用户名: 密码: 验证码:
矿山复杂多层采空区稳定性综合分析及安全治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的快速发展,对自然资源的需求越来越大,尤其是矿产资源。虽然人们在矿产开采过程中获得了很大的经济效益,但由于不科学的开采或者民间掠夺式采矿而形成的复杂多层采空区群容易引发各种地质灾害。这引起了政府、企业的高度重视。因此,研究复杂多层采空区的稳定性以及安全治理措施是当务之急。
     论文根据大量的实际调查、勘探、试验资料,通过综合分析采空区破坏模式、影响因素,运用多级模糊评判理论,建立单个采空区稳定性二级模糊综合评价模型,该模型包括3个层次、4类因素、16项因子。运用该模型将高峰105号矿体民采空区群稳定性分为稳定Ⅰ、较不稳定Ⅱ、不稳定Ⅲ。对于不同的采空区,应根据实际的稳定性分类,采用不同的合理的治理方式。
     从岩石力学角度出发,利用有限元FLAC3D软件对所建立的高峰105号复杂采空区三维模型进行数值模拟分析。选取高峰105号矿体中相邻采空区顶板厚度小于30m和顶板跨度较大的复杂空区群作为研究对象,对复杂多层采空区的应力分布和塑性区(结构塑性强度破坏方面)以及采空区顶板中点位移监控(变形控制方面)进行了研究,并对矿体21个采空区进行稳定性分类。该稳定性分类结果与多级模糊分类相比较,仅在13号采空区的稳定性分类上存在较小差异。
     综合应用突变理论及强度折减理论,建立了基于突变理论的强度折减法来分析多层采空区顶板稳定性,并提出多层采空区间顶板的剪切安全系数与拉裂安全系数的概念来研究复杂多层采空区的稳定性,得到了一些有益的结论:
     (1)对不同跨度、不同顶板厚度的双层采空区间的顶板稳定性:相同顶板跨度下,顶板厚度越大,剪切安全系数也越大;相同顶板厚度下,顶板跨度越大剪切安全系数越小,拉裂安全系数越小;而相同顶板跨度下,顶板厚度对拉裂安全系数的影响不象剪切安全系数一样具有强规律性。
     (2)分析了双层采空区间顶板剪切安全系数和跨度、顶板厚度的关系,并对其相互关系采用对数函数进行拟合,提出具体的关系式。
     (3)分析了跨厚比对采空区顶板剪切安全系数的影响,得到以下结论:随跨厚比ν的增加,顶板剪切安全系数增大。相同跨厚比下,跨度较大的顶板,剪切安全系数较少;跨度较小的顶板,剪切安全系数较大。
     (4)以高峰105号矿体采空区为例,研究了复杂多层采空区稳定性和求解顶板安全系数,并以取剪切安全系数Fs=1.5为评价顶板稳定性的判断标准对复杂多层采空区进行稳定性分类,其结果与多级模糊评判和岩石力学稳定性分类基本一致,说明建立的基于突变理论的强度折减法来分析多层采空区顶板稳定性具有较高的精确性。
     最后,本文详细系统的分析研究了现有的矿山采空区安全治理措施的优缺点及适用性。以高峰105号矿体采空区治理为例,详细的提出了采空区治理的思路及安全治理方案,并从残矿回采思路以及矿柱托换技术两方面研究了采空区残矿回采技术。
With the rapid development of China's national economy, the demand for natural resources is growing, especially mineral resources. Although the great economic benefits are obtained in the course of mineral exploitation, a vatiety of geologic disasters are caused because of the complicated multi-layer mined-out areas formed by unscientific mining or civil predatory mining. It is caught high regard from the government and enterprises. Therefore, researching the stability and treatment methods of the complicated multi-layer mined-out areas are urgent affairs.
     Based on a large number of data about actual survey exploration and test, the synthetic judgment model of the two-stage fuzzy of the stability of mined-out area is made by using multi-stage fuzzy synthetic judgment theory and analyzing its failure modes and influencing factors synthetically. The model includes 3 hierarchies,4 factors and 16 genes. And all mined-out areas in Gaofeng NO.105 mine body can be divided into stable mined-out area I, local instable mined-out area II and instable mined-out areaⅢ. Different and reasonable treatment methods should be adaptd to different mined-out areas on the basis of their actual stability.
     By using finite element software-FLAC3D, Numerical simulation is made to the three-dimensional model of the complicated multi-layer mined-out areas in Gaofeng NO.105 mine body from the view of rock mechanics. Through choosing the mined-out areas those have less than 30m thickness or big span of roof to be subject investigated, the thesis does not only research their stress distributing and plastic zone which are about the aspect of plasticity strength destroy, but also displacement monitoring of roof midpoint which is about deformation controlling. In addition, the stability of all 21 mined-out areas are classified. The classification result shows that there is little difference with stability classification of NO.13 mined-out area, compared with the result of multi-stage fuzzy synthetic judgment.
     Applying catastrophe theory and strength reduction method synthetically, the strength reduction method based on catastrophe theory is established to analyze the roof stability between multi-layer mined-out areas. Furthermore, the thesis creates two new concepts those are the safety factor of shearing and the safety factor of drawing crack to study the stability of complicated multi-layer mined-out areas. There are some useful conclusions:
     (1) Some conclusions about the roof stability between two-layer mined-out areas with different span and different roof thickness:for the purpose of the roofs with the same span, the thicker the roof is, the higher the safety factor of shearing is; for the purpose of the roofs with the same thickness, the wider the roof span is, the lower the safety factor of shearing is, and the lower the safety factor of drawing crack is. Nevertheless, the influence from the roof thickness to the safety factor of shearing has strong regularity, otherwise than the safety factor of drawing crack.
     (2) Analyzing the relation among the safety factor of shearing, the roof span and the roof thickness, fitting their interrelation with logarithmic function and getting the relationship formula.
     (3) Analyzing the influence from the ratio of thickness and span to the safety factor of shearing, and getting the following conclusions:the safety factor of shearing will increase along with the increasing of the ratio(v) of thickness and span. For the purpose of the roofs with the same ratio of thickness and span, the wider the roof span is, the lower the safety factor of shearing is; the smaller the roof span is, the higher the safety factor of shearing is.
     The thesis researches the stability of complicated multi-layer mined-out areas and the roof safety factor through making the mined-out areas in Gaofeng NO.105 mine body as a example. And the stability of areas are classified with the safety factor of shearing as yardstick when Fs=1.5. The result shows that it is the same as the classification results from multi-stage fuzzy synthetic judgment and rock mechanics analyzing. It also shows that the strength reduction method based on catastrophe theory has high accuracy to research the stability of complicated multi-layer mined-out areas.
     Finally, the advantages, the disadvantages and their applicability of existing treatment methods of mined-out areas are researched in detail. In addition, making the treatment of the mined-out areas in Gaofeng NO.105 mine body as a example, the thesis researches the treatment train of thoughts, the treatment project and the stoping technique from two aspect which are the stoping train of thoughts and the technique of underpinning pillar.
引文
[1]隋鹏程.中国矿山灾害[M].长沙:湖南人民出版社,1998
    [2]段永侯.中国地质灾害[M].北京:中国建筑工业出版社,1993
    [3]蔡美峰.中国金属矿山21世纪的发展前景评述[J].中国矿业,2001,10(1):11-13
    [4]何国清,杨伦等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1989
    [5]国家安全监督管理局研究中心.非煤矿山领域研究报告[R].2004
    [6]冶金部,劳动部,武汉安全工程研究院.某锡矿区采空区特大事故隐患的调研及治理方案有限元计算分析报告[R].1998
    [7]王连荣.我国有色矿山生产形势及发展方向[J].湖南有色金属,2000,16(5):4-8
    [8]国家安全监督管理局研究中心.我国煤炭城市采空塌陷灾害及防治对策研究[R].2004.
    [9]李通林,谭学术,刘伟伟.矿山岩石力学[M].重庆:重庆大学出版社,1991
    [10]王泳嘉,邢纪波.数值方法的新进展及其工程应用[M].东北工学院出版社,1987
    [11]王维纲.高等岩石力学理论[M].北京:冶金工业出版社,1996
    [12]Z.Agioutantis, M.Karmis. Correlation of Subsidence Parameters and Damage Assessment due to Underground Mining[J]. Proceedings of the 5th International Symposium on Environmental Issuesand Waste Management in Energy and Mineral Production[J].1998,195-201.
    [13]《工程地质手册》编写委员会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007
    [14]Hoek E, Brown E T. Underground Excavation in Rock[J]. Institution of Mining and Metallurgy,1980
    [15]王官宝,任高峰.格尔坷金矿采空区稳定性评价及安全开采措施[J].露天采矿技术,2004(6):13-16
    [16]张荣林.北矿区采空区稳定性及对下部矿体安全开采影响.金属矿山,2003,5(2):10-11
    [17]Ugai K, Leshchinsky D. Three dimensional limit equilibrium and finite element analysis a comparison of results[J]. Soils and Foundations,1995,35(4):1-7
    [18]Duncan J M. State of the art:Limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, ASCE,1996,122(7):577-596
    [19]施式亮,王海桥.矿井安全非线性动力学评价[M].北京:煤炭工业出版社,2001
    [20]郑永学.弓长岭铁矿地压活动规律的研究[M].北京:科学技术文献出版社,1980
    [21]刘星辉,苏国友.邵东县石盲矿采空区地面稳定性评价及地质灾害防治对策[J].矿冶工程,2004,24(1):20-23
    [22]郭广礼,何国清,崔曙光.部分开采老采空区覆岩稳定性分析[J].矿山压力与顶板管理,2003,(3):70-73
    [23]万虹.大面积采空区的稳定性研究[J].矿冶研究与开发,1995(3):21-25
    [24]许延春,耿德庸.采空区待建工程地基稳定性分析评价[J].勘察科学技术,1996(3):9-12
    [25]张永波.老采空区建筑地基稳定性评价理论与方法[M].北京:中国建筑工业出版社,2006
    [26]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报,1996,18(3):62-66
    [27]ZHANG Wei, LI Xi-bing, GONG Feng-qiang. Stability classification model of mine-lane surrounding rock based on distance discriminant analysis method[J]. Journal of Central South University of Technology,2008,15 (1): 117-120
    [28]于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [29]涂敏.运用模糊聚类法分析煤层顶板稳定性[J].矿山压力与顶板管理,1995(3): 171-173
    [30]封云聪,刘文永,谢源.采空区应力分布的有限元分析计算[J].矿冶,1996,5(1):20-23
    [31]罗声运.采场顶板的相似模拟试验[J].矿业研究与开发,1996,16(3):27-30
    [32]袁灯平,马金荣,董正筑.利用ANSYS进行开采沉陷模拟分析[J].济南大学学报,2001,15(4):336-338
    [33]蒋卫东,李夕兵,胡柳青等.基于灰色定权聚类的采空区上部地表稳定性分析[J].矿冶工程,2002,22(4):15-17
    [34]李治国.铁山隧道采空区稳定性分析及治理技术研究[J].岩石力学与工程学报,2002,21(8):1168-1173
    [35]邱贤德,黄木坤,王心飞等.数值计算在采空区稳定性评价中的应用[J].矿山压力与顶板管理,2002,19(4):105-107
    [36]朱湘平.131矿体采空区顶板稳定性研究[J].金属矿山,2003,(9):13-15
    [37]张荣林.北矿区采空区稳定性及对下部矿体安全开采影响[J].金属矿山,2003,(5):10-11,38
    [38]凌标灿, 彭苏萍,张滇河等.采场顶板稳定性动态工程分类[J].岩石力学与工程学报,2003,22(9): 1474-1477
    [39]李晓静,朱维申,陈卫忠,等.层次分析法确定影响地下洞室围岩稳定性各因素的权值[J].岩石力学与工程学报,2004,23(s2):4731-4734
    [40]董志宏,邬爱清,丁秀丽.基于数值流形元方法的地下洞室稳定性分析[J].岩石力学与工程学报,2004,23(s2):4956-4959
    [41]周科平,苏家红,古德生,等.复杂充填体下矿体开采安全顶板厚度非线性预测方法[J].中南大学学报(自然科学版),2005,36(6):1094-1099
    [42]张晓君.影响采空区稳定性的因素敏感性分析[J].矿业研究与开发,2006,26(1): 14-16
    [43]孙国权等.基于FLAC3D程序的采空区稳定性分析[J].金属矿山,2007,(2):29-32
    [44]彭欣,崔栋梁,李夕兵等.特大采空区近区开采的稳定性分析[J].中国矿业,2007,16(4):70-73
    [45]甄云军,陈开翔,刘应发等.地下采空区顶板安全厚度的确定[J].化工矿物与加工,2007,(9):19-20
    [46]何忠明,彭振斌,曹平,等.双层采空区开挖顶板稳定性的FLAC3D数值分析[J].中南大学学报(自然科学版),2009,40(4):1066-1071
    [47]何忠明,曹平.考虑应变软化的地下采场开挖变形稳定性分析[J].中南大学学报(自然科学版),2008,39(4):641-646.
    [48]段宗银.采空区处理的探讨和实践.昆明冶金高等专科学校学报[J],2001,17(2): 3-4
    [49]刘敦文,古德生,徐国元.地下矿山采空区处理方法的评价与优选[J].中国矿业,2004,13(8):52-54
    [50]李纯青,姚香.采空区处理新技术的理论研究及应用实践[J].黄金,2004,3(25):22-26
    [51]李爱国.京福国道徐州东绕城高速公路煤矿采空区治理[J].中南公路工程,2002,27(4):26-28
    [52]李俊平.缓倾斜采空场处理新方法及采场地压控制研究(博士学位论文).武汉:武汉大学,2003
    [53]李治国.铁山隧道采空区稳定性分析及治理技术研究[J].岩石力学与工程学 报,2002,21(8):1168-1173
    [54]刘常荣,夏海龙等.浅谈治理采空区的方法煤矿开采[J].煤矿开采,2002,(1): 61-62
    [55]赵文.地下巨型采空区顶板岩石的破坏与冒落[J].辽宁工程技术大学学报,2001,8(4):507-509
    [56]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报,2004,23(11):1852-1855
    [57]车平.桩基下溶洞顶板稳定性影响因素数值分析[J].山西建筑,2006.5,32(9): 61-62
    [58]《工程地质手册》编写委员会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007
    [59]Butt S D, Mukherjee C, Lebanns G. Evaluation of acoustic attenuation as an in dicatorof roof stability in advancing headings [J]. International Journal of Rock Mechanics and Mining Science,2000,37:1123-1131
    [60]Barton, N.Lien, R.and Lunde, L. Eng. Classification of Rock Masses for the Design of Tunnel Support[J]. Rock Mechanics,1974,6:189-236
    [61]Hylbert DV. Developing geological structureal criteria for predicting unstable mine roof rocks[A]. Bumines Open File Rept 9-78[C], United States DEPartment of the Interior,1977
    [62]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):304-306
    [63]李贵安,张志宏,段凤英.模糊数学及其应用[M].北京:冶金工业出版社,1994
    [64]邵中勇,冯德顺.公路隧洞围岩稳定性模糊评判方法[J].武汉理工大学学报(交通科学与工程版),2004,28(5):771-774
    [65]夏元友,朱瑞赓.岩石边坡稳定性的多人多层次模糊综合评价系统研究[J].工程地质学报,1999,7(1):46-53
    [66]黄崇福,王家鼎.模糊信息分析与应用[M].北京:师范大学出版社,1992
    [67]杨纶标,高英仪.模糊数学原理及应用(第四版)[M].广州:华南理工大学出版社,2006
    [68]苏永华,赵明华,刘晓明.岩体分级的二元相对模糊评判法[J].岩石力学与工程学报,2006,25(5).1049-1055
    [69]汪培庄,韩立岩.应用模糊数学[M].北京:北京经济学院出版社,1989
    [70]邹开其,徐扬.模糊系统与专家系统[M].四川:西南交通大学出版社,1989
    [71]王广月,刘健.围岩稳定性的模糊物元评价方法[J].水利学报,2004, (5).20-24
    [72]李文秀.Fuzzy理论在采矿及岩土工程中的应用[M].北京:冶金工业出版社,1998
    [73]吴建军.层次分析法在危险评价中的应用[J].阜阳师范学院学报(自然科学版),1996,39(3):47-50
    [74]温庆华,童保国.哈拉沟煤矿煤巷顶板稳定性影响因素分析[J].煤炭技术,2009,28(1):96-98
    [75]张林,杨志刚,钱庆强,等.溶洞顶板稳定性影响因素正交有限元法分析[J].中国岩溶,2005,24(2):156-159
    [76]张晓君.影响采空区稳定性的因素敏感性分析[J].矿业研究与开发,2006,26(1): 14-16
    [77]李晓静,朱维申,陈卫忠,等.层次分析法确定影响地下洞室围岩稳定性各因素的权值[J].岩石力学与工程学报,2004,23(s2):4731-4734
    [78]庞彦军,刘开第.综合评价系统客观性指标权重的确定方法[J].系统工程理论与实践,2001,21(8):37-42
    [79]曹文贵,张永杰.地下结构岩体质量分类的变权重二级模糊综合评判方法研究[J].岩石力学与工程学报,2006,25(8):1612-1618
    [80]贺广零,黎都春等.采空区顶板塌陷破坏的力学分析[J].石河子大学学报(自然科学版)2007,25(1):103-108
    [81]Butt S D, Mukherjee C, Lebanns G. Evaluation of acoustic attenuation as an in dicatorof roof stability in advancing headings [J]. International Journal of Rock Mechanics and Mining Science,2000,37:1123-1131
    [82]王文星.岩体力学[M].长沙:中南大学出版社,2004
    [83]G.歌德赫(西德).有限元法在岩土工程力学中的应用(张清,张弥等译)[M].北京:中国铁道出版社,1983
    [84]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-33
    [85]B.H.G.布雷迪,E.T.布朗.地下采矿岩石力学(冯树仁,佘诗刚等译)[M],北京:煤炭工业出版社,1986
    [86]施式亮,王海桥.矿井安全非线性动力学评价[M].北京:煤炭工业出版社,2001
    [87]XU Guo-yuan, YAN Chang-bin. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area[J]. Journal of Central South University of Technology,2006,13 (5):577-583
    [88]Exadaktylos G E, Tsoutrelis C E. Pillar failure by axial splitting in brittle rocks[J]. Int Rock Mech M in Sci& Gremech Abstr,1995,32 (6):551-562
    [89]LI Chun-lin, Richard P, Erling N. The stress-strain behaviour of rock material related to fracture under compression[J]. Engineering Geology,1998,49(2): 293-302
    [90]Gere J M, Timoshenko S P. Mechanics of materials[M].3rd ed. Boston: PWS-Kent Publishing Co,1990:577-626
    [91]Peng S D, Johnson A M. Crack growth and faulting in cylindrical specimens of granite[J]. International Journal of Rock Mechanics&M fining Sciences,1972, 9:37-86
    [92]DYSKIN A V, GERMANOVICH L N. Rock Burst Caused by Cracks Growing Near Free Surface[J]. Rock Bursts and Seismicity in Mines[C]. Rotterdam: Balkema,1993:169-174
    [93]Isaac A. K. Reliability of finite element analysis of longwall extraction in British coal mines. International Conference on Reliability, Production, and Control in CoalMines.1991.222-234
    [94]闫长斌,徐国元.竖向排列地下硐室群动力稳定性的数值模拟分析[J].中南大学学报(自然科学版),2006,37(5):593-599
    [95]HU Jian-hua, ZHOU Ke-ping, LI Xi-bing, et al. Numerical analysis of application for induction caving roof[J]. Journal of Central South University of Technology, 2005,12 (Suppl1):146-149
    [96]邱贤德,黄木坤.数值计算在采空区稳定性评价中的应用[J].矿山压力与顶板管理,2002(4):105-118
    [97]林韵梅.数值分类法及其在岩石力学中的应用[M].沈阳:东北工学院出版社,1989
    [98]刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报.2001,20(2):190-196
    [99]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42
    [100]Trueman R. Finite element analysis for the establishment of stress development in a coal mine caved waste[J]. Mining Science& Technology,1990,10(3): 247-252
    [101]ZIENKIEWICA O.C. The finite element method in the engineering science[M]. McGraw-Hill. London,1971
    [102]黎斌,范秋雁,秦风荣.岩溶地区溶洞顶板稳定性分析[J].岩石力学与工程学报,2002,21(4):532-536
    [103]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [104]谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报.1999.18(4).397-401
    [105]王增成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [106]彭文斌.FLAC 3D实用教程[M].北京:机械工业出版社,2007
    [107]Wood. Lamach Drum Constitutive Modeling and Finite Element Analysis of GroundSubsidence due to Mining, University of OklahOma,1990
    [108]X. L. Yao and D. J. Reddish. Nonlinear Finite Element Analysis of Surface Subsidence Arsing From Indined Sean INT. I. ROOK, Mech.& Mining Entraction, SCI.,1993 (4)
    [109]徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2): 93-99
    [110]苏永华,方祖烈.大型地下采空区稳定可靠性分析建模方法探讨[J].中国矿业,1998,7(4):69-72
    [111]郭玉龙任高峰.三维有限元数值模拟在采空区稳定性评价中的应用[J].西部探矿工程,2005(3):204-206
    [112]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].中国水利水电出版社,2005
    [113]钟茂华,陈宝智.突变理论在矿山安全中的应用[J].中国安全科学学报,1998,8(1):69-73
    [114]Yemin Zhang, Song Changqing. A New Sand Constitution with CUSP Catastrophe [J]. International Comference on computational Methods in Structural and Geotechnical Engineering, Hong Kong,1994
    [115]唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100-107
    [116]陈忠辉,徐小荷,唐春安.单轴压缩下岩石失稳破裂的突跳[J].东北大学学报,1994,15(5):476-480
    [117]于广明.地层沉陷的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1-5
    [118]秦四清,何怀锋.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质工 程地质,1995,(5):17-20
    [119]左宇军,李夕兵,赵国彦.洞室层裂屈曲岩爆的突变模型[J].中南大学学报(自然科学版),2005,36(2):311-316
    [120]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492
    [121]潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1): 23-30
    [122]邓跃进,董兆伟,张正禄.大坝变形失稳的尖点突变模型[J].武汉测绘科技大学学报,1998,24(2):170-173
    [123]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析.岩石力学与工程学报[J].2003,22(2):254-260
    [124]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27
    [125]郑宏,李春光,李焯芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626-628
    [126]许传华,任青文.围岩稳定分析的非线性理论研究[J].岩土工程技术,2003,(3):142-146
    [127]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8
    [128]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):57-61
    [129]林杭,曹平,赵延林,等.强度折减法在Hoek-Brown准则中的应用[J].中南大学学报:自然科学版,2007,38(6):1219-1224
    [130]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程,2001,23(4):407-411
    [131]Saunders P T.突变理论入门[M].凌复华译.上海:上海科学技术文献出版社,1983
    [132]SAUNDERS P T. An Introduction to Catastrophe Theory[M]. Cambridge: Cambridge University Press,1980
    [133]蒋军成.突变理论及其在安全工程中的应用[J].南京化工大学学报,1999,21(1):24-28
    [134]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154
    [135]潘岳,张孝伍.狭窄煤柱岩爆的突变理论分析[J].岩石力学与工程学报, 2004,23(11):1797-1803
    [136]刘学增.深部隧道失稳的尖点灾变模型[J].山东科技大学学报(自然科学版),2000,19(1).38-40
    [137]闫长斌.深部巷道失稳的突变理论分析[J].矿山压力与顶板管理,2005,(3):9-11
    [138]Steawart I. Seven elementary catastrophes[J]. New Scientist,1975,20:79-84.
    [139]Henley S. Catastrophe theory model in geology[J]. Math. Geo,1976,8(6): 6-11
    [140]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491
    [141]徐曾和,徐小荷.柱式开采岩爆发生条件与时间效应的尖点突变[J].中国有色金属学报,1997,7(2):17-23
    [142]汪祖民.用突变理论分析高速公路路堤土体稳定性[J].苏州科技学院学报,2003,16(3):21-24
    [143]Qin S, Jiao J J, Wang S. A cusp catastrophe model of instability of slip-buckling slope[J]. Rock Mechanics and Rock Engineering,2001,34 (2):119-134
    [144]方开泰,全辉,陈庆云等.实用回归分析[M].北京:科学出版社,1998
    [145]Jhonneter, William Wasserman, MichaelH. kutner编著,张勇,王国明,赵秀珍等译,应用线性回归模型[M].北京,中国统计出版社,1990
    [146]纪万斌.工程塌陷与治理[M].北京:地震出版社,1998
    [147]何志攀.新建公路下伏采空区的稳定性分析和治理技术研究[D].湖南:中南大学,2004
    [148]纪万斌,林景星,王怀颖等.工程塌陷与治理.北京:地展出版社,1989
    [149]童立元.高速公路下伏采空区危害性评价与处治技术[M].南京:东南大学出版社,2006
    [150]Wittke W. New design concept for underground openings in rock[J]. Finite Elements in Geomechanics, Achert,1972
    [151]李俊平,钱新明,郑兆强.采空场处理的研究进展[J].中国钼业,2002,26(3):11-15
    [152]董汉雄.小煤窑采空区注浆处理[J].科技交流,2000,30(3):149-152
    [153]许新启,杨焕文,杨小聪.我国全尾砂高浓度(膏体)胶结充填简述[J].矿冶工程,1998,18(2):2-3
    [154]李夕兵,李地元,赵国彦等.金属矿地下采空区探测、处理与安全评判[J].采矿与安全工程学报,2006,23(1):23-29
    [155]Rajendra Singhand T. N. Singh. Ivestigation into the behaviour of support system and roof during sublevel caving of a thick caol seam[J]. Geoteachnical and Geological Engineering,1999,17:21-35
    [156]周罗中.大厂铜坑矿块石胶结充填技术研究[J].湖南有色金属,1995,11(1): 4
    [157]李晓峰,韩亚卿.锡铁山铅锌矿采空区处理探讨[J].西部探矿工程,2002,6(79): 53-54
    [158]杨根徉.全尾砂胶结充填技术的现状及发展[J].中国矿业,1995,4(2):04
    [159]刘献华.紫金山金矿采空区处理技术研究[J].有色矿山,2002,31(1):20-23
    [160]乔春生,田治友.大团山矿床采空区处理方法[J].中国有色金属学报,1989,8(4):734-738
    [161]李兆平,张弥.南京铅锌银矿地下采空区的治理[J].中国地质灾害与防治学报,1999,10(2):58-62
    [162]黄琴灿.浅谈河台金矿高村矿床采空区处理方法[J].黄金,2000,12(7):41-16
    [163]张志沛,王红.注浆法在公路下伏煤矿采空区治理工程中的应用研究[J].煤田地质与勘察,2003,31(6):43-46
    [164]李俊平,彭作为,周创兵等.木架山采空区处理方案研究[J].岩石力学与工程学报,2004,23(22):3884-3890
    [165]沈斐敏.安全系统工程理论与应用[M].北京:煤炭工业出版社,2001
    [166]谢学斌.硬岩矿床岩爆预测与控制的理论和技术及其应用研究[D].长沙:中南大学,1999
    [167]长沙矿山研究院.广西大厂巴里锡矿大面积地压及2#盲竖井扩建工程可靠性研究报告[R],鉴定资料,1990
    [168]周崇仁.矿柱回采与空区处理[M].北京:冶金工业出版社,1989
    [169]北京矿冶研究总院.100号矿体残矿回采方案设计[R].北京:北京矿冶研究总院,2003
    [170]《采矿手册》编委会.采矿手册(第四卷)[M].北京:冶金工业出版社,1992
    [171]郑学敏.特大采空区下矿柱回采的安全性评价[J].矿冶研究与开发,2002,12(6): 16-18
    [172]韩斌.金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研究 [D].长沙:中南大学,2004
    [173]阳雨平,吴爱样.浅析国内缓倾斜中厚矿体回采现状及进展[J].黄金,2002,23(1): 14-16
    [174]王宁.缓倾斜极薄矿脉采场结构参数和回采顺序优化研究[J].金属矿山,1999,(2):12-13
    [175]王旭春,黄福昌,张怀新等.A.H.威尔逊矿柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608
    [176]刘沐宇,徐长佑.地下采空区矿柱稳定性分析[J].矿冶工程,2000,3(1):19-22
    [177]郑泽岱,刘沐宇等.计算矿柱安全系数的新方法[J].化工矿山与技术,1994,23(3): 16-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700