of ethylene glycol. We obtained the best acitivity over Co67Ni33 catalyst with H2 and alkane selectivity of 47% and 33%, respectively. The formation of spinel-type NixCo3-xO4 phase after calcination reduced the metal-support interaction, thus leading to higher reduction degree of bimetallic CoNi catalysts. The electron transfer of Co→Ni was found in the CoNi catalysts by XAFS, and the highest transfer degree was obtained on Co67Ni33 catalyst. The stability tests of Co100, Co67Ni33 and Ni100 catalysts showed that Co67Ni33 catalyst displayed the best activity and stability. Both Co100 and Ni100 catalysts deactivated quickly, while Co67Ni33 remained 86%of its initial activity after 150 h time on stream. After reaction the Co 100 catalyst was seriously sintered (dCo> 120 nm). The BET surface area of the Ni100 catalyst decreased drastically from 101 to 40 m2·g-1, indicating that the destruction of the structure resulted in the decreased activity. On the contrary, Co67Ni33 catalyst retained the structure and the metal dispersion after reaction. In addition, we added the third metal to Co67Ni33 catalyst to improve the H2 selectivity. The addition of Sn increased the H2 selectivity remarkably but drastically suppressed the activity. Adding Au to Co67Ni33 enhanced the activity but hardly influenced the selectivity. The addition of Pt can improve both H2 selectivity and activity.
     3. Aqueous phase reforming of glycerol over CoNi/Al2O3 catalysts
     We carried out the APR of glycerol on the CoNi/Al2O3 catalysts, which displayed an excellent catalytic performance in the APR of ethylene glycol. The Co/Ni ratio had a great influence on the activity, and the best activity and H2 selectivity were obtained on the Co50Ni50 catalyst. However, we found that the Co67Ni33 catalyst have superior stability to Co50Ni50. The characterization results showed that after reaction Co67Ni33 catalyst had smaller crystallite size and higher active surface area than Co50Ni50 catalyst. Since acid species were formed in the reaction, the leaching of the metal is another reason for the decreased activity. ICP results showed that the leaching of Co is much more serious than that of Ni, and the leaching of Co in Co67Ni33 is higher than that in the Co50Ni50 catalyst. Thus the Co/Ni ratio of the Co67Ni33 and Co50Ni50 catalysts after reaction turned into 60/40 and 39/61, respectively. The reaction pathway of glycerol was discussed based on the APR of methanol, ethanol, ethylene glycol and 1,2-dipropanol. The reaction pathway of glycerol can be divided into two parts:(1) Glycerol can be converted into H2, CO2 and alkanes by C-C cleavage followed by WGS or methanation/FTS reaction. (2) Glycerol can be converted into 1,2-dipropanol by dehydration to acetol and subsequent hydrogenation. 1,2-dipropanol will undergo further reaction to produce gas products and ethanol at high conversion levels. In addition, ethanol can be transformed into acetic acid under the reaction condition.
     We also studied the catalytic conversion of glycerol into glycol by the APR process. We first investigated the APR of glycerol on M/Y-Al2O3 (M= Ru, Cu, Fe, Co, Ni) catalysts. For the Fe catalyst, no glycol was found in the APR of glycerol. Both Ni and Ru catalysts have good glycerol conversion but poor glycol selectivity. Since Ni and Ru show high activity to C-C cleavage, the selectivity to gas products is much higher than that of other catalysts. Co and Cu have low activity, and the main product on these two catalysts is acetol. The poor ability to convert acetol to 1,2-dipropanol may be attributed to the poor reforming activity of Co and Cu towards glycerol. Adding proper amount of Ni to the Co and Cu catalysts can improve the glycol yield, while suppressing the side reactions. The optimized content of Ni in CuNi and CoNi catalysts is 75% and 10%, respectively.
     4. Aqueous phase reforming of ethylene glycol to H2 over Co/ZnO catalysts
     Co/ZnO catalysts with different Co/Zn ratio were prepared by coprecipitation method and their catalytic performances were evaluated in the APR of ethylene glycol. The spinel type of ZnCo2O4 was formed after calcination at 723 K. After reduction, the Co/ZnO catalysts are composed of fcc Co and ZnO. XPS results shows that surface Co0 content increased with the increment of Co/Zn ratio, which is in good agreement with the reduction degree. When the Co/Zn ratio increased from 1/3 to 2/1, the H2 selectivity decreased from 89% to 52%, and the TOF of H2 decreased from 101.4 h"1 to 27.9 h-1. Since Co is a common catalyst in FTS reaction, Co/ZnO catalyst produced the alkenes in the APR of ethylene glycol. The liquid products contained methanol, ethanol, and acetic acid. Based on the results of the APR of methanol, ethanol and acetic acid on Co/ZnO-21 catalyst, we concluded that besides the reaction pathways of ethylene glycol with water over metallic catalysts proposed in the literature, reaction pathways from ethanol to acetic acid and 2-propanol and via the FTS reaction to alkenes should be taken into account over the Co/ZnO catalysts in APR of ethylene glycol.
引文
[1]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].化学工业出版社,2005:1.
    [2]闵恩泽.利用可再生农林生物质资源的炼油厂——推动化学工业迈入“碳水化合物”新时代[J].化学进展,2006,18(002):131-141.
    [3]王海,卢旭东,张慧媛.国内外生物质的开发与利用[J].农业工程学报,2006,22(1):8-11.
    [4]日本能源学会.生物质和生物质能源手册[M].化学工业出版社,2007:360.
    [5]S. Michael. Biofuels and biomass-to-liquid fuels in the biorefinery:Catalytic conversion of lignocellulosic biomass using porous materials [J]. Angewandte Chemie International Edition,2008,47(48):9200-9211.
    [6]姚向君,田宜水.生物质能资源清洁转化利用技术[M].化学工业出版社,2005:237.
    [7]毛宗强.氢能—21世纪的绿色能源[M].化学工业出版社,2005:17.
    [8]C. Okkerse, H. van Bekkum. From fossil to green [J]. Green Chemistry,1999,1(2): 107-114.
    [9]W. H. Cheng, H. H. Kung. Methanol production and use [M]. CRC,1994:Chap. 1.
    [10]于洁,肖宏.生物质制氢技术研究进展[J].中国生物工程杂志,2006,26(005):107-112.
    [11]陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(012):1276-1284.
    [12]D. Yu, M. Aihara, M. J. Antal. Hydrogen production by steam reforming glucose in supercritical water [J]. Energy & fuels,1993,7(5):574-577.
    [13]郝小红,郭烈锦.超临界水中湿生物质催化气化制氢研究评述[J].化工学报,2002,53(003):221-228.
    [14]X. Xu, Y. Matsumura, J. Stenberg, M. J. Antal Jr. Carbon-catalyzed gasification of organic feedstocks in supercritical water [J]. Industrial Engineering Chemistry Research,1996,35(8):2522-2530.
    [15]R. O. Idem, N. N. Bakhshi. Production of hydrogen from methanol. Part 1. Catalyst characterization studies [J]. Industrial & Engineering Chemistry Research, 1994,33(9):2047-2055.
    [16]R. O. Idem, N. N. Bakhshi. Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst [J]. Chemical Engineering Science,1996,51(14):3697-3708.
    [17]R. O. Idem, N. N. Bakhshi. Production of hydrogen from methanol over promoted coprecipitated Cu-Al catalysts:The effects of various promoters and catalyst activation methods [J]. Industrial & Engineering Chemistry Research,1995, 34(5):1548-1557.
    [18]Y Kawamura, K. Yamamoto, N. Ogura, T. Katsumata, A. Igarashi. Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer [J]. Journal of Power Sources, 2005,150:20-26.
    [19]X. R. Zhang, P. Shi, J. Zhao, M. Zhao, C. Liu. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts [J]. Fuel Processing Technology,2003,83(1-3):183-192.
    [20]Y. F. Li, X. F. Dong, W. M. Lin. Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol [J]. International Journal of Hydrogen Energy,2004,29(15):1617-1621.
    [21]J. P. Breen, J. R. H. Ross. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts [J]. Catalysis Today,1999, 51(3-4):521-533.
    [22]P. H. Matter, D. J. Braden, U. S. Ozkan. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts [J]. Journal of Catalysis,2004,223(2): 340-351.
    [23]P. H. Matter, U. S. Ozkan. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2 [J]. Journal of Catalysis,2005, 234(2):463-475.
    [24]H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts [J]. Applied Catalysis A, General,2005,293:64-70.
    [25]S. Velu, K. Suzuki, C. S. Gopinath. Photoemission and in situ XRD investigations on CuCoZnAl-mixed metal oxide catalysts for the oxidative steam reforming of methanol [J]. The Journal of Physical Chemistry B,2002,106(49): 12737-12746.
    [26]S. Velu, K. Suzuki, C. S. Gopinath, H. Yoshida, T. Hattori. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts [J]. Physical Chemistry Chemical Physics,2002,4(10):1990-1999.
    [27]A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schom cker, R. Schl gl, T. Ressler. Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts:a kinetic study [J]. Journal of Catalysis,2005,230(2): 464-475.
    [28]Y. H. Chin, R. Dagle, J. Hu, A. C. Dohnalkova, Y. Wang. Steam reforming of methanol over highly active Pd/ZnO catalyst [J]. Catalysis today,2002,77(1-2): 79-88.
    [29]Y. Suwa, S. I. Ito, S. Kameoka, K. Tomishige, K. Kunimori. Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol [J]. Applied Catalysis A:General,2004,267(1-2):9-16.
    [30]L. M. Gomez-Sainero, R. T. Baker, I. S. Metcalfe, M. Sahibzada, P. Concepcion, J. M. Lopez-Nieto. Investigation of Sm2O3-CeO2-supported palladium catalysts for the reforming of methanol:The role of the support [J]. Applied Catalysis A:General, 2005,294(2):177-187.
    [31]G Maggio, S. Freni, S. Cavallaro. Light alcohols/methane fuelled molten carbonate fuel cells:a comparative study [J]. Journal of Power Sources,1998,74(1): 17-23.
    [32]G A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios. Renewable hydrogen from ethanol by autothermal reforming [J]. Science,2004,303(5660):993.
    [33]F. Mari o, M. Boveri, G Baronetti, M. Laborde. Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts [J]. International Journal of Hydrogen Energy,2004,29(1):67-71.
    [34]P. D. Vaidya, A. E. Rodrigues. Insight into steam reforming of ethanol to produce hydrogen for fuel cells [J]. Chemical Engineering Journal,2006,117(1):39-49.
    [35]I. Fishtik, A. Alexander, R. Datta, D. Geana. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions [J]. International Journal of Hydrogen Energy,2000,25(1):31-45.
    [36]J. P. Breen, R. Burch, H. M. Coleman. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J]. Applied Catalysis B, Environmental,2002,39(1):65-74.
    [37]A. Therdthianwong, T. Sakulkoakiet, S. Therdthianwong. Hydrogen production by catalytic ethanol steam reforming [J]. Science Asia,2001,27(3):193-198.
    [38]M. M. Yung, W. S. Jablonski, K. A. Magrini-Bair. Review of catalytic conditioning of ciomass-derived syngas [J]. Energy & Fuels,2009,23(4):1874-1887.
    [39]刘承伟,石秋杰,李彬.负载型金属催化剂在乙醇水蒸气重整制氢中的应用[J].化工进展,2008,27(9):1336.
    [40]D. K. Liguras, D. I. Kondarides, X. E. Verykios. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts [J]. Applied Catalysis B, Environmental,2003,43(4):345-354.
    [41]A. Erd helyi, J. Rasko, T. Kecskes, M. Toth, M. D m k, K. Baan. Hydrogen formation in ethanol reforming on supported noble metal catalysts [J]. Catalysis Today,2006,116(3):367-376.
    [42]F. Aupretre, C. Descorme, D. Duprez, D. Casanave, D. Uzio. Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts [J]. Journal of Catalysis,2005,233(2):464-477.
    [43]C. Diagne, H. Idriss, A. Kiennemann. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts [J]. Catalysis Communications,2002,3(12):565-571.
    [44]F. Haga, T. Nakajima, K. Yamashita, S. Mishima. Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol [J]. Reaction Kinetics and Catalysis Letters,1998,63(2):253-259.
    [45]J. Llorca, P. R. de la Piscina, J.-A. Dalmon, J. Sales, N. Homs. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts:Effect of the metallic precursor [J]. Applied Catalysis B:Environmental,2003,43(4):355-369.
    [46]J. Llorca, N. Homs, P. Ramirez de la Piscina. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts [J]. Journal of Catalysis,2004,227(2):556-560.
    [47]J. Llorca, N. Homs, J. Sales, P. R. de la Piscina. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming [J]. Journal of Catalysis, 2002,209(2):306-317.
    [48]J. Llorca, N. Homs, J. Sales, J.-L. G. Fierro, P. Ramirez de la Piscina. Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol [J]. Journal of Catalysis,2004,222(2):470-480.
    [49]杨宇,吴绯,马建新.载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响[J].催化学报,2005,26(002):131-137.
    [50]M. C. Sanchez, R. M. Navarro, J. L. G. Fierro. Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts:Influence of support on the hydrogen production [J]. International Journal of Hydrogen Energy,32(10-11): 1462-1471.
    [51]F. Marino, M. Boveri, G Baronetti, M. Laborde. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/g-Al2O3 catalysts. Effect of Ni [J]. International Journal of Hydrogen Energy,2001,26(7):665-668.
    [52]D. A. Morgenstern, J. P. Fornango. Low-temperature reforming of ethanol over copper-plated Raney nickel:a new route to sustainable hydrogen for transportation [J]. Energy Fuels,2005,19(4):1708-1716.
    [53]F. Aupretre, C. Descorme, D. Duprez. Bio-ethanol catalytic steam reforming over supported metal catalysts [J]. Catalysis Communications,2002,3(6):263-267.
    [54]J. Llorca, P. R. Piscina, J. Sales, N. Horns. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts [J]. Chemical Communications,2001, 7:641-642.
    [55]S. Adhikari, S. D. Fernando, S. D. To Filip., R. M. Bricka, P. H. Steele, A. Haryanto. Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts [J]. Energy & Fuels,2008,22(2):1220-1226.
    [56]S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. F. To, R. M. Bricka, P. H. Steele, A. Haryanto. A thermodynamic analysis of hydrogen production by steam reforming of glycerol [J]. International Journal of Hydrogen Energy,2007,32(14):2875-2880.
    [57]H. S. Chen, T. F. Zhang, B. L. Dou, V. Dupont, P. Williams, M. Ghadiri, Y. L. Ding. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production [J]. International Journal of Hydrogen Energy,2009,34(17): 7208-7222.
    [58]S. Adhikari, S. Fernando, A. Haryanto. Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts [J]. Catalysis Today, 2007,129(3-4):355-364.
    [59]A. Iriondo, V. L. Barrio, J. F. Cambra, P. L. Arias, M. B. Guemez, R. M. Navarro, M. C. Sanchez-Sanchez, J. L. G Fierro. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La [J]. Topics in Catalysis,2008,49(1):46-58.
    [60]T. Hirai, N. Ikenaga, T. Miyake, T. Suzuki. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst [J]. Energy Fuels,2005,19(4): 1761-1762.
    [61]B. Zhang, X. Tang, Y. Li, Y. Xu, W. Shen. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts [J]. International Journal of Hydrogen Energy,2007,32(13):2367-2373.
    [62]M. Bowker, L. Millard, J. Greaves, D. James, J. Soares. Photocatalysis by Au nanoparticles:reforming of methanol [J]. Gold Bulletin,2004,37(3):170-173.
    [63]G. R. Bamwenda, S. Tsubota, T. Kobayashi, M. Haruta. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2 [J]. Journal of photochemistry and photobiology. A, Chemistry,1994,77(1): 59-67.
    [64]R. D. Cortright, R. R. Davda, J. A. Dumesic. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature,2002,418(6901): 964-967.
    [65]R. R. Davda, J. A. Dumesic. Renewable hydrogen by aqueous-phase reforming of glucose [J]. Chemical Communications,2004,1:36-37.
    [66]G W. Huber, J. W. Shabaker, J. A. Dumesic. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons [J]. Science,2003,300(5628): 2075-2077.
    [67]F. Atsushi, L. D. Paresh. Catalytic conversion of cellulose into sugar alcohols [J]. Angewandte Chemie International Edition,2006,45(31):5161-5163.
    [68]N. Yan, C. Zhao, C. Luo, P. J. Dyson, H. Liu, Y. Kou. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst [J]. Journal of the American Chemical Society,2006,128(27):8714-8715.
    [69]R. R. Davda, J. W. Shabaker, G W. Huber, R. D. Cortright, J. A. Dumesic. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B:Environmental,2005,56(1-2):171-186.
    [70]R. R. Davda, J. A. Dumesic. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide [J]. Angewandte Chemie International Edition,2003,42(34):4068-4071.
    [71]G Eggleston, J. R. Vercellotti. Degradation of sucrose, glucose and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature [J]. Journal of Carbohydrate Chemistry,2000,19(9):1305-1318.
    [72]B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water [J]. Industrial and Engineering Chemistry Research,1997,36(5):1552-1558.
    [73]B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai. Glucose and fructose decomposition in subcritical and supercritical water:detailed reaction pathway, mechanisms, and kinetics [J]. Industrial and Engineering Chemistry Research,1999, 38(8):2888-2895.
    [74]J. W. Shabaker, J. A. Dumesic. Kinetics of aqueous-phase reforming of oxygenated hydrocarbons:Pt/Al2O3 and Sn-modified Ni catalysts [J]. Industrial and Engineering Chemistry Research,2004,43(12):3105-3112.
    [75]J. W. Shabaker, G W. Huber, R. R. Davda, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts [J]. Catalysis Letters,2003,88(1-2):1-8.
    [76]L. J. Zhu, P. J. Guo, X. W. Chu, S. R. Yan, M. H. Qiao, K. N. Fan, X. X. Zhang, B. N. Zong. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol [J]. Green Chemistry,2008, 10(12):1323-1330.
    [77]J. W. Shabaker, R. R. Davda, G W. Huber, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J]. Journal of Catalysis,2003,215(2):344-352.
    [78]R. R. Davda, J. W. Shabaker, G W. Huber, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J]. Applied Catalysis B:Environmental,2003,43(1):13-26.
    [79]G W. Huber, J. W. Shabaker, S. T. Evans, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts [J]. Applied Catalysis B:Environmental,2006,62(3-4):226-235.
    [80]白赢,卢春山,马磊,陈萍,郑遗凡,李小年.Ce和Mg改性的g-Al2O3负载Pt催化剂催化乙二醇水相重整制氢[J].催化学报,2006,27(003):275-280.
    [81]Y. Cui, H. Zhang, H. Xu, W. Li. The CO2 reforming of CH4 over Ni/La2O3/a-Al2O3 catalysts:The effect of La2O3 contents on the kinetic performance [J]. Applied Catalysis A:General,2007,331:60-69.
    [82]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, F. Frusteri. Steam reforming of ethanol on Ni/MgO catalysts:H2 production for MCFC [J]. Journal of Power Sources, 2002,108(1-2):53-57.
    [83]F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G Bonura, S. Cavallaro. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell [J]. Applied Catalysis A:General,2004,270(1-2):1-7.
    [84]T. Miyata, D. Li, M. Shiraga, T. Shishido, Y. Oumi, T. Sano, K. Takehira. Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming [J]. Applied Catalysis A:General,2006, 310:97-104.
    [85]T. Ohi, T. Miyata, D. Li, T. Shishido, T. Kawabata, T. Sano, K. Takehira. Sustainability of Ni loaded Mg-Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming [J]. Applied Catalysis A:General,2006,308: 194-203.
    [86]K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay [J]. Journal of Catalysis,2004,221(1):43-54.
    [87]G. Wang, H. Wang, Z. Tang, W. Li, J. Bai. Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/Al2O3 catalysts [J]. Applied Catalysis B:Environmental,2009,88(1-2):142-151.
    [88]J. W. Shabaker, G. W. Huber, J. A. Dumesic. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. Journal of Catalysis, 2004,222(1):180-191.
    [89]J. W. Shabaker, D. A. Simonetti, R. D. Cortright, J. A. Dumesic. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies [J]. Journal of Catalysis,2005,231(1):67-76.
    [90]F. Z. Xie, X. W. Chu, H. R. Hu, M. H. Qiao, S. R. Yan, Y. L. Zhu, H. Y. He, K. N. Fan, H. X. Li, B. N. Zong, X. X. Zhang. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol [J]. Journal of Catalysis,2006,241(1):211-220.
    [91]金枫.丙三醇新用途[J].金山油化纤,2006,25(001):7-7.
    [92]R. R. Soares, D. A. Simonetti, J. A. Dumesic. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing [J]. Angewandte Chemie,2006, 118(24):4086-4089.
    [93]P. Mario, C. Rosaria, K. Hiroshi, R. Michele, D. Cristina. From Glycerol to Value-Added Products [J]. Angewandte Chemie International Edition,2007,46(24): 4434-4440.
    [94]N. Luo, X. Zhao, F. Cao, T. Xiao, D. Fang. Thermodynamic study on hydrogen generation from different glycerol reforming processes [J]. Energy & Fuels,2007, 21(6):3505-3512. [95] N. Luo, X. Fu, F. Cao, T. Xiao, P. P. Edwards. Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst-Effect of catalyst composition and reaction conditions [J]. Fuel,2008,87(17-18):3483-3489.
    [96]G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian. Production of hydrogen by aqueous-phase reforming of glycerol [J]. International Journal of Hydrogen Energy,2008,33(22): 6657-6666.
    [97]K. Lehnert, P. Claus. Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol [J]. Catalysis Communications,2008,9(15): 2543-2546.
    [98]E. D'Hondt, S. V. d. Vyver, B. F. Sels, P. A. Jacobs. Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen [J]. Chemical Communications, 2008,45:6011-6012.
    [99]K. Takanabe, K. Nagaoka, K. Nariai, K.-i. Aika. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane [J]. Journal of Catalysis,2005,232(2):268-275.
    [100]J. Zhang, H. Wang, A. K. Dalai. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. Journal of Catalysis,2007,249(2):300-310.
    [101]A. S. M. Vasant R. Choudhary. Simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas over CoO-NiO-MgO catalyst [J]. Journal of Chemical Technology & Biotechnology,1998,73(4):345-350.
    [102]X. Hu, G. Lu. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst [J]. Journal of Molecular Catalysis A:Chemical,2007,261(1): 43-48.
    [103]Z. B. Yu, M. H. Qiao, H. X. Li, J. F. Deng. Preparation of amorphous NiCoB alloys and the effect of cobalt on their hydrogenation activity [J]. Applied Catalysis A: General,1997,163(1-2):1-13.
    [104]M. M. Hossain, H. I. d. Lasa. Reactivity and stability of CO-Ni/Al2O3 oxygen carrier in multicycle CLC [J]. AIChE Journal,2007,53(7):1817-1829.
    [105]M. M. Hossain, K. E. Sedor, H. I. de Lasa. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion:Desorption kinetics and metal-support interaction [J]. Chemical Engineering Science,2007,62(18-20):5464-5472.
    [1]S. Brunauer, P. H. Emmett, E. Teller. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society,1938,60:309-319.
    [2]S. D. Robertson, R. B. Anderson. The structure of Raney nickel:Ⅳ. X-ray diffraction studies [J]. Journal of Catalysis,1971,23(2):286-294.
    [3]A. Bota, G. Goerigk, T. Drucker, H. G Haubold, J. Petro. Anomalous small-angle X-ray scattering on a new, nonpyrophoric Raney-type Ni catalyst [J]. Journal of Catalysis,2002,205(2):354-357.
    [4]C. H. Bartholomew, R. J. Farrauto. Chemistry of nickel-alumina catalysts [J]. Journal of Catalysis,1976,45(1):41-53.
    [1]J. W. Shabaker, G. W. Huber, J. A. Dumesic. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. Journal of Catalysis, 2004,222(1):180-191.
    [2]G. W. Huber, J. W. Shabaker, J. A. Dumesic. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons [J]. Science,2003,300(5628): 2075-2077.
    [3]F. Z. Xie, X. W. Chu, H. R. Hu, M. H. Qiao, S. R. Yan, Y. L. Zhu, H. Y. He, K. N. Fan, H. X. Li, B. N. Zong, X. X. Zhang. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol [J]. Journal of Catalysis,2006,241(1):211-220.
    [4]P. Gallezot, P. J. Cerino, B. Blanc, G. Flehe, P. Fuertes. Glucose hydrogenation on promoted Raney-Nickel catalysts [J]. Journal of Catalysis,1994,146(1):93-102.
    [5]S. R. Montgomery. Catalysis of organic reactions[M]. New York:Marcel Dekker, 1981:393.
    [6]A. B. Fasman, S. D. Mikhailenko, N. A. Maksimova, Z. A. Ikhsanov, V. Y. Kitaigorodskaya, L. V. Pavlyukevich. Raney catalysts for the hydrogenation of substituted anthraquinones [J]. Applied Catalysis,1983,6(1):1-9.
    [7]J. G Highfield, K. Oguro, B. Grushko. Raney multi-metallic electrodes from regular crystalline and quasi-crystalline precursors:Ⅰ. Cu-stabilized Ni/Mo cathodes for hydrogen evolution in acid [J]. Electrochimica Acta,2001,47(3):465-481.
    [8]胡华荣,王友臻,乔明华,范康年,宗保宁,张晓昕,李和兴.Mo对猝冷Ni-Mo骨架催化剂结构和催化性能的影响[J].化学学报,2004,62(014):1281-1286.
    [9]S. D. Robertson, R. B. Anderson. The structure of Raney nickel:Ⅳ. X-ray diffraction studies [J]. Journal of Catalysis,1971,23(2):286-294.
    [10]M. H. Youn, J. G Seo, P. Kim, I. K. Song. Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol [J]. Journal of Molecular Catalysis A:Chemical,2007,261(2): 276-281.
    [11]Christma.K, O. Schober, G Ertl, M. Neumann. Adsorption of hydrogen on Nickel single-crystal surfaces [J]. Journal of Chemical Physics,1974,60(11):4528-4540.
    [12]M. Arai, K. Suzuki, Y. Nishiyama. Characterization of Silica-supported Nickel-catalysts by the Temperature-programmed Desorption of hydrogen adsorbed at various temperatures [J]. Bulletin of the Chemical Society of Japan,1993,66(1): 40-45.
    [13]H. Hu, M. Qiao, S. Wang, K. Fan, H. Li, B. Zong, X. Zhang. Structural and catalytic properties of skeletal Ni catalyst prepared from the rapidly quenched Ni50Al50 alloy [J]. Journal of Catalysis,2004,221(2):612-618.
    [14]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of x-ray photoelectron spectroscopy [M]. Perkin-Elmer Eden Prairie, MN,1992:
    [15]J. C. Klein, D. M. Hercules. Surface-analysis by X-ray Photoelectron Spectroscopy and Auger-electron Spectroscopy of molybdenum-doped Raney-Nickel catalysts [J]. Analytical Chemistry,1984,56(4):685-689.
    [16]A. E. Aksoylu, Z. Misirh, Z. I. Onsan. Interaction between Nickel and Molybdenum in Ni-Mo/Al2O3 catalysts:Ⅰ:CO2 methanation and SEM-TEM studies [J]. Applied Catalysis A:General,1998,168(2):385-397.
    [17]A. E. Aksoylu, Z. I. Onsan. Interaction between Nickel and Molybdenum in Ni-Mo/Al2O3 catalysts:Ⅱ:CO hydrogenation [J]. Applied Catalysis A:General,1998, 168(2):399-407.
    [18]S. Velu, K. Suzuki, T. Osaki. A comparative study of reactions of methanol over catalysts derived from NiAl-and CoAl-layered double hydroxides and their Sn-containing analogues [J]. Catalysis Letters,2000,69(1):43-50.
    [19]C. Xu, B. E. Koel. Influence of alloyed Sn atoms on the chemisorption properties of Ni(111) as probed by rairs and TPD studies of CO adsorption [J]. Surface Science, 1995,327(1-2):38-46.
    [20]S. Karakalos, S. Kennou, S. Ladas, P. Janecek, F. Sutara, V. Nehasil, S. Fabik, N. Tsud, K. Prince, V. Matolin, V. Chab. The transition from the adsorbed state to a surface alloy in the Sn/Ni(111) system [J]. Surface Science,2006,600(18): 4067-4071.
    [21]J. K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C. J. H. Jacobsen. Universality in heterogeneous catalysis [J]. Journal of Catalysis,2002, 209(2):275-278.
    [22]B. Hammer, Y. Morikawa, J. K. Norskov. CO chemisorption at metal surfaces and overlayers [J]. Physical Review Letters,1996,76(12):2141-2144.
    [23]B. Hammer, J. K. Norskov. Electronic factors determining the reactivity of metal surfaces [J]. Surface Science,1995,343(3):211-220.
    [24]B. Hammer, J. K. Norskov. Why gold is the noblest of all the metals [J]. Nature, 1995,376(6537):238-240.
    [25]B. Hammer. Special sites at noble and late transition metal catalysts [J]. Topics in Catalysis,2006,37(1):3-16.
    [26]E. Nikolla, J. Schwank, S. Linic. Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance [J]. Journal of the American Chemical Society,2009,131(7):2747-2754.
    [1]Y. Cui, H. Zhang, H. Xu, W. Li. The C02 reforming of CH4 over Ni/La2O3/a-Al2O3 catalysts:The effect of La2O3 contents on the kinetic performance [J]. Applied Catalysis A:General,2007,331:60-69.
    [2]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, F. Frusteri. Steam reforming of ethanol on Ni/MgO catalysts:H2 production for MCFC [J]. Journal of Power Sources, 2002,108(1-2):53-57.
    [3]F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G Bonura, S. Cavallaro. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell [J]. Applied Catalysis A:General,2004,270(1-2):1-7.
    [4]T. Miyata, D. Li, M. Shiraga, T. Shishido, Y. Oumi, T. Sano, K. Takehira. Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming [J]. Applied Catalysis A:General,2006, 310:97-104.
    [5]T. Ohi, T. Miyata, D. Li, T. Shishido, T. Kawabata, T. Sano, K. Takehira. Sustainability of Ni loaded Mg-Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming [J]. Applied Catalysis A:General,2006,308: 194-203.
    [6]K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay [J]. Journal of Catalysis,2004,221(1):43-54.
    [7]R. R. Davda, J. W. Shabaker, G W. Huber, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J]. Applied Catalysis B:Environmental,2003,43(1):13-26.
    [8]J. W. Shabaker, G W. Huber, J. A. Dumesic. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. Journal of Catalysis, 2004,222(1):180-191.
    [9]K. Takanabe, K. Nagaoka, K. Nariai, K.-i. Aika. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane [J]. Journal of Catalysis,2005,232(2):268-275.
    [10]J. Zhang, H. Wang, A. K. Dalai. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. Journal of Catalysis,2007,249(2):300-310.
    [11]V. R. Choudhary, A. S. Mamman. Simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas over CoO-NiO-MgO catalyst [J]. Journal of Chemical Technology & Biotechnology,1998,73(4):345-350.
    [12]X. Hu, G Lu. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst [J]. Journal of Molecular Catalysis A:Chemical,2007,261(1): 43-48.
    [13]Z. B. Yu, M. H. Qiao, H. X. Li, J. F. Deng. Preparation of amorphous NiCoB alloys and the effect of cobalt on their hydrogenation activity [J]. Applied Catalysis A: General,1997,163(1-2):1-13.
    [14]M. M. Hossain, H. I. d. Lasa. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC [J]. AIChE Journal,2007,53(7):1817-1829.
    [15]M. M. Hossain, K. E. Sedor, H. I. de Lasa. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion:Desorption kinetics and metal-support interaction [J]. Chemical Engineering Science,2007,62(18-20):5464-5472.
    [16]B. Coq, D. Tichit, S. Ribet. Co/Ni/Mg/Al Layered Double Hydroxides as Precursors of Catalysts for the Hydrogenation of Nitriles:Hydrogenation of Acetonitrile [J]. Journal of Catalysis,2000,189(1):117-128.
    [17]J. M. Rynkowski, T. Paryjczak, M. Lenik. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts [J]. Applied Catalysis A:General,1993,106(1):73-82.
    [18]X.1. Zhu, P. P. Huo, Y. P. Zhang, D. G Cheng, C. J. Liu. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane [J]. Applied Catalysis B:Environmental,2008,81(1-2):132-140.
    [19]G Jacobs, T. K. Das, Y. Zhang, J. Li, G. Racoillet, B. H. Davis. Fischer-Tropsch synthesis:support, loading, and promoter effects on the reducibility of cobalt catalysts [J]. Applied Catalysis A:General,2002,233(1-2):263-281.
    [20]P. H. Bolt, F. H. P. M. Habraken, J. W. Geus. Formation of Nickel, Cobalt, Copper, and Iron aluminates from α- and γ-alumina-supported oxides:A comparative study [J]. Journal of Solid State Chemistry,1998,135(1):59-69.
    [21]A. E. Aksoylu, Z. Misirli, Z. I. Onsan. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts:I:CO2 methanation and SEM-TEM studies [J]. Applied Catalysis A:General,1998,168(2):385-397.
    [22]F. Z. Xie, X. W. Chu, H. R. Hu, M. H. Qiao, S. R. Yan, Y. L. Zhu, H. Y. He, K. N. Fan, H. X. Li, B. N. Zong, X. X. Zhang. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol [J]. Journal of Catalysis,2006,241(1):211-220.
    [23]IUPAC Recommendations [J]. Pure and Applied Chemistry,1985,57:603.
    [24]F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by powders and porous solids: Principles, methodology and applications [M]. San Diego:Academic,1999:
    [25]M. K. B. Day, V. J. Hill. The thermal transformations of the aluminas and their hydrates [J]. The Journal of Physical Chemistry,1953,57(9):946-950.
    [26]R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, J. A. Dumesic. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B:Environmental,2005,56(1-2):171-186.
    [27]G W. Huber, J. W. Shabaker, S. T. Evans, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts [J]. Applied Catalysis B:Environmental,2006,62(3-4):226-235.
    [28]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of x-ray photoelectron spectroscopy [M]. Perkin-Elmer Eden Prairie, MN,1992:
    [29]J. Chen, Q. Ma, T. E. Rufford, Y. Li, Z. Zhu. Influence of calcination temperatures of Feitknecht compound precursor on the structure of Ni-Al2O3 catalyst and the corresponding catalytic activity in methane decomposition to hydrogen and carbon nanofibers [J]. Applied Catalysis A:General,2009,362(1-2):1-7.
    [30]L. Zhang, X. Wang, B. Tan, U. S. Ozkan. Effect of preparation method on structural characteristics and propane steam reforming performance of Ni-Al2O3 catalysts [J]. Journal of Molecular Catalysis A:Chemical,2009,297(1):26-34.
    [31]J. W. Shabaker, D. A. Simonetti, R. D. Cortright, J. A. Dumesic. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies [J]. Journal of Catalysis,2005,231(1):67-76.
    [32]L. J. Zhu, P. J. Guo, X. W. Chu, S. R. Yan, M. H. Qiao, K. N. Fan, X. X. Zhang, B. N. Zong. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol [J]. Green Chemistry,2008, 10(12):1323-1330.
    [33]J. W. Shabaker, R. R. Davda, G.W. Huber, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J]. Journal of Catalysis,2003,215(2):344-352.
    [34]E. Christoffersen, P. Liu, A. Ruban, H. L. Skriver, J. K. Norskov. Anode materials for low-temperature fuel cells:A density functional theory study [J]. Journal of Catalysis,2001,199(1):123-131.
    [35]J. Greeley, M. Mavrikakis. Alloy catalysts designed from first principles [J]. Nature Materials,2004,3(11):810-815.
    [36]H. Igarashi, T. Fujino, Y. M. Zhu, H. Uchida, M. Watanabe. CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism [J]. Physical Chemistry Chemical Physics,2001,3(3):306-314.
    [37]J. C. Bertolini, B. Tardy, M. Abon, J. Billy, P. Delichere, J. Massardier. Surface reactivity of platinum nickel single-crystal alloys:Carbon-Monoxide adsorption [J]. Surface Science,1983,135(1-3):117-127.
    [1]V. R. Eidman. Economic parameters for corn ethanol and biodiesel production [J]. Journal of Agricultural and Applied Economics,2007,39(2):345.
    [2]金枫.丙三醇新用途[J].金山油化纤,2006,25(001):7-7.
    [3]R. R. Soares, D. A. Simonetti, J. A. Dumesic. Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing 13 [J]. Angewandte Chemie International Edition,2006,45(24):3982-3985.
    [4]R. M. Navarro, M. A. Pena, J. L. G Fierro. Hydrogen production reactions from carbon feedstocks:Fossils fuels and biomass [J]. Chemical Reviews,2007,107(10): 3952-3991.
    [5]R. R. Davda, J. W. Shabaker, G W. Huber, R. D. Cortright, J. A. Dumesic. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B:Environmental,2005,56(1-2):171-186.
    [6]R. A. Lemons. Fuel cells for transportation [J]. Journal of Power Sources,1990, 29(1-2):251-264.
    [7]J. W. Shabaker, D. A. Simonetti, R. D. Cortright, J. A. Dumesic. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies [J]. Journal of Catalysis,2005,231(1):67-76.
    [8]IUPAC Recommendations [J]. Pure and Applied Chemistry,1985,57:603.
    [9]F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by powders and porous solids: principles, methodology and applications [M]. San Diego:Academic,1999:
    [10]A. Haryanto, S. Fernando, N. Murali, S. Adhikari. Current status of hydrogen production techniques by steam reforming of ethanol:A review [J]. Energy & Fuels, 2005,19(5):2098-2106.
    [11]T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.-J. Shen, S. Imamura. Catalytic steam reforming of ethanol to produce hydrogen and acetone [J]. Applied Catalysis A:General,2005,279(1-2):273-277.
    [12]R. D. Cortright, R. R. Davda, J. A. Dumesic. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature,2002,418(6901): 964-967.
    [13]N. Luo, X. Fu, F. Cao, T. Xiao, P. P. Edwards. Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst-Effect of catalyst composition and reaction conditions [J]. Fuel,2008,87(17-18):3483-3489.
    [14]M. A. Dasari, P.-P. Kiatsimkul, W. R. Sutterlin, G J. Suppes. Low-pressure hydrogenolysis of glycerol to propylene glycol [J]. Applied Catalysis A:General, 2005,281(1-2):225-231.
    [15]J. Feng, H. Fu, J. Wang, R. Li, H. Chen, X. Li. Hydrogenolysis of glycerol to glycols over ruthenium catalysts:Effect of support and catalyst reduction temperature [J]. Catalysis Communications,2008,9(6):1458-1464.
    [16]H. Long, Y. L. Zhu, H. Y. Zheng, Y. W. Li, Z. Y. Zeng. Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions [J]. Journal of Chemical Technology & Biotechnology,2008,83(12): 1670-1675.
    [17]A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A. A. Lemonidou, J. A. Lercher. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol [J]. Journal of Catalysis,269(2):411-420.
    [18]L. Peereboom, J. E. Jackson, D. J. Miller. Interaction of polyols with ruthenium metal surfaces in aqueous solution [J]. Green Chemistry,2009,11(12):1979-1986.
    [19]冯建,袁茂林,陈华,李贤均.甘油催化氢解的研究与应用[J].化学进展,2007,19(005):651-658.
    [20]B. Casale, A. M. Gomez. Method of hydrogenating glycerol [P]. US:5214219, 1993-5-25
    [21]J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier. Glycerol hydrogenolysis on heterogeneous catalysts [J]. Green Chemistry,2004,6(8): 359-361.
    [22]L. Huang, Y. L. Zhu, H. Y. Zheng, Y. W. Li, Z. Y Zeng. Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions [J]. Journal of Chemical Technology &# 38; Biotechnology,2008,83(12): 1670-1675.
    [23]Z. Yuan, P. Wu, J. Gao, X. Lu, Z. Hou, X. Zheng. Pt/Solid-base:A predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution [J]. Catalysis Letters,2009,130(1):261-265.
    [24]I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige. Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen [J]. Green Chemistry,2007,9(6):582-588.
    [25]M. Balaraju, V. Rekha, P. S. S. Prasad, B. L. A. P. Devi, R. B. N. Prasad, N. Lingaiah. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts [J]. Applied Catalysis A:General,2009, 354(1-2):82-87.
    [26]E. P. Maris, R. J. Davis. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts [J]. Journal of Catalysis,2007,249(2):328-337.
    [27]T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C [J]. Applied Catalysis A:General,2007,329:30-35.
    [28]J. Zhao, W. Yu, C. Chen, H. Miao, H. Ma, J. Xu. Ni/NaX:A bifunctional efficient catalyst for selective hydrogenolysis of glycerol [J]. Catalysis Letters,1-6.
    [29]J. Runeberg, A. Baiker, J. Kijenski. Copper catalyzed amination of ethylene-glycol [J]. Applied Catalysis,1985,17(2):309-319.
    [30]C. Montassier, D. Giraud, J. Barbier. Polyol conversion by liquid phase heterogeneous catalysis over metals [A]. 见:[C]. Elsevier Science Ltd,1988:165.
    [31]Z. Huang, F. Cui, H. Kang, J. Chen, C. Xia. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol:Effect of residual sodium [J]. Applied Catalysis A:General,2009,366(2):288-298.
    [32]L. Huang, Y. L. Zhu, H. Y. Zheng, Y. W. Li, Z. Y. Zeng. Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions [J]. Journal of Chemical Technology & Biotechnology,2008,83(12): 1670-1675.
    [1]J. H. Sinfelt. Specificity in catalytic hydrogenolysis by metals [J]. Advances in Catalysis,1973,23:91-119.
    [2]D. C. Grenoble, M. M. Estadt, D. F. Ollis. The chemistry and catalysis of the water gas shift reaction:1. The kinetics over supported metal catalysts [J]. Journal of Catalysis,1981,67(1):90-102.
    [3]M. A. Vannice. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group Ⅷ metals:Ⅴ. The catalytic behavior of silica-supported metals [J]. Journal of Catalysis,1977,50(2):228-236.
    [4]P. R. de la Piscina, N. Horns. Use of biofuels to produce hydrogen (reformation processes) [J]. Chemical Society Reviews,2008,37(11):2459-2467.
    [5]J. Llorca, N. Homs, J. Sales, P. R. de la Piscina. Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming [J]. Journal of Catalysis, 2002,209(2):306-317.
    [6]J. Llorca, N. Homs, J. Sales, J.-L. G. Fierro, P. Ramirez de la Piscina. Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol [J]. Journal of Catalysis,2004,222(2):470-480.
    [7]J. Llorca, P. R. de la Piscina, J.-A. Dalmon, J. Sales, N. Homs. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts:Effect of the metallic precursor [J]. Applied Catalysis B:Environmental,2003,43(4):355-369.
    [8]C. Tang, C. Wang, S. Chien. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS [J]. Thermochimica Acta,2008,473(1-2):68-73.
    [9]Y. Zhang, D. Wei, S. Hammache, J. G. Goodwin. Effect of water vapor on the reduction of Ru-promoted Co/Al2O3 [J]. Journal of Catalysis,1999,188(2):281-290.
    [10]N. N. Madikizela-Mnqanqeni, N. J. Coville. The effect of cobalt and zinc precursors on Co(10%)/Zn(x%)/TiO2 (x= 0,5) Fischer-Tropsch catalysts [J]. Journal of Molecular Catalysis A:Chemical,2005,225(2):137-142.
    [11]M. Haneda, Y. Kintaichi, N. Bion, H. Hamada. Alkali metal-doped cobalt oxide catalysts for NO decomposition [J]. Applied Catalysis B:Environmental,2003,46(3): 473-482.
    [12]Z. Zsoldos, L. Guczi. Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts.3. Effect of treatment on the interface layer [J]. The Journal of Physical Chemistry,1992,96(23):9393-9400.
    [13]S. Velu, K. Suzuki, C. S. Gopinath. Photoemission and in situ XRD investigations on CuCoZnAl-mixed netal Oxide catalysts for the oxidative steam reforming of methanol [J]. The Journal of Physical Chemistry B,2002,106(49): 12737-12746.
    [14]Y. Pei, P. J. Guo, M. H. Qiao, H. X. Li, S. Q. Wei, H. Y. He, K. N. Fan. The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde [J]. Journal of Catalysis,2007,248(2):303-310.
    [15]B. Ernst, S. Libs, P. Chaumette, A. Kiennemann. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts [J]. Applied Catalysis A:General,1999, 186(1-2):145-168.
    [16]F. Z. Xie, X. W. Chu, H. R. Hu, M. H. Qiao, S. R. Yan, Y. L. Zhu, H. Y. He, K. N. Fan, H. X. Li, B. N. Zong, X. X. Zhang. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol [J]. Journal of Catalysis,2006,241(1):211-220.
    [17]J. W. Shabaker, G. W. Huber, J. A. Dumesic. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. Journal of Catalysis, 2004,222(1):180-191.
    [18]R. A. Lemons. Fuel cells for transportation [J]. Journal of Power Sources,1990, 29(1-2):251-264.
    [19]A. Y. Khodakov, W. Chu, P. Fongarland. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Review,2007,107(5):1692-1744.
    [20]M. A. Vannice. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group Ⅷ metals:I. The specific activities and product distributions of supported metals [J]. Journal of Catalysis,1975,37(3):449-461.
    [21]T. Shishido, M. Yamamoto, D. Li, Y Tian, H. Morioka, M. Honda, T. Sano, K. Takehira. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation [J]. Applied Catalysis A:General,2006,303(1):62-71.
    [22]J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts [J]. Catalysis Letters,2003,88(1-2):1-8.
    [23]N. Takezawa, N. Iwasa. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group Ⅷ metals [J]. Catalysis Today,1997,36(1):45-56.
    [24]R. R. Davda, J. W. Shabaker, G W. Huber, R. D. Cortright, J. A. Dumesic. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B:Environmental,2005,56(1-2):171-186.
    [25]J. Llorca, J. A. Dalmon, P. R. de la Piscina, N. Horns. In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol [J]. Applied Catalysis A:General,2003,243(2):261-269.
    [26]C. B. Wang, C. C. Lee, J. L. Bi, J. Y. Siang, J. Y. Liu, C. T. Yeh. Study on the steam reforming of ethanol over cobalt oxides [J]. Catalysis Today,2009,146(1-2): 76-81.
    [27]A. Haryanto, S. Fernando, N. Murali, S. Adhikari. Current status of hydrogen production techniques by steam reforming of ethanol:A review [J]. Energy & Fuels, 2005,19(5):2098-2106.
    [28]J. Llorca, P. R. Piscina, J. Sales, N. Homs. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts [J]. Chemical Communications,2001, 7:641-642.
    [29]R. D. Cortright, R. R. Davda, J. A. Dumesic. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature,2002,418(6901): 964-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700