用户名: 密码: 验证码:
系统合金科学在Au-Cu合金系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在合金理论发展的历史进程中,Au-Cu合金系始终是首选的经典的研究对象,晶体学家将其作为合金相晶体结构的研究范例,理论物理学家将它作为合金相电子结构和有序——无序转变的研究范例,热化学家将它作为合金系相图评估和相图理论计算的研究范例。
     本文应用系统合金科学,选择经典的Au-Cu合金系作为研究对象,在系统研究纯金属Cu、Au基础上,从合金相的原子结构层次和原子的电子结构层次两个层次研究了Au-Cu合金系,确定了合金、组元的能量性质、体积性质、电子结构。研究获得了若干创新性成果,丰富了系统合金科学的内容,为研究合金相有序——无序转变、相图计算和材料设计提供了基础资料。
     应用系统合金科学中的纯金属理论,研究了纯金属Cu和Au的电子结构、热膨胀系数、单键半径、晶格常数、比热、内能、焓、熵、Gibbs自由能、结合能等性质,计算结果与实验值符合良好。
     由“部分获得整体”,是系统合金科学中最具特色的方法、最有实用价值的技术,正确选择能量和体积相互作用方程是系统合金科学的首要任务。本文分别以Au-Cu合金系少量无序合金生成热、生成体积实验值为基础和少量化合物的生成热、生成体积实验值为基础的两条研究路线,分别得到合金系中载有特征原子能量性质、体积性质、状态性质的特征原子序列,随后应用纯金属理论,确定特征晶体的价电子结构、结合能、单键半径、晶格常数等信息,这些信息是合金设计和合金相性质计算、有序——无序转变研究以及相图计算的前提。在此基础上,采用双向应证的方法,获得了有价值的成果:确定了能量相互作用方程为第5方程,体积相互作用方程为第6方程;发现了以往实验测量用的无序合金不是完全无序合金,而是具有较大的短程有序度;解释了Au-Cu合金无序化时体积膨胀的原因在于特征原子的体积变化,本质在于随着近邻Au原子数的增加,AiCu的价电子结构中共价电子增加较少,自由电子增加显著,导致单键半径增加,νiCu增加;证明了偏摩尔性质不能真实描述组元的平均性质。
     应用特征晶体性质相加定律,分别以无序合金和化合物确定的两组特征晶体序列的性质为基础,研究了Au-Cu合金系的无序合金、有序合金和化合物的能量性质、体积性质和电子结构。两条研究路线的研究结论相同:从纯金属生成无序合金、有序合金和化合物都放出热量,从无序→有序转变是放热反应;从纯金属生成无序合金、有序合金和化合物体积都膨胀,相对于Zen定律和Vegard定律是正偏差,从无序→有序转变体积缩小;随着有序度的增加,有序合金的生成热越小,结合能增加,有序合金平均原子体积、晶格常数减小。这也证明了系统合金科学可以从“不同部分获得整体信息”。
     本文创建了合金相结构新的描述方法——晶体特征原子排列结构,它既反映了合金相特征原子的空间排布,又赋有能量、体积和状态信息。本文根据Johannsson-Linde提出的AuCuⅡ的长周期反相畴“界面”结构模型和Guymont等提出的长周期反相畴“界区”统计结构模型,绘出了对应的晶体特征原子排列结构,分别计算了AuCuⅠ、AuCuⅡ和反相界区(面)的生成热、生成体积、有序度以及AuCuⅠ→AuCuⅡ的转变焓和转变体积。研究结果表明,J-L模型对应的AuCuⅠ→AuCuⅡ转变为放热反应和体积收缩的反应,这与实验表明该反应为吸热反应和体积膨胀反应相矛盾,J-L模型不能真实反映AuCuⅡ的结构。G-F-L模型对应的AuCuⅠ→uCuⅡ转变为吸热反应和体积膨胀的反应,这与实验表明一致。因此,G-F-L模型真实反映AuCuⅡ的结构。
In the development history of alloying theory, Au-Cu system is always the classic subject investigated. The crystallogphies target it as an exemplification for studying alloy phase structure; The theoretical physicists choose it as an exemplification for studying electronic structure and transformation of order-disorder; The thermal chemists consider it as an exemplification for evaluating and calculating phase diagram.
     In this paper, the classic Au-Cu alloy system is chose as object. On the basis of studying pure metals Cu and Au, this alloy system is researched from the two respects of atomic structure level of alloy phase and electronic structure level of atom. Then the energetic properties, volumetric properties and electronic structures of alloys and components are obtained through systematic alloy science. This study produces umpty innovative results, enriches the contents for systematic alloy science and supplies fundamental datum for studying transformation of order-disorder, calculating phase diagram and designing new materials.
     The electronic structures, coefficients of heat expansion, single bond radii, lattice parameters, specific heats at constant volume, isopiestic specific heats, internal energies, enthalpies, entropies and Gibbs energies of pure metals Cu and Au are studied adopting one-atom theory within systematic alloy science. The calculated results are in good agreement with the experimental datum.
     "Obtaining the whole from the part" is the most idiomatical method in systematic alloy science, the most employable technique and is the principal task of systematic alloy science for choosing the interaction function between energy and volume accurately. This paper obtains, creatively, two characteristic atom sequences, which contain the energetic properties, volumetric properties and state behaviors of characteristic atoms on the basis of experimental heat of formation and volume of formation of a few disordered alloys and experimental heat of formation and volume of formation of a few compounds respectively in Au-Cu system. Then, using the one-atom theory, we determine the information of valence electronic structures, cohesive energies, single bond radii, lattice parameters, etc for characteristic crystals, which are the premise of designing materials, calculating the properties of alloy phases and phase diagrams and studying transformations of order-disorder. On the basis of these, we adopt the method of bidirectional proof and obtain some valuable results:it is determined that the interaction function of energy is equation 5 and the interaction function of volume is equation 6; it is found that the disordered alloys measured by experiment is not full disordered, but have larger degree of short range ordering; it also interpret the question perplexing us chronically of voluminal expansion when disordering in Au-Cu alloy. The reason is that the volume of characteristic atom AiCU increases with increasing the number of nearest neighboring atom Au, essentially, due to both increase of covalent electrons changing smaller and increase of free electrons changing more markedly in valence electronic structure, which is attributed to increase of single bond radius and viCu". Then, it is proved that the partial molar property can't veritably describe the average properties of components.
     Using the additivity law of characteristic crystalline properties, the energetic properties, volumetric properties and electronic structures of disordered alloys, ordered alloys and compounds in Au-Cu alloy system are studied from the information of two group of characteristic crystal sequences definited by disordered alloys and compounds. The results of the two studying methods exist small differences, yet the whole conclusions are same:the formations of disordered alloys, ordered alloys and compounds from pure metals are exothermic and their volumes are expansive, which is positive deviation relative to Zen's Law and Vegard's Law, and that the transformation of disordered→ordered is exothermic reaction and its volume is contractible. Also, these prove that systematic alloy science can obtain the whole infromation from different parts.
     It is proposed a new description method of phase structure, i.e., the crystal characteristic atom arranging structure which not only reflects the arrangement of atoms in space, but also contains the information of energies, volumes and states. According to the J-L long period antiphase structure model proposed by Johannsson-Linde and G-F-L model proposed by Guymont-Feutelais-Legendre, we illustrate the corresponding crystal characteristic atom arranging structures respectively. Then the heats of formation, volumes of formation and ordering degree of AuCuⅠ, AuCuⅡand the region (plane) of antiphase, as well as the enthalpy of transition and volume of transition of AuCuⅠ→AuCuⅡare all calculated respectively. The results denote that the transition of AuCuⅠ→AuCuⅡcorresponding to J-L model is an exothermic and volume contractic reaction which is opposite from experimental phenomenon. Therefore, the J-L model can not be used to describe the structure of AuCuⅡ. However, the transition of AuCuⅠ→AuCuⅡcorresponding to G-F-L model is an endothermic and voluminal expansion reaction which is in agreement with the experimental phenomenon. Thus, the G-F-L model reflects the structure of AuCuⅡfactually.
引文
[1]L.Von.Bertalanffy. General System Theory. New York:George Breziller Inc. 1973.33
    [2]L.Von.Bertalanffy.一般系统论:基础、发展和应用(林康义,魏宏森等译).北京:清华大学出版社,1987.1-8
    [3]甘子钊.中国十大基础研究.上海:上海科学技术出版社,1995.276-287
    [4]Zhu Zhaoxuan. Systematology and nonlinear dynamics.上海机械学院学报,1990,13(增1):4-8
    [5]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论.自然杂志,1990,1:3-10
    [6]钱学森.论系统工程.长沙:湖南科技出版社,1988.532-553
    [7]L.Von.Bertalanffy. The history and status of general system theory. In: GLKlir ed. Therxis in General system theory. Newyork:John Wiley and Son Inc., 1972,21-41
    [8]许志国.系统科学.上海:上海科技教育出版社,2000:31-39
    [9]G.N. Lewis. The Atom and the Molecule. J. Am. Chem. Soc.,1916,38:762-785
    [10]I. Langmuir. The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc.; 1919,41:868-934
    [11]W. Heitler and F. London. Interaction of neutral atoms and homopolar binding according to the quantum mechanics. Z. Phys.,1927,44:455-472
    [12]Pauling L. The Nature of the Chemical Bond. Ithaca:Cornell University Press, 1960.
    [13]L.鲍林.化学键的本质(卢嘉锡等译校).上海科学技术出版社,1966.385-394
    [14]J. C. Slater. Molecular Energy Levels and Valence Bonds. Phys. Rev., 1931,38:1109-1144
    [15]N. Engel. Properties of metallic phases as a function of number and kind of bonding electrons. Powder Met. Bull.,1954,7:8-18
    [16]L. Brewer. Bonding and Structures of Transition Metals. Science, 1968,161:115-122
    [17]L. Brewer. Thermodynamic Stability and Bond Character in Relation to Electronic Structure and Crystal Structure. in Electronic Structure and Alloy Chemistrv of Transition Elements, edited by P. A. Beck, New York: Interscience Publishers, John Wiley,1963.221-235
    [18]L. Brewer. A most striking confirmation of the Engel metallic correlation. Acta Metall.,1967,15:553-556
    [19]L. Brewer. in Phase Stability of Metals and Alloys. edited by P. S. Rudman, J. Stringer and R. I. Jaffee. New York:McGraw-Hill,1967.39-61,241-249, 344-346 and 560-568
    [20]L. Brewer. in Alloying. edited by J. L. Walter, M. R. Jackson and C. T. Sims. Ohio:ASM International, Metals Park,1988.1-28
    [21]L. Brewer. A bonding model for strong generalized Lewis acid-base interactions in intermetallics. Pure Appl. Chem.,1988,60:281-286
    [22]K. Waltersson. A method, based upon'bond-strength' calculations for finding probable lithium sites in crystal structures. Acta Cryst. A,1978,34:901-905
    [23]S. Adams, K.-H. Ehses and J. Spilker. Proton ordering in the Peierls-distorted hydrogen molybdenum bronze H0.33MoO3:structure and physical properties. Acta Cryst. B,1993,49:958-967
    [24]R.L. Withers, S. Schmid and J.G. Thompson. Compositionally and/or displacively flexible systems and their underlying crystal chemistry. Progress in Solid State Chemistry,1998,26:1-96.
    [25]A. Santoro, I. Natali Sora and Q. Huang. Bond Valence Analysis of BaRuO3. J. Solid State Chem.,2000,151:245-252
    [26]I. D. Brown. Modeling the structures of La2NiO4. Z. Kristallogr., 1992,199:255-272
    [27]V. S. Urusov. Extended bond-valence model as a tool for designing topology of inorganic crystal structures. Z. Kristallogr.,2001,216:10-21
    [28]B. A. Hunter, C. J. Howard and D.-J. Kim. Bond Valence Analysis of Tetragonal Zirconias. J. Solid State Chem.,1999,146:363-368
    [29]A. Santoro. I. Natali Sora and Q. Huang, Bond-Valence Analysis of the Structure of (Ba_0.875Sr_0.125)RuO_3. J. Solid State Chem.,1999,143:69-73
    [30]W. Hume-Rothery and B. R. Coles. The transition metals and their alloys. Adv. Phys.,1954,3:149-242
    [31]W. Hume-Rothery and G. V. Raynor. The Structure of Metals and Alloys. London:Institute of Metals,1954.174-210
    [32]徐祖耀.金属学原理.上海:上海科学技术出版社,1964.148-151
    [33]冯端,王亚宁,丘第荣.金属物理(上册).北京:科学出版社,1964.78-83
    [34]乌曼斯基,.斯卡科夫.金属物理---金属和合金的原子结构(赵坚,蔡淑卿泽).北京:冶金工业出版社,1985.69-79
    [35]余瑞璜.固体与分子经验电子理论.科学通报,1978,23(4):217-225.
    [36]张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993.11-17,26-27,51,71-72,81-82,232-241
    [37]程开甲,高占鹏,范启科.TF(或TFD)模型中原子的边界势及状态方程.物理学报,1982,33:176
    [38]Cheng Kaijia, Cheng Suyu. Theoretical Foundations of Condensed Materials. Progress in Natural Science,1996,6(1):12-19
    [39]吕振家,王绍镪.碱金属和碱土金属晶体结合能的计算.科学通报,1979,24:742-745
    [40]王绍铿,吕振家.La系稀土金属结合能的计算.科学通报,1981,26:220-223
    [41]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算.中国科学(A辑),1988,3:323-330
    [42]Yongquan Guo, Ruihuang Yu, Ruilin Zhang, et al. Calculation of magnetic properties and analysis of valence electron structures of LaT13-xAlx (T=Fe, Co) compounds. J. Phys. Chem. B,1998,102(1):9-16
    [43]余瑞璜.铝-镁二元金相α、δ相以及γ-Al12Mg19相的价电子结构分析.吉林大学自然科学学报,1979,(4):54-75
    [44]余瑞璜.α-Fe,γ-Fe和Fe4N的价电子结构和磁矩结构分析-α-Fe→γ-Fe相变、高温渗氮表面硬化、渗碳体石墨化及其它材料的电子理论.金属学报,1982,18(3):337-349
    [45]余瑞璜.CrO3,δ-CrO2, Cr2O3, α-Al2O3的熔点、沸点和在水中及其它溶液中的溶解度的电子理论.结构化学,1984,(3):193-196
    [46]张瑞林,金冶,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究Ⅲε-Fe-N固溶体的价电子结构与晶格常数-成份曲线.吉林大学自然科学学报,1984,(1):63-72
    [47]张瑞林,吴尚才,余瑞璜.由Nd2Fe14B的晶体直接给出其价电子结构的分析.中国科学(A辑),1988,18(2):197-203
    [48]邢胜娣,余瑞璜.金属化合物Ti3A1的价电子结构及其力学性能.吉林大学自然科学学报,1985,(1):62-69
    [49]袁祖奎,余瑞璜.Fe-Cr σ相价电子结构的分析.金属学报,1985,21(2):A140-146
    [50]郑伟涛,张瑞林,余瑞璜.Ag-Au, Au-Cu二元合金形成能和高温相图的研究.科学通报,1989,34(9):705-711
    [5l]郑伟涛,余瑞璜,张瑞林.Cu-Au二元合金有序-无序相平衡的研究.科学通报,1991,36(2):179-181
    [52]吴非,余瑞璜,张瑞林.Fe-Mn合金相图的电子理论计算.中国科学(A辑),1990,20(8):889-896
    [53]Zhang Jianmin, Zhang Ruilin, Yu Ruihuang. The fracture of transgranular cleavage of Fe3Al and the intergranular fracture of FeAl. Chinese Science Bulletin,1994,39(15):1315-1318
    [54]Yin Yansheng, Wang Wenxiang, Shi Zhongliang. Analysis of valence electron structure(VES) of Fe3Al intermetallic compounds. Materials chemistry and physics,1995,39:243-247
    [55]Yin Yansheng, Fan Runhua, Xie Yongsheng. The effect of chromium on the valence electron structure of Fe3Al intermetallic compounds. Materials chemistry and physics.1996,4:190-193
    [56]J. Q. Wang, C. F. Qian, B. J. Zhang, et al. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy. Scripta Materialia.1996,34(10):1509-1515
    [57]J. Q. Wang, C. F. Qian, X. F. Chen,et al. Crystal and valence electron structure of the α-(AlMnSi) phase. J. Matreials Sci. Letters,1996, (15):579-581
    [58]LI Zhilin, LIU Zhilin, LIU Weidong. Valence electron structure of cementite phase and its interface and the tempering phenomenon. Science in China (Series E),2002,45(3):282-290
    [59]刘志林.合金的价电子结构与成份设计.长春:吉林科学技术出版社,2002.1-15
    [60]Zhu Ruifu, Lu Yupeng, Zhang Fucheng. Valence electron structure of high manganese steel and its intrinsic property. Chinese science bulletin, 1996,41(15):1313-1316
    [61]谢佑卿.金属材料系统科学.长沙:中南工业大学出版社,1998.
    [62]谢佑卿,唐仁政,卢安贤等.材料设计的回顾与思考.材料导报,1995,2:1-7
    [63]谢佑卿.金属材料科学发展的历程与人类思维方式的演变.材料导报,1998,12(4):6-12
    [64]谢佑卿.金属材料系统科学框架.材料导报,2001,15(4):12-15
    [65]Nie Yaozhuang, Xie Youqing. Ab initio thermodynamics of the hcp metals Mg, Ti, and Zr. Physical Review B,2007,75:174117-174124
    [66]Nie Yaozhuang, Xie Youqing, Peng Hongjian, Li Xiaobo. Ab initio thermodynamics of metals:Pt and Ru. Physica B,2007,395(1-2):121-125
    [67]聂耀庄,谢佑卿,李小波,彭红建.金属Zr热力学性质第一原理研究.金属学报,2007,43(7):693-698
    [68]聂耀庄,谢佑卿,彭红建,李小波.Zr5Si3及Zr3Ti2Si3弹性性质与热学性质.中国有色金属学报,2007,17(9):1495-1500
    [69]聂耀庄,谢佑卿,彭红建,李小波.金属Ti热力学性质第一原理研究.中南大学学报,2007,38(6):1072-1077
    [70]Nie Yaozhuang, Xie Youqing, Li Xiaobo, Peng Hongjian. First-principles study of the anisotropic thermal expansion of hcp metals Be and Y. Journal of Physics and Chemistry of Solids,2008,69:852-858
    [71]H.Eckardt, L. Fritsche L, J.Noffke. Self-consistent relativistic band structure of the noble metals. J Phys F Met Phys,1984,14(1):97-112
    [72]谢佑卿,马柳莺.晶体价电子结构的理论晶格参量.中南矿冶学院学报,1985,(1):1-10
    [73]Xie Youqing. A new potential function with many-atom interactions in solid, Science in China, Ser. A,1993,1:90-99
    [74]谢佑卿.固体中多原子相互作用的新势能函数.中国科学(A辑),1992,8:880-890
    [75]谢佑卿.确定晶体电子结构的单原子状态自洽法,科学通报,1992,16:1529-1532
    [76]XIE Y. Q. The electronic structure and properties of pure iron. Acta metall. Mater.,1994,11:3705-3715
    [77]Xie Youqing, Zhang Xiaodong, Chen J. Y.. Electronic structure and properties of Cobalt, Science in China, Ser.E,1996,(4):394-403
    [78]Xie Youqing. Electronic structure and properties of Ni metal. Science in China, Ser.A,1993,(4):495-503
    [79]Xie Youqing, Liu Xinbi. Electronic structure and physical properties of pure aluminum metal. Science in China Ser. E,1999,(6):603-608
    [80]PENG Kun, XIE You-qing, PENG Hao, et al. Structures and properties of Sc and Y metals. Journal of central south university of technology,2000, 7(3):136-139
    [81]XIE You-qing, PENG Kun, YANG Xin-xin. Electronic strctures and Properties of Ti, Zr and Hf metals. Journal of central south university of technology,2001,8(2):83-88
    [82]HE Yu, XIE You-qing. Electronic structures and properties of V, Nb and Ta metals. Journal of central south university of technology,2000,7(1):7-11
    [83]XIE You-qing, DENG Yong-ping, LIU Xin-bi. Electronic structures and physical properties of pure Cr, Mo and W. Transactions of Nonferrous Metals Society of China,2003,13(5):1102-1107
    [84]彭红建,谢佑卿,陶辉锦.金属Pd的原子状态和物理性质,中国有色金属学报,2006,16(1):100-104
    [85]彭红建,谢佑卿,陶辉锦.金属Pt的电子结构和物理性质,材料导报,2006,16(1):121-123
    [86]Peng Hongjian, Xie Youqing, Liu Shaoqian. Atomic states, physical and thermodynamic properties of Ru-metal. Science in China, Ser. E,2007,50(3): 177-183
    [87]Peng Hongjian, Xie Youqing. Atomic states and properties of Ru-electrocatalyst. Trans. Nonferrous Met. Soc. China,2006,16(4):903-906
    [88]Peng Hongjian, Xie Youqing. Atomic states and properties of Pt-electrocatalyst. Science in China, Ser. E,2006,49(3):291-296
    [89]彭红建,谢佑卿.贵金属Ir的原子状态与物理性质.中南大学学报,2006,37(5):937-942
    [90]彭红建,谢佑卿.电催化剂Pt的电子结构和催化性能.中南大学学报,2006,38(1):98-101
    [91]彭红建,谢佑卿.贵金属Rh的原子状态、物理性质和热力学性质.稀有金属,2006,4(4):123-125
    [92]彭红建,谢佑卿.单原子状态自洽法算法的研究.中南大学学报,2007,38(5):10-14
    [93]彭红建,谢佑卿,余方新.金属Ni、Pd、Pt的原子状态和性质.贵金属,2006,27(4):1-5
    [94]刘锐锋,谢佑卿,陶辉锦,彭红建.金属FCC-Al热容的研究.材料导报,2006,20(10):135-137
    [95]He Yu, Xie Youqing. Electronic structure and properties of Pure Vanadium, Trans. Nonferrous Met. Soc. China,1999,9(3):446-450
    [96]彭浩,谢佑卿,彭坤等.用DV-Xa法与用单原子理论计算单质铁电子结构及性质的比较.中国有色金属学报,2001,3:477-480
    [97]彭浩,谢佑卿,刘心笔,杨昕昕.DV-Xa方法和OA理论计算纯金属Zn的电子结构及性质的比较.中南工业大学学报,2001,32(1):70-74
    [98]余方新,谢佑卿,邓永平.金属V, Nb, Ta的电子结构和物理性质.稀有金属,2004,28(5):921-925
    [99]彭坤,谢佑卿,贺昱.金属Zr的电子结构和物理性质.中国有色金属学报,1999,4:700-706
    [100]彭坤,谢佑卿.金属Hf的电子结构和物理性质.中南工业大学学报,1999,30(6):611-617
    [101]谢佑卿,杨昕昕,彭坤.贵金属铑和铱的电子结构和物理性质.贵金属,2001,22(4):7-12
    [102]谢佑卿,张晓东.金属Ag的电子结构和物理性质.中国科学(A辑),1992,4:418-422
    [103]Li Xiaobo,Xie Youqing.Bond-valence parameters of Sc amd Y metals. Modern Physics Letters B,2008,22(10):743-753
    [104]Li Xiaobo,Xie Youqing,Nie Yaozhuang,Peng Hongjian.Energy and shape method for determining the valence and bond structure of crystals. Physica B, 2007,391(2):249-255
    [105]Li Xiaobo,Xie Youqing,Nie Yaozhuang,Peng Hongjian. Temperature-dependent valence bond structure study of tantalum. Physica B,2007,393(1-2): 119-124
    [106]Li Xiaobo, Xie Youqing, Nie Yaozhuang,Peng Hongjian.Influence of pressure on the valence bond structure of tungsten. Physica B,2007,394(1):27-32
    [107]Li Xiaobo,Xie Youqing,Nie Yaozhuang,Peng Hongjian.A study of temperature-dependent valence bond structure of titanium. A cta Metallurgica Sinica Letter,2007,20(1):27-34
    [108]Li Xiaobo,Xie Youqing,Nie Yaozhuang,Peng Hongjian. Low temperature thermodynamic study of the stable and metastable phases of vanadium. Chinese Science Bulletin,2007,52(22):3041-3046
    [109]Li Xiaobo,Xie Youqing,Nie Yaozhuang,Peng Hongjian. Low Temperature Thermodynamic Study of the Stable and Metastable Phases of Silver. Acta Metallurgica Sinica Letter,2007,20(5):355-362
    [110]吕维洁,谢佑卿,张迎九等.金属锌的电子结构及物理性质.中南工业大学学报,1997,28(1):60-63
    [111]谢佑卿.合金物理与化学框架.材料导报,2001,15(8):3-6
    [112]Xie Youqing. Atomic energies and Gibbs energy functions of Ag-Cu alloys. Science in China, Ser. E,1998,41(2):146-156
    [113]Xie Youqing. Atomic volume and volume function of Ag-Cu alloys. Science in China, Ser. E,1998,(2):157-168
    [114]Xie Youqing. Electronic structures of Ag-Cu alloys. Science in China, Ser. E, 1998,(3):225-236
    [115]Xie Youqing, Zhang Xiaodong. Phase diagram and thermodynamic properties of Ag-Cu alloys. Science in China Ser. E,1998,(4):348-356
    [116]Xie Youqing, Liu Xinbi, Peng Kun. Atomic states, potential energies, volumes, stability, and brittleness of ordered FCC TiAl3-type alloys. Physica B,2004,353: 15-33
    [117]Xie Youqing, Peng Kun, Liu Xinbi. Influences of XTi/XAl on atomic states, lattice constants and potential-energy planes of ordered FCC TiAl-type alloys, Physica B,2004,344:5-20
    [118]Xie Youqing, Peng Kun, Liu Xinbi, et al. Atomic states, potential energies, volumes, brittleness and phase stability of ordered FCC Ti3Al type alloys. Physica. B,2005,362:1-17
    [119]Xie Youqing, Tao huijing, Peng Kun, et al. Atomic states, potential energies, volumes, stability and brittleness of ordered FCC TiAl2 type alloys, Physica. B, 2005,366:17-37
    [120]Xie Youqing, et.al. Microstructure and properties of Cu-Ni alloys. Science in China, Ser. A,1993,36(5):612-619
    [121]Peng Hongjian, Xie Youqing. Atomic states and brittleness of ordered HCP Ti3Al type alloys, Acta. Metallurigica Sinica,2007,20 (4):270-276
    [122]李小波,谢佑卿,余方新.用特征晶体模型计算Ta-W相图.稀有金属,2005,29(3):302-307
    [123]Li Xiaobo,Xie Youqing. Valence bond structure of Ta-W alloys. Acta Metallurgica Sinica Letter,2009,22(4):275-283
    [124]谢佑卿,马柳莺,张晓东,邹平等.Cu-Ni合金的微观结构和性质.中国科学(A辑),1993,23(9):999-1019
    [125]Ma Liuying, Mao Dingxiong, Xie Youqing. Valence bond theory analysis on the lattice parameters atomic magnetic moments and characteristic of specific heat Fe-Co alloys. Journal of Central-South Institute of Mining and Metallurgy, 1987,18(4):445-451
    [126]余方新,谢佑卿,聂耀庄.Fcc结构Ti-Al合金的原子状态及其性质的研究.中南工业大学学报,2003,34(6):598-601
    [127]谢佑卿,马柳莺,谢昭春.Fe-Ni金属的价电子结构.中南矿冶学院学报,1984,1:1-10
    [128]熊家炯.材料设计.天津:天津大学出版社,2000.1-32
    [129]G.B.Olson. Beyond doscovery:design for a new world. Calphad,2001,2: 175-190
    [130]三岛良绩.新材料开发和材料设计学.Tokyo:Soft Science Inc,1985.
    [131]Frenkel, Smit.分子模拟—从算法到应用(汪文川等译).北京:化学工业出版社,2002
    [132]J.M Haile. Molecular Dynamics Simulations. New York:Wiley,1992.
    [133]N Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, 1987,12:125-130
    [134]K Binder. Monte carlo simulation in statistical physics:an ntroduction. Berlin: Springer-Verlag,1988.
    [135]J R Chelikowsky, S G Louie. Quantum theory of real materials. Kluwer Academic Punblishers,1996.
    [136]Cohen, L Marvin. Theory of real materials. Annual Review of Materials Science,2000,30:1-26
    [137]Cohen, L Marvin. Predicting properties and new materials. Solid State Communications,1994,92(1-2):45-50
    [138]Cohen, L Marvin. Theoredtical study superconductivity in high condensed Si. Physica B,1985,135(1-3):229-234
    [139]Cohen, L Marvin. Theory of bulk moduli of hard solids. Materials Science Engineering A,1988,105(6):11-18
    [140]Freeman Arthur J. Electronic structure theory in the new age of computational materials science. Annu.Rev.Mater.Sci.,1995,25:1-5
    [141]Freeman Arthur J, Wimmer Erich. Density functional theory as a major tool in computational materials science. Annu.Rev.Mater. Sci.1995,25:7-36
    [142]P. Hohenberg, W Kohn. Inhomogeneous electron gas. Physical Review B, 1964,136(3):864-871
    [143]W Kohn Density functional theory:fundamentals and appli-cations. In: Bassani F, Fumi F and Tosi M P ed. Highlights of condensed matter theory. North Holand,1985.
    [144]W Kohn, L J Sham. Self-consistent equations includingexchange and correlation effects. Physical Review A,1965,140(4):1133-1138
    [145]M S Hybertsen, S. G.Louie. Electron correlation in semiconductors and insulators:band gaps and quasiparticle energies. Phys. Rev. B,1986,34: 5390-5413
    [146]S G Louie. Quasiparticle theory of electron excitations in solid. In: Chelikowsky J R, Louie S G ed. Quantum theory of real materials, Kluwer Academic Publishers,1996
    [147]R Car, M Parrinello. Unified approach for molecular dynamics density-functional theory. Phys. Rev. Lett.,1985,55:2471-2474
    [148]R Car. Modeling materials by ab initio molecular dynamics. In:helikowsky J R, Louie S G ed. Quantum theory of real materials, Kluwer Academic Publishers, 1996.23
    [149]R.K.Edw.,M B Brodsky. The thermodynamics of the liquid solutionsin Traid Cu-Ag-Au II. The Cu-Au system. J.Am.Chem.Soc.,1956,78(7):2983-2989
    [150]R. L. Orr. Heats of formation of solid Au-Cu alloys. Acta. Metallurgica.,1960, 8(7):431-434
    [151]R. L. Orr. Heats of formation of solid Au-Cu alloys. Acta. Metallurgica.,1960, 8(7):489-493
    [152]B. Sundman, S.G Fries, A.W Oates. A thermodynamic assessment of the Au-Cu system. CALPHAD.1998,22:335-354
    [153]A.Neckel, S.Wagner. Mass spectrometric determination of thermodynamic activites.I gold-copper system. Ber. Bunsenges Phys. Chem.,1969,73(2): 210-217
    [154]R. Hultgren, R. D. Desai, D. T. Hawkins, et al. Selected Valuses of the Thermodyna,ic Properties of Binary of Binary Alloys. Cleveland:ASM, metals Park OH,1973.258-271
    [155]T. B. Massalski. Noble Metal Alloys. Warrendale:The Metallurgical Society, PA,1986.
    [156]L. Topor, O. J. Kleppa. Thermochemistry of Binary Liquid Gold Alloys. Metal.Trans. A,1984,15A:203-208
    [157]R. A. Oriani. Thermodynamics of Liquid Ag-Au and Au-Cu Alloys. Acta Metall.,1954,2:15-25
    [158]C. Wagner, G. Engelhard. Thermodynamic Activities in Binary Alloys. Phys. Chem. A.1932,2:241-267
    [159]F. Weibke, U. F. Quadt. The Heat of Formation and the States of order in the System Gold-Copper. Z. Elektrochem.,1939,45:715-727
    [160]P. Chiche. Activity of Copper in its Alloys with Gold. Compt. Rend.,1952, 241:830-832
    [161]R. A. Oriani. Thermodynamics of Copper-Gold system. Acta Metall.,1954,2: 608-615
    [162]Dt Hawkin. The effect of ordering on low-temperature heat capacities:order and disorder Gold-Copper. Abstr. Int. B.,1971,31(7):4099-4100
    [163]T.Mohri, K. Terakura, T.Oguchi, K.Watanare. First principles calculation of thermodynamic properties of noble-metal alloys. Acta. metall.,1988,36(30): 547-553
    [164]P Bardhan, JB Cohen. A structureal study of the alloy Cu3Au above its critical temperature. Acta crystalloger A.,1976,32(4):597-614
    [165]ML Boyle, CJ Van Tyen, SKTarby. Computer analysis and synthesis of solution thermodynamics and phase diagrams. Computer simulation for materials application. Nucl. Mrtal.,1976,20 (1):187-194
    [166]RD Agrawal, VNS mather, ML Kapoor. Thermodynamics of binary copper-bearing substitutional solutions. Trans. Jpn.Inst.met.,1979,20(6)323-328
    [167]F Lantelme, S Belaidouni, M Chemla. Determination of copper activity in gold-copper alloys by measuring electrochemical potential in fused medium. J. Chem. Phys. Phys.-Chim. Biol.1975,16(9):687-695
    [168]A Yazawa, K Itagaki, T Azakami. Physico-chemical properties of liquid copper binary alloys. Trans. Jpn.Inst.met.,1979,20(6)323-328
    [169]J Trondse, P Bolsaitis. Activity of copper in solid copper-gold alloys. Metall. Trans.,1970,1:2022-2023
    [170]陆学善,梁敬.铜金二元系超结构的形成与点阵间隔的变迁.物理学报,1966,22(6): 659-697
    [171]PA Flinn,G M McManus JA Rayne. Elastic constans of ordered and Disordered Cu3Au from 4.2 to 300K. J. Phys. Chem. Sol.,1960,15:189-195
    [172]RW Cahn. Lattice parameter changes on the disordering intermetallies, Intermeter and volume changes on disordering intermetallies. Intermetallics, 1999,7:1089-1094
    [173]ML Bhatia, RW Cahn. Lattice parameter and volume changes on disordering intermetallics. Intermetallics,2005,13:474-483
    [174]SS Lu, CK Liang. Existence of the CuAu3 long-range order in the Cu-Au system. K'o Hsueh T'ung Pao,1966,17(9):395-396
    [175]L Vegard, H Dale. An investigation of mixed crystals and alloys. Z.Kristallogr.,1928,67:359-377
    [176]AR Yavari. Ordering and disordering of alloys. London:Elsevier Applied Science,1992.67
    [177]H Chen, V.K Vasudevan. Kinetics of ordering transformations in metals. Warrendale:P.A TMS,1992,161
    [178]M Bergman, L Holmlund, N Ingri. Structure and properties of dental castiong Au Alloys Ptl Determination of ordered structures in solid solutions of Au,Ag and Cu by interpretation of variations in the unit cell length. Acta. Chem. Scand., 1972,26(7):2817-2831
    [179]E Bjerkelund, WB pearson, K Selte, A Kjekshus. Lattice parameters of CuAu (I) phase. Acta Chem. Scand,1967,21 (10):2900-2902
    [180]D Gratias, M Condat, M Fayard. Ⅰ-and Ⅱ-type superlattices inm Gold-rich copper-gold alloys. Phys. Status. Solidi A,1972,14(1):123-128
    [181]M Hirabayashi. Electrial resistivity and superstructure ofCuAu3.J.Phys. Soc. Jpn.,1959,14:262-273
    [182]P Wright, KF Goddard. Lattice parameter and resistivity study of order in the alloy CuAu3. Acta. Metall.,1959,7(12):757-761
    [183]R G Davies, AJ Funes. X-ray study of order in CuAu3 alloys. ActaMetallic, 1961,9(10):978-979
    [184]J B Newkirk,. Order-disorder transformation in Cu-Au alloys near the composition CuAu. Trans. AIME.,1953,197:823-826
    [185]K Okamura, H Iwasaki, S Ograwa. Lattice modulation in the long ordered alloys studied by x-ray diffraction. Ⅱ Copper gold Ⅱ. J. Phys. Soc. Ipn.,1968, 24(3):569-579
    [186]S L Manan VS Arunachalam. Low temperature ordering in CuAu. Scr. Metall., 1969,3(8):597-600
    [187]H Chen, VK Vasudevan. Kinetics of ordering transformations in metals. Warrendale PA:TMS,1992.161
    [188]RW Cahn. Physical metallurgy. Amsterdam:North-holland,1970.33
    [189]JH Westbrook, RL Fleischer. Intermetallic compounds,principles. New York: Wiley,1994.91
    [190]190-H. Okamoto, D. J. Chakrabarti, D. E. Laughin et al. The Au-Cu System. Bull. Alloy Phase Diagram,1987,8:454-474
    [191]R. Kikuchi, J. M. Sanchez, D. de Fontaine, et al. Theoretical calculation of the Cu-Ag-Au coherent phase diagram. Acta Metall,1980,5:651-662
    [192]C. Sigh, J. M. Sanchez. Theoretical description of phase equilibrium in binary alloys. Acta Metall,1985,6:1097-1104
    [193]J. M. Sanchez, J. P. Stark, V. L. Moruzzi. First-principles calculation of the Ag-Cu phase diagram. Phys. Rev. B,1991,44:5411-5418
    [194]D. de Fontaine, R. Kikuchi. Fundamental Calculation of Coherent Phase Diagrams, NBS Publication,1978
    [195]W. A. Oates, P. J. Spencer, S. G. Fries. Cluster expansion for Cu-Au alloys based on experimental data. CALPHAD,1996,4:481-489
    [196]V. Ozolin, S. C. Wolverton, Alex Zunger, Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics:First-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B,1998,57:6427-6443
    [197]Sundman, Bo, Fries, Suzana G., Oates, W. Alan. CALPHAD assessment of the Au-Cu system using the cluster variation method. Zeitschrift fuer Metallkunde,1999,4:67-273
    [198]L. G. Ferreira, A. A. Mbaye, Alex Zunger. Effect of chemical and elastic interactions on the phase diagrams of isostructural solids. Phys. Rev. B,1989, 7,35:6475-6478
    [199]D. de Fontaine. Cluster Approach to Order-Disorder Transformations in Alloys. Solid State Physics,1994,47:33-176
    [200]V.Ozolins, C.Wolverton, Alex Zungor. Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics:First-principles study of phase diagrams and structures. Phys. Rev. B,1998,57:6427-6445
    [201]SH Wei, A A Mbaye, L. G. Ferreira, et al. First-principles calculations of the diagrams of noble metals:Cu-Au, Cu-Ag and Ag-Cu. Phys. Rev. B,1987, 36:4163-4185
    [202]K. Terakura, T. Oguchi, T. Mohri, etc. Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems. Phys. Rev. B,1987,35: 2169-2173
    [203]A.V.Ruban, I.A.Abrikosov, H.L.Skriver. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys. Phys.Rev. B,1995,51: 12958-12968
    [204]P Weinberger, V. Drchal, L. Szunyogh, et al. Electronic and structural properties of Cu-Au alloys. Phys. Rev. B,1994,49:13366-13372
    [205]D Gray, E Brown. Electron Energy Levels in Cu3Au. Phys. Rev.,1967, 160:567-576
    [206]H L Skriver, H P Lengkeek. Band structure and optical properties of ordered AuCu3, Phys. Rev. B,1979,19:900-910
    [207]R E Watson, J W Davenport, M Weinert. Linear augmented Slater-type-orbital study of Au-5d-transition-metal alloying. Phys. Rev. B,1987,35:508-518
    [208]IA Abrikosov, Yu H Vekilov, AV Ruban. Fast LMTO-CPA method for electronic structure calculations of disordered alloys:application to Cu-Ni and Cu-Au systems. Phys. Lett. A,1991,7:407-412
    [209]J Kudrnovs, SK Bose, OK Andersen. Comparative study of the electronic structure of ordered, partially ordered, and disordered phases of the Cu3Au alloy. Phys. Rev. B,1991,43:4613-4621
    [210]ZW Lu, SH Wei, A Zunger. Electronic structure of ordered and disordered Cu3Au and Cu3Pd. Phys. Rev. B,1992,45:10314-10330
    [211]JW Davenport, RE Watson, M Weinert. Linear augmented-Slater-type-orbital method for electronic-structure calculations:V. Spin-orbit splitting in Cu3Au, Phys. Rev. B,1988,37:9985-9992
    [212]DD Johnson, FJ Pinski. Inclusion of charge correlations in calculations of the energetics and electronic structure for random substitutional alloys. Phys. Rev. B, 1993,48:11553-11560
    [213]CH Hodges, MJ Scott. Theory of electrochemical effects in alloys. Philos, Mag.,1972,2:375-392
    [214]CD. Gelatt, H Ehrenreich. Charge transfer in alloys:AgAu. Phys. Rev. B,1974,10:398-415
    [215]RE. Watson, LH. Bennett. Transition metals:d-band hybridization, electronegativities and structural stability of intermetallic compounds. Phys. Rev. B,1978,18:6439-6449
    [216]JA Alonso, LA Girifalco. Electronegativity scale for metals. Phys. Rev. B, 1979,19:3889-3895
    [217]AV Ruban, IA Abrikosov, HL Skriver. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys. Phys. Rev. B,1995, 51:12958-12968
    [218]JA Clark, PG Dawber. Theory of alloys:a coherent pseudopotential model. J. Phys. F,1972,2:930-938
    [219]K Levin, H Ehrenreich. Model Hamiltonian Description of Ag-Au Alloys in the Coherent-Potential Approximation. Phys. Rev, B,1971,3:4172-4176
    [220]CM Van Baal. Order-disorder transformations in a generalized Ising alloy. Physica (Utrecht),1973,3:571-586
    [221]RC Kittler, LM Falicov. Band theory for order-disorder phase transformations: CuAu. Phys. Rev. B,1978,18:2506-2514
    [222]HM Polatoglou, GL Bleris. Constant temperature and pressure Monte Carlo study of the order-disorder transition of Cu33Au. Interface Sci.,1994,2:31-44
    [223]G Bozzolo, J Ferrante, JR Smith. Method for calculating alloy energetics. Phys. Rev. B,1992,45:493-496
    [224]G Mazzone, V Rosato, M Pintore. Molecular-dynamics calculations of thermodynamic properties of metastable alloys. Phys. Rev. B,1997,55:837-842
    [225]M Ahlers. The Hume-Rothery rules and phase stabilities in noble metal alloys. Z. Phys. B,1996,99:491-499
    [226]ZW Lu, SH Wei, A Zunger, et al. First-principles statistical mechanics of structural stability of intermetallic compounds. Phys.Rev. B,1991,44:512-544
    [227]ZW Lu, A Zunger. Unequal wave vectors in short-versus long-range ordering in intermetallic compounds. Phys. Rev. B,1994,50:6626-6636
    [228]ZW Lu, BM Klein, A Zunger. Atomic short-range order and alloy ordering tendency in the Ag-Au system. Model. Simul. Mater. Sci. Eng.,1995,6:753-770
    [229]ZW Lu, BM Klein, A Zunger. Thermodynamic instability of Ag/Au and Cu/Pd metal superlattices. Superlattices Microstruct,1995,3:161-176
    [230]T Mohri, K Terakura, S Takizawa, et al. First-principles study of short range order and instabilities in Au-Cu, Au-Ag and Au-Pd alloys. Acta Metall., 1991,4:493-501
    [231]K Binder. Ordering of the Face-Centered-Cubic Lattice with Nearest-Neighbor Interaction. Phys. Rev. Lett.,1980,45:811-814
    [232]R Kikuchi, J W. Cahn. Theory of interphase and antiphase boundaries in FCC alloys. Acta Metall.,1979,8:1337-1353
    [233]B Chakraborty, Z Xi. Atomistic Landau theory of ordering and modulated phases in Cu-Au alloys. Phys. Rev. Lett.,1992,68:2039-2042
    [234]CH Johannsson, JO Linde. Roentge-nographic and electrical investigations of the Cu-Au system. Ann Phys.,1936,25:1-48
    [235]G Jehanno, P Perio. Etude radiocristallographique de AuCuII sur monocristaux. J. Physique.,1964,25:966-974
    [236]Y Feutelais, B Legendre, M Guymont. New enthalpies determination and in situ X-ray diffraction observations of order/disorder transitions in Au0.5Cu0.5 Acta. Mater.,1999,47:2539-2551
    [237]J Bonneanx, M Guymont. Study of the order-disorder transition series in AuCu by in-situ temperature electron microscopy. Intermetallics.,1999,7: 797-805
    [238]M Guymont, Y Feutelais, B Legendra. Phase transitions in Au0.5Cu0.5. J.Phys. IV France.,2001,11:103-107
    [239]R Portier, D Gratias, M Guymont, WM Stobbs. Characterization of two different types of long-period ordered alloys by high-resolution electron microscopy. Acta Cryst.,1980, A36:190-193
    [240]A Pianelli, R Faivre. X-Ray Diffraction Study of the System Gold-Copper Near Equiatomic Composition. Compt. Rend.,1957,245:537-1539
    [241]C Kittel. Introduction to solid state physics,6th ed. New York:John Wiley and Sons,Inc,1986:55,57,144,110
    [242]DE Gray. American Institute of Physics Handbook(3rd edition). New York:McGraw-Hill,1972.4-119
    [243]MW Chase. NIST-JANAF thermochemical tables(Fourth Edition Part Ⅰ). Gaithersburg:National Institute of Standards and technology,1998.1005-1009
    [244]CS Barretts. TB Massalski. Structure of metals 3rd ed. New York:Mcgraw, 1966.
    [245]P Tissot, R Dallenbach. Thermochim. Study of order-disorder transformation of copper-gold alloys by means of differential thermal analysis. Acta.,1978, 25:143-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700